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Abstract

The finite difference solution of the Dirichlet problem on rectangles when a boundary
function is given from C1,1 is analyzed. It is shown that the maximum error for a nine-
point approximation is of the order of O(h2(|ln h| + 1)) as a five-point approximation.
This order can be improved up to O(h2) when the nine-point approximation in the grids
which are a distance h from the boundary is replaced by a five-point approximation
(“five and nine”-point scheme). It is also proved that the class of boundary functions
C1,1 used to obtain the error estimations essentially cannot be enlarged. We provide
numerical experiments to support the analysis made. These results point at the
importance of taking the smoothness of the boundary functions into account when
choosing the numerical algorithms in applied problems.
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1. Introduction

In many versions of the domain decomposition, composite grids and combined
methods in solving Laplace’s boundary value problems, the obtained system of
equations is separated into a fixed number of subsystems, each of which is adequate for
the difference equations on a rectangle (see [2, 3, 5, 6, 8, 10, 14]). Therefore, a detailed
error analysis becomes important for the classical finite difference or finite element
methods for the problems in rectangular domains. It is also known that, to enlarge a
class of problems to apply the above-mentioned methods, the maximum possible order
of accuracy should be obtained by minimum requirements on the functions given in
the boundary conditions (see, for example, [1, 4, 12, 14]).
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In [12] the five-point scheme on square grids used to solve the Dirichlet problem for
Laplace’s equation on rectangles was analyzed. It was proved that, when the boundary
function is from C1,1, that is, it has the first derivative that satisfies a Lipschitz
condition, the error in maximum norm is of the order of O(h2(|ln h| + 1)), (h is the
mesh step), and the requirements on the boundary functions cannot be lowered.

In this paper, we analyze the classical nine-point scheme on square grids for the
same class of boundary functions as in [12], that is, from C1,1. It is shown (Section 4)
that the nine-point scheme cannot improve the order of accuracy in maximum norm
for the same class of boundary functions C1,1 as in the five-point scheme. Moreover,
it is proved that O(h2(|ln h| + 1)) order accuracy cannot be obtained for the class
of boundary functions C1,λ, 0< λ < 1, that is, the requirements on the boundary
functions cannot be lowered in Hölder classes Ck,λ. In Section 5 of this paper, it
is proved that, if we replace the nine-point approximation with a simple five-point
approximation (“five and nine”-point scheme) just on the grids which are a distance
h from the boundary of the rectangle, the order of accuracy in the maximum norm
becomes O(h2), that is, the factor |ln h| is removed.

In Section 2 of this paper, the necessary differential properties for the solution of
Laplace’s equation are given. In Section 3, we formulate the existing error estimations
in uniform metric.

2. The Drichlet problem on rectangular domains

Let

5= {(x, y) | 0< x < a, 0< y < b}

be a rectangle, a/b be rational, γ j , j = 1, 2, 3, 4, be the sides, including the ends,
enumerated counterclockwise starting from the left side (γ0 ≡ γ4, γ5 ≡ γ1), and let
γ =

⋃4
j=1 γ j , be the boundary of 5. Denote by s the arc length, measured along the

γ , and denote by s j the beginning of γ j .
We consider the boundary value problem

1u = 0 on 5, u = ϕ j (s) on γ j , j = 1, 2, 3, 4, (2.1)

where 1≡ ∂2/∂x2
+ ∂2/∂y2, ϕ j is a given continuous function of the arc length s

taken along γ .
We give the following definitions and theorems which will be used in the following

sections for the analysis of the finite difference solutions.

DEFINITION 2.1. We say that f ∈ Ck,λ(D), if f has kth derivatives on D satisfying
a Hölder condition with exponent λ.

THEOREM 2.2. The solution of the problem (2.1) u ∈ Ck,λ(5), k ≥ 0, 0< λ < 1, if
and only if

ϕ j (s) ∈ Ck,λ(γ j ) (2.2)
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and for s = s j the conjugation conditions

ϕ
(2q)
j = (−1)qϕ(2q)

j−1, (2.3)

are satisfied, where q = 0, 1, . . . , Q, Q = [k/2], j = 1, 2, 3, 4.

PROOF. See [11, Theorems 3.1 and 3.2]. 2

DEFINITION 2.3. We say that the solution u of the problem (2.1) belongs to C̃k,λ(5),
k ≥ 2, 0< λ < 1, if (2.2) and (2.3) are satisfied when Q = [k/2] − 1.

