J. Functional Programming 5 (3): 383-414, July 1995 © 1995 Cambridge University Press 383

Implementing a functional spreadsheet in Clean

WALTER A. C. A. J. DE HOON, LUC M. W. J. RUTTEN
AND MARKO C. J. D. VAN EEKELEN

Computing Science Institute, University of Nijmegen,
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
(e-mail: markoQcs.kun.nl)

Abstract

It has been claimed that recent developments in the research on the efficiency of code
generation and on graphical input/output interfacing have made it possible to use a functional
language to write efficient programs that can compete with industrial applications written in
a traditional imperative language. As one of the early steps in verifying this claim, this paper
describes a first attempt to implement a spreadsheet in a lazy, purely functional language.
An interesting aspect of the design is that the language with which the user specifies the
relations between the cells of the spreadsheet is itself a lazy, purely functional and higher order
language as well, and not some special dedicated spreadsheet language. Another interesting
aspect of the design is that the spreadsheet incorporates symbolic reduction and normalisation
of symbolic expressions (including equations). This introduces the possibility of asking the
system to prove equality of symbolic cell expressions: a property which can greatly enhance
the reliability of a particular user-defined spreadsheet. The resulting application is by no
means a fully mature product. It is not intended as a competitor to commercially available
spreadsheets. However, with its higher order lazy functional language and its symbolic
capabilities it may serve as an interesting candidate to fill the gap between calculators with
purely functional expressions and full-featured spreadsheets with dedicated non-functional
spreadsheet languages. This paper describes the global design and important implementation
issues in the development of the application. The experience gained and lessons learnt during
this project are discussed. Performance and use of the resulting application are compared
with related work.

Capsule Review

The phrase ‘functional spreadsheet’ in the title could be about a functional implementation
of a spreadsheet or about a spreadsheet with functional language features. In fact this paper
is about both, and it is an important contribution on both counts.

Firstly, the paper describes a prototype software product written purely functionally which
compares well in performance and facilities (including a sophisticated user interface) with com-
mercial products. It demonstrates that there is no longer a performance or design/structuring
problem in creating such a product purely functionally.

Secondly, it shows how some of the significant problems with obscure behaviour of many
spreadsheets can be dealt with using a functional language for spreadsheet calculations by
the user. In particular, this supports some validity checking for use by the spreadsheet user.
This is an important step towards a new generation of sophisticated spreadsheets/calculation
tools.

In addition, this work demonstrates that the functional approach has potential for signifi-
cant design reuse in practical software development. The fact that higher order functions and

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

384 W. de Hoon, L. Rutten and M. van Eekelen

polymorphism provide for reuse does not in itself ensure that practical software construction
will benefit from reuse of larger designs. Here, an existing editor and rewriting tool are easily
adaptated as components of the spreadsheet.

Details of the design and capabilities of the spreadsheet are discussed at some length, but
the description is clear and to the point, giving a good guide to the design issues as well as the
implementation issues. Familiarity with Clean is not a prerequisite for readers of this paper.

1 Introduction

Traditionally, the only way to create an interface between a functional language
and the imperative world was to give the functional input via a single, special input
parameter and to interpret the result of the program (the output) as a sequence
of commands for the outside world (Turner, 1990). In principle it is possible to
do window-based I/O in this way. Due to the strong separation of input and
output, however, it becomes a very tedious task to program a realistic application.
Furthermore, the required efficiency is in many cases hard to achieve. Several
proposals have addressed these issues — Monads (Peyton Jones and Wadler, 1993),
Fudgets (Carlsson and Hallgren, 1993) and Clean I/O (Achten and Plasmeijer,
1995). This has given rise to the opinion that functional programming comes of age
(Pountain, 1994). The spreadsheet project of which the results are described in this
paper was set out to gather evidence to support this opinion.

In the lazy, functional graph rewriting language Clean (Brus et al., 1987; Nocker et
al., 1991; Plasmeijer and van Eekelen, 1994), uniqueness typing (Barendsen and Smet-
sers, 1993), which is based on the underlying graph rewriting model (Barendregt et al.,
1987; Plasmeijer and van Eekelen, 1993), can be used to indicate that upon its eval-
uation a function will hold the only reference to a certain (sub) argument. So, such a
function can destructively use this unique argument (Smetsers et al., 1993). Unique-
ness also makes it possible to address system functions directly from within a purely
functional program without loss of efficiency. The only required addition is that
within the functional program uniqueness is maintained (this can be done, for exam-
ple, by adding an extra unique dummy parameter to the Clean equivalent of the sys-
tem functions that read/write the same globals; in this way, the order of the calls of
the system functions is determined by the standard function application mechanism).