DEFINITION 2.4. We say that the boundary function ϕ j ∈ C1,1(γ j ) if ϕ j has first
derivative, which satisfies a Lipschitz condition on γ j , j = 1, 2, 3, 4.

THEOREM 2.5. Let ϕ j ∈ C1,1(γ j ) and let ϕ j−1(s j )= ϕ j (s j ), j = 1, 2, 3, 4, then the
following statements for the derivatives of the solution of the problem (2.1) on 5
are true.

(a) The second-order pure derivatives are bounded, that is,

sup
5

{∣∣∣∣∂2u

∂x2

∣∣∣∣, ∣∣∣∣∂2u

∂y2

∣∣∣∣}≤8, (2.4)

where 8 is a constant which is defined by the Lipschitz coefficients of the first
derivative of the boundary functions ϕ j , j = 1, 2, 3, 4.

(b) The inequalities ∣∣∣∣∂2u(x, y)

∂x∂y

∣∣∣∣≤ c̃2(|ln t | + 1), (2.5)∣∣∣∣ ∂ pu(x, y)

∂xq∂y p−q

∣∣∣∣≤ c̃pt2−p, p > 2, 0≤ q ≤ p, (2.6)

are satisfied for the mixed derivatives, where t is the distance from (x, y) ∈5 to
γ (boundary of 5), and c̃ν , ν ≥ 2, are constants that are independent of t .

PROOF. The proof follows from [12, Theorems 4.1 and 6.1], and from [13,
Estimations (2.8) and (2.9)]. 2

3. Finite difference solutions

Let h > 0, and a/h ≥ 4, b/h ≥ 4 be integers. We assign 5h , a square net on 5,
with step h, obtained with the lines x, y = 0, h, 2h, . . . . Let γ h

j be a set of nodes on
the interior of γ j , and let

γ h
=

4⋃
j=1

γ h
j , γ̇ j = γ j−1 ∩ γ j , γ h

=

4⋃
j=1

(γ h
j ∪ γ̇ j ),

5
h
=5h

∪ γ h, 5̃h
=5h

∪ γ h .
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We denote by 51h the set of such nodes of 5h that are a distance h from γ and
52h
=5h

\51h .
Let the operators A and B be defined as follows

Au(x, y) = (u(x + h, y)+ u(x − h, y)+ u(x, y + h)+ u(x, y − h))/4, (3.1)

Bu(x, y) = (u(x + h, y)+ u(x − h, y)+ u(x, y + h)+ u(x, y − h))/5

+ (u(x + h, y + h)+ u(x + h, y − h)

+ u(x − h, y + h)+ u(x − h, y − h))/20. (3.2)

We consider the following two classical finite difference approximations of the
problem (2.1):

(i) five-point approximation

u A
h = Au A

h on 5h, u A
h = ϕ j on γ h

j , j = 1, 2, 3, 4; (3.3)

(ii) nine-point approximation

u B
h = Bu B

h on 5h, u B
h = ϕ j on γ h

j ∪ γ̇ j , j = 1, 2, 3, 4. (3.4)

In the following, for simplicity we denote the constants which are independent of h
by c, c0, c1, . . . .

Let u A
h and u B

h be the solutions of the finite difference problems (3.3) and (3.4),
respectively, and let u be the solution of problem (2.1).

The following theorems hold.

THEOREM 3.1 (Volkov [14]). If the solution to the problem (2.1) u ∈ C̃2,λ(5),
0< λ < 1, then

max
5̃h
|u A

h − u| ≤ ch2. (3.5)

THEOREM 3.2 (Dosiyev [4]). If the solution of the problem (2.1) u ∈ C̃6,λ(5),
0< λ < 1, then

max
5

h
|u B

h − u| ≤ ch6. (3.6)

THEOREM 3.3 (Volkov [12]). If ϕ j ∈ C1,1(γ j ) and ϕ j−1(s j )= ϕ j (s j ), j = 1, 2, 3, 4,
then

max
5̃h
|u A

h − u| ≤ ch2(|ln h| + 1). (3.7)

4. Nine-point solution on rectangles

We show that Theorem 3.3 holds for the nine-point solution as well.

THEOREM 4.1. If ϕ j ∈ C1,1(γ j ) and ϕ j−1(s j )= ϕ j (s j ), j = 1, 2, 3, 4, then

max
5

h
|u B

h − u| ≤ c0h2(|ln h| + 1)+ ch2. (4.1)
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PROOF. Let
εB

h = u B
h − u on 5

h
=51h

∪52h
∪ γ h . (4.2)

It is obvious that

εB
h = BεB

h + (Bu − u) on 5h, εB
h = 0 on γ h . (4.3)

Let (x, y) ∈51h then (x + s H, y + sK ) ∈5, for 0≤ s ≤ 1, H, K =−h, 0, h,
H2
+ K 2 > 0. We use the next form of Taylor’s formula to estimate Bu − u on 51h

u(x + H, y + K )

= u(x, y)+ Hux (x, y)+ K u y(x, y)+
∫ 1

0
(1− q)[H2uxx (x + q H, y + q K )

+ 2H K uxy(x + q H, y + q K )+ K 2u yy(x + q H, y + q K )] dq. (4.4)

On the basis of (2.4) and (2.5) the absolute value of the integral in (4.4) is estimated
by

4̃c2h2
∫ 1

0
(1− q)|ln h(1− q)|dq ≤ c1h2(|ln h| + 1). (4.5)

By virtue of (3.2), (4.4) and (4.5), we obtain

|Bu − u| ≤ c2h2(|ln h| + 1) on 51h . (4.6)

We represent the solution of (4.3) as

εB
h = ε

1
h + ε

2
h, (4.7)

where

ε1
h = Bε1

h + Bu − u on 51h, ε1
h = Bε1

h on 52h, ε1
h = 0 on γ h

; (4.8)

ε2
h = Bε2

h on 51h, ε2
h = Bε2

h + Bu − u on 52h, ε2
h = 0 on γ h . (4.9)

On the basis of (4.6), (4.8), and the principle of the maximum (see [9, Ch. 4]) for
the solution ε1

h of the problem (4.8),

max
5

h
|ε1

h | ≤
10
3

c2h2(|ln h| + 1). (4.10)

We show that

max
5

h
|ε2

h | ≤
10
3

max
5

h
|ε3

h |, (4.11)

where
ε3

h = 0 on 51h
∪ γ h, ε3

h = Bε3
h + Bu − u on 52h . (4.12)
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Let τh be a solution of the problem

τh = ε
2
h on 51h, τh = Bτh on 52h, τh = 0 on γ h . (4.13)

It is obvious that
ε2

h = ε
3
h + τh . (4.14)

By virtue of (4.9) and (4.13),

max
5

h
|τh | ≤

7
10

max
5

h
|ε2

h |. (4.15)

The inequality (4.11) follows from (4.14) and (4.15).
Now, we estimate the solution of the problem (4.12). Let 52h

k , 2≤ k ≤ [a∗/2h],
a∗ =min{a, b}, be the subsets of 52h , such that, the distance from each point of 52h

to γ is equal to kh, and let 52h
1 ≡5

1h , 52h
0 ≡ γ

h . According to the Taylor formula
with the remainder term in Lagrange form expressing eighth derivatives and by using
the estimation (2.6) for p = 8,

|Bu − u| ≤
c3h8

(kh)6
on 52h

k , 2≤ k ≤ [a∗/2h]. (4.16)

We define the functions 9k(P), 2≤ k ≤ [a∗/2h], P ∈5
h

as follows

9k(P)=


10m

3
if P ∈52h

m , 0≤ m ≤ k

10k

3
if P ∈52h

m , m > k.
(4.17)

It is easy to show that the functions9k(P), 2≤ k ≤ [a∗/2h], are solutions of the finite
difference problem

9k = B9k + qk on 52h
k , 9k = B9k on 52h

\52h
k ,

9k =
10
3

on 52h
1 , 9k = 0 on 52h

0 , (4.18)

where qk , (1≤ qk ≤ (10/3)) are real numbers.
Let ε3

h,k be the solution to the problem

ε3
h,k = Bε3

h,k + rh,k on 52h
k , ε3

h,k = Bε3
h,k on 52h

\52h
k ,

ε3
h,k = 0 on 51h

∪ γ h, (4.19)

where 2≤ k ≤ [a∗/2h],

rh,k = c3
h2

k6 . (4.20)
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On the basis of (4.18)–(4.20) and the comparison theorem (see [9, Ch. 4]),