This paper describes the experimental design and implementation of a functional
spreadsheet using Clean as the implementation language. Uniqueness typing will
be used in particular for the spreadsheet data structure and for the graphical I/O
interface.

An interesting aspect of the resulting application (called FunSheet) is that as
the spreadsheet specification language it has a lazy functional language with a
built-in mechanism that can (symbolically) evaluate functional expressions. By ap-
plying built-in symbolic transformation rules with rewrite semantics (expressing,
for example, commutativity, distributivity and associativity of standard operators),
this symbolic evaluator is able to prove equality of certain expressions (or at least
simplify the equations as much as possible).

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

Implementing a functional spreadsheet in Clean 385

2 General design

A spreadsheet can be seen as a graphical representation of computations. An
important property of a spreadsheet is that when some of the data changes not all
of the computations have to be performed again. Furthermore, intermediate results
can be shown in the sheet and can be used for further computations.

An important overall intention of the design was to reuse as much available
software as possible so as to keep the scope of the design and implementation within
a six month computer science Masters thesis project (de Hoon, 1993). Candidates
for reuse were a symbolic evaluator written by L. Rutten to prove the correctness
of the application of transformation rules on functional programs, a high-level
machine-independent window-based 1/O library written by P. Achten to increase
the level of abstraction available for functional window-based software (Achten and
Plasmeijer, 1995), a window-based editor written by H. Huitema as a first test of
the effectiveness of this I/O library, and a small help tool written by H. Huitema to
make it easier to add help facilities to functional software. All of these components
were written in Clean (version 0.8).

The most important choice of the design was to use a functional language as the
spreadsheet cell expression language (this is covered in section 3). An interesting
aspect of the chosen functional language is its capability for symbolic evaluation
and for applying normalisation rules on symbolic expressions including equations.
This enables the proof of symbolic equality for a large class of expressions.

2.1 Basic idea of the FunSheet application

A spreadsheet has a window in which the evaluated values and the entries are
displayed. The values are contained in cells, indicated by squares separated by
horizontal and vertical lines. Index and column information is constantly displayed
in the window. A typical user’s view of FunSheet is given in figure 1.

A spreadsheet is menu driven, which means that various actions from the menu
(consisting of File, Edit, Style and Environment functions) can be applied to the
(contents of the topmost) sheet. The design includes sheet manipulation actions (to
save or read multiple sheets in separate windows, to change the names of the sheets
or to close a sheet), sheet editing actions (Cut/Copy of a (block of) cell(s) to a list
of cells on the clipboard, Paste (when the block of cells to paste to is larger than the
list of cells on the clipboard, the clipboard list is expanded with as much copies of
itself as are necessary), Undo, RemoteValue (to select values defined in other sheets),
formatting actions (to change the font of a sheet and to change row heights and
column widths) and an on-line Help facility. The Environment menu also offers the
possibility to select user-defined or predefined functions and to define new functions
by switching to a built-in function editor with which for each sheet a separate
set of user-defined functions can be created. Finally, functionality is available to
define, delete and select labels as verbose synonyms for references to a (block of)
cell(s).

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

386 W. de Hoon, L. Rutten and M. van Eekelen

Using the mouse or the arrow keys the user can navigate through the cells of
the sheet (evaluating cells if necessary). In the case of multiple sheets, the user can
select a sheet by clicking on the sheet’s window. Cells can also be selected with the
mouse. When a block is selected with the mouse combined with the command key,
a reference to this block is added the previously selected cell. In the display at the
top of the window the user can edit a cell entry by moving the cursor inside it using
arrow keys combined with the command key. A return will evaluate the current
entry (and all those cell expressions that depend on it). The result is shown in the
cell (chopped to the width of the cell) and in a special line at the bottom of the
window (chopped to the width of the window).

Classical spreadsheets offer lots of additional features among which hiding, adding
and deleting rows and columns, and the ability to make, import and export all kinds
of diagrams, print and report facilities based on the information in the sheet. These
functions are not included in the basic design — they are intended to be added later
to extend the capabilities of the application.