ε3
h,k ≤ c3

h2

k69k, 2≤ k ≤ [a∗/2h]. (4.21)

Furthermore, by virtue of (4.12), (4.17), (4.19) and (4.21), we obtain

max
5

h
|ε3

h | ≤

[a∗/2h]∑
k=2

ε3
h,k ≤

[a∗/2h]∑
k=2

c3
h2

k69k ≤
10
3

c3h2
[a∗/2h]∑

k=2

1

k5 ≤ c4h2. (4.22)

From (4.7), (4.10), (4.11) and (4.22),

max
5

h
|εB

h | ≤max
5

h
|ε1

h | +max
5

h
|ε2

h | ≤ c5h2(|ln h| + 1)+ c6h2. (4.23)

The estimation (4.1) is thus proved. 2

THEOREM 4.2. The class of boundary functions in Theorem 4.1 cannot be enlarged
in Hölder classes Ck,λ.

PROOF. Let 5= {(x, y) | 0< x < a,−b/2< y < b/2}, and let γ be its boundary.
We consider the harmonic function

u = r1+λ cos(1+ λ)θ on 5, (4.24)

where 1/2< λ < 1, r = |z|, θ = arg z, z = x + iy. It is obvious that u ∈ C1,λ(γ ).
Let h > 0, a/h, b/h be integers, and the net 5h be constructed by the lines

x = 0, h, 2h, . . . , y = 0,±h,±2h, . . . . We show that there exist a real number h0
and an integer number T ≥ 2, such that for all h ≤ h0 the point P(T h, 0) ∈5h and

|Bu − u||P > ch1+λ, h ≤ h0. (4.25)

On the basis of (3.2) and Taylor’s formula with the remainder term R(u, h)
expressed through the ninth derivatives, we have (see [7])

(Bu − u)|P =
4h8

8!
∂8u

∂x4∂y4

∣∣∣∣
P
+

3h2

10
R(u, h). (4.26)

For the function (4.24), we obtain

∂8u

∂x4∂y4

∣∣∣∣
P
> (1− λ)

1
(T h)7−λ

, (4.27)

and ∣∣∣∣ ∂9u

∂xm∂y9−m

∣∣∣∣< c∗
1

r8−λ , 0≤ m ≤ 9 on 5, (4.28)

where c∗ is a constant independent on r .
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Since the remainder term R(u, h) contains the values of nine order derivatives with
the common factor h7/9! at the points on line segments connecting the point P(T h, 0)
with the eight neighbor grid points, by taking (4.27) and (4.28) into account, we obtain

|R(u, h)|<
c∗h7

9!

{
171

((T − 1)h)8−λ
+

173

(T h)8−λ

}
. (4.29)

On the basis of (4.26), (4.27) and (4.29) for any T ≥ 2,

|Bu − u||P >
4(1− λ)h1+λ

8! T 7−λ −
3c∗h1+λ(171 · 28−λ

+ 173)

9! 10T 8−λ . (4.30)

From (4.30) follows that, if we choose T = 2+ [346c∗/(1− λ)] then the
estimation (4.25) is true for all h ≤ h0 = a/(T + 2), and c = (1− λ)/(8! T 7−λ).

Let uh be the solution to the finite difference problem (3.4) when the values of the
function ϕ j , on γ h

j ∪ γ̇ j , j = 1, 2, 3, 4, are replaced with the corresponding values of
the function u defined as (4.24). Since

uh − u = B(uh − u)− (u − Bu), (4.31)

based on (3.2), (3.4), (4.25) from (4.31), we obtain

max
5

h
|uh − u|>

c

2
h1+λ, 0< h ≤ h0. (4.32)

From (4.32) it follows that if we replace the condition ϕ j ∈ C1,1(γ j ) with ϕ j ∈

C1,λ(γ j ), 1/2< λ < 1, then the maximum error becomes bounded below by the
quantity h1+λ on some sequence of values of h tending to zero.

Theorem 4.2 is thus proved. 2

REMARK 4.3. From the error estimation (4.1) it follows that the term with the |ln h|
factor appears because of the error of approximation of the nine-point scheme on
the grid 51h due to the unboundedness of the second-order mixed derivatives of the
exact solution.

5. “Five and nine”-point scheme for the Dirichlet problem with boundary
functions from C1,1

We approximate the boundary value problem by the next “five and nine”-point
scheme

uh = Auh on 51h, uh = Buh on 52h, uh = ϕ j on γ h
j , j = 1, 2, 3, 4.

(5.1)

THEOREM 5.1. If ϕ j ∈ C1,1(γ j ) and ϕ j−1(s j )= ϕ j (s j ), j = 1, 2, 3, 4, then

max
5

h
|uh − u| ≤ ch2, (5.2)
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where u is the exact solution of the problem (2.1), uh is the solution of the finite
difference problem (5.1), that is, just replacing the nine-point approximation by a five-
point approximation on 51h in the approximate problem, the factor |ln h| from the
error estimation (4.1) can be removed.

PROOF. Let H and K in the formula (4.4) be parameters with the values −h, 0, h,
and |H | + |K | = h. Since H K = 0, among the second-order derivatives from the
expression under the integral sign in the formula (4.4) will be left with one of the
pure derivatives only. Then by virtue of the estimation (2.4),∣∣∣∣ ∫ 1

0
(1− q)(H2uxx (x + q H, y + q K )+ K 2u yy(x + q H, y + q K )) dq

∣∣∣∣≤ 1
2
8h2.

(5.3)
On the basis of (3.1), (4.4) and (5.3), we obtain

|u − Au| ≤ c7h2 on 51h . (5.4)

Let
εh = uh − u. (5.5)

From (5.1) and (5.5),

εh = Aεh + Au − u on 51h,

εh = Bεh + Bu − u on 52h, (5.6)

εh = 0 on γ h
j , j = 1, 2, 3, 4.

We represent the solution of system (5.6) as

εh = v
1
h + v

2
h, (5.7)

where

v1
h = Av1

h + Au − u on 51h, v1
h = Bv1

h on 52h,

v1
h = 0 on γ h

j , j = 1, 2, 3, 4; (5.8)

v2
h = Av2

h on 51h, v2
h = Bv2

h + Bu − u on 52h,

v2
h = 0 on γ h

j , j = 1, 2, 3, 4. (5.9)

On the basis of (5.4), (5.8) and the principle of maximum,

max
5h
|v1

h | ≤
3
4

max
5h
|v1

h | + c8h2,

or
max
5h
|v1

h | ≤ c9h2. (5.10)
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By analogy with the inequality (4.11) for the solution of the problem (5.9),
we obtain

max
5h
|v2

h | ≤ 4 max
5h
|v3

h |, (5.11)

where
v3

h = Bv3
h + Bu − u on 52h, v3

h = 0 on 51h
∪ γh . (5.12)

Since v3
h ≡ ε

3
h , where ε3

h is the unique solution of the problem (4.12), from (5.5),
(4.22), (5.7), (5.10) and (5.11), we obtain

max
5h
|εh | ≤ ch2.

Theorem 5.1 is thus proved. 2

REMARK 5.2. On the analogy of the proof of Theorem 4.2, it can be shown that the
error estimation (5.2) is obtained for requirements on the boundary function which
essentially cannot be lowered in Hölder classes Ck,λ.

6. Numerical results

We solved the following two problems using the finite difference method to justify
the obtained theoretical results.

Let 5= {(x, y) | 0< x < 1,−0.25< y < 0.25}, and let γ be the boundary of 5.

PROBLEM 6.1.
1u = 0 on 5, u = v(r, θ) on γ, (6.1)

where

v(r, θ)= r1+λ cos(1+ λ)θ,
1
2
< λ < 1, (6.2)

is the exact solution of Problem 6.1 and v ∈ C1,λ(γ ); r = |z|, θ = arg(z), and
z = x + iy.

PROBLEM 6.2.
1u = 0 on 5, u = w(x, y) on γ, (6.3)

where

w(x, y)= (x2
− y2) tan−1 y

x
+ 2xy ln

√
x2 + y2 (6.4)

is the exact solution of Problem 6.2 and w ∈ C1,1(γ ).

In both problems we solved finite difference equations by Gauss–Seidel iterations
for h = 2−n , n = 3, 4, 5, 6, 7, 8. We request that the maximum successive error be
reduced by a factor of 10−17 as a stopped criterion. To check the order of error in
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TABLE 1. <n when λ= 0.55, 21+λ
= 2.928 171 39.

h−1 Five-point Nine-point “Five and nine”-point
16 2.768 108 2.748 222 2.959 148
32 2.878 428 2.879 657 2.912 227
64 2.911 644 2.915 787 2.923 505

128 2.922 537 2.925 058 2.927 079
256 2.926 212 2.927 392 2.927 903

TABLE 2. <n when λ= 2/3, 21+λ
= 3.1748 021 024.

h−1 Five-point Nine-point “Five and nine”-point
16 2.962 831 2.984 583 3.227 898
32 3.101 655 3.123 321 3.161 703
64 3.147 801 3.161 648 3.170 360

128 3.164 576 3.171 495 3.173 774
256 3.170 864 3.173 974 3.174 555

TABLE 3. <n when λ= 0.75, 21+λ
= 3.363 585 66.

h−1 Five-point Nine-point “Five and nine”-point
16 3.103 846 3.165 907 3.431 869
32 3.267 131 3.309 923 3.352 983
64 3.325 364 3.349 864 3.359 334

128 3.348 067 3.360 135 3.362 606
256 3.357 195 3.362 721 3.363 349

maximum norm for the finite difference method we use the quotient of maximum
errors

<n =
max5h |u2−n − u|

max5h |u2−(n+1) − u|
.

The results given in Tables 1–4 for the Problem 6.1 show that <n < 21+λ for
increasing n for all five-point, nine-point, and “five and nine”-point schemes. This
property is also illustrated in Figures 1 and 2. These results are the numerical
justification of Theorem 4.2 and Remark 5.2, that is, if the boundary function is from
C1,λ(γ ), 1/2< λ < 1, then the maximum error is bounded below by the quantity h1+λ

on some sequence of values h tending to zero. Therefore, the maximum error will
converge to zero slower than h2

|ln h|.
Table 5, Figures 3 and 4 are the results for Problem 6.2. Figure 4 is an enlargement

of the piece (n ≥ 6) of Figure 3 by scaling <n with the formula (<n − 3.99)× 105.
These results are the numerical justification of Theorem 5.1. Indeed, for the “five and
nine”-point scheme <n ≥ 4 when n ≥ 4 which corresponds to an error of estimation
of the order of O(h2), and for the five-point and nine-point schemes 4> <n ≥

4n/(n + 1) which corresponds to an error of estimation of O(h2
|ln h| + 1).
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FIGURE 1. <n for Problem 6.1, λ= 0.55 (top), 2/3 (bottom).
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FIGURE 2. <n for Problem 6.1, λ= 0.75 (top), 0.8 (bottom).
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FIGURE 3. <n for Problem 6.2.
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FIGURE 4. <n for Problem 6.2.
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TABLE 4. <n when λ= 0.8, 21+λ
= 3.482 202 25.

h−1 Five-point Nine-point “Five and nine”-point
16 3.188 975 3.280 010 3.559 057
32 3.368 577 3.427 208 3.473 288
64 3.435 312 3.468 138 3.478 078

128 3.462 390 3.478 664 3.481 253
256 3.473 726 3.481 316 3.481 974

TABLE 5. <n for Problem 6.2.

h−1 Five-point Nine-point “Five and nine”-point
16 2.891 318 43 3.678 367 20 3.460 063 10
32 3.612 691 39 3.979 146 10 4.003 971 85
64 3.760 224 96 3.998 684 04 4.000 926 59

128 3.880 945 91 3.999 917 56 4.000 034 47
256 3.939 982 20 3.999 994 83 4.000 001 25

7. Conclusions

A theoretical error analysis of the finite difference schemes in solving Laplace’s
equation on rectangular domain is given. It is shown that the uniform estimate of the
error of the nine-point solution is of the order of O(h2(|ln h| + 1), a similar order as
the five-point solution, when the given boundary function is from C1,1. To improve
the accuracy, the nine-point scheme should be replaced in the grids nearest to the
boundary of the rectangle by the five-point scheme (“five and nine”-point scheme).
It is also proved that for the uniform error obtained for the nine-point and “five and
nine”-point schemes, the requirements imposed on the boundary functions cannot be
lowered in Ck,λ. Numerical experiments are illustrated to support the analysis made.

The obtained results can be used to justify the finite difference method for some
version of domain decomposition methods, for composite grid methods, and for the
combined methods to approximate a nonsmooth solution of Laplace’s equation.
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