2.2 The function editor

To enable the user to define functions, a function editor can be called which has
a separate user interface that temporarily replaces the spreadsheet user interface. It
starts up a window based editor with some extensions in the menu to perform a
Syntax Check of the new functions and to try an Expression Test to test the function
by evaluating various expressions. Initially, a window is opened which shows the
functions which are already defined (by the user). When a new function is added to
the environment, its syntax can be checked. If the function is syntactically correct,
the environment is updated with the new definition.

When, from the editor, a Return to Spreadsheet is performed, the adapted function
environment is passed and the user interface of the spreadsheet is re-established.
Unchecked definitions will be lost. The user is asked whether re-evaluation of all
cells is required. Besides these dedicated functions, the editor contains the standard
functions a window-based editor must have such as Undo, Cut/Copy/Paste, Clear,
Tab/Font Changes, Find/Find Next/Previous/Find Selection/Replace & Find, Goto
Cursor/Line and also Bracket Balancing and an Auto-indent facility.

Several key combinations are defined to increase the convenience of editing (char-
acter/word delete forward /backward, arrow keys to navigate across characters and
lines, option-arrow keys to navigate across words, command-arrow keys to navigate
to begin/end of line/page). In a similar way, combinations of keys and mouse
actions can be used for selecting characters, words and lines.

3 A purely functional spreadsheet language

In contrast to the macro-facilities of standard spreadsheets such as Excel or Lo-
tus 1-2-3, which are heavily criticised because of their lack of proper abstraction
mechanisms (Casimir and Rommert, 1992; Litecky, 1990), FunSheet uses a purely
functional higher order language to allow the user to describe spreadsheet computa-

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

Implementing a functional spreadsheet in Clean 387

tions. A function is defined (by the user) via a set of (recursive) equations with the
usual rewrite semantics: upon evaluation of an expression, the equations are used as
rewrite rules where the left-hand side of an equation serves as a pattern to determine
whether the rule is applicable, and the right-hand side is used to determine the
result of the corresponding reduction. The order of the rules is important: they are
considered as candidates for rewriting proceeding textually from top to bottom.

The design of the spreadsheet chooses to model each column of cells as a function
of indexes to values such that each cell expression in fact forms the right-hand side
of one of the alternatives of this column function. For example, an alternative of
some column function A may be A 1 = e. The right-hand side e of this alternative
defines the contents of cell A1, i.e. the application of column function A to the index
1. These column functions are first-class citizens in the spreadsheet language. They
can be used in a curried way (i.e. a column function can be used while its argument
is not yet supplied). Column functions can occur as arguments and as results of
functions in any cell expression.

Since symbolic evaluation will be performed, and as the types of the values of cells
in the same column are not necessarily the same, it was decided that the spreadsheet
language should be untyped (no type checking at all was implemented: ’c’ + 1 is
not disallowed: it is just an irreducible expression).

3.1 FunSheet language syntax

The syntax of the language describes a simple language (essentially function defini-
tions with pattern matching and guards extended with special syntax for lists, tuples,
local definitions, dot-dot expressions (denoted using . .), and ZF-expressions). Most
expressions would be specified similarly in commonly available functional languages.
Denotations are included for integers, reals, booleans, characters and strings. Special
dot-dot expressions (denoted using . . .) are available to denote blocks of cells. Lists
are a predefined data structure. Besides using the notation hd : tl for a list, the
equivalent Clean-like notation [hd | t1] is also allowed. Algebraic data types
can be defined. Most standard operators on these data structures have been included
in the language (basic arithmetic, relational operators, function composition, list op-
erators for construction, selection, concatenation and difference). Also, a number
of standard functions is predefined (see section 3.4). The language is untyped and
does not have an off-side rule. For more information on the language the reader is
referred to de Hoon et al. (1994).

3.2 Cell references and dependencies

Onme of the most important features of a spreadsheet is the use of cell references. The
design uses absolute references only. It distinguishes two kinds of cell references:
references via column functions and references via labels. A label is an identifier
referring to a (block of) cell(s). A label can be used anywhere in cell expressions
giving the user an extra means of introducing abstract names.

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

388 W. de Hoon, L. Rutten and M. van Eekelen

9,,F,i',e Edit Style Enpvironment
Figl.fs

Fig. 1. A user’s view of FunSheet

® File Edit Style Environment
EDE Fig2.fs
foldr ¢+3> 0 {map D [S..6]

Title - Fiscal Year 1994

Fig. 2. The use of standard and column functions

Cells are referred to via applications of column functions. As an abbreviation
of the application of a column function to an index (e.g. A 1) the possibility is
introduced to collapse such an application into a single identifier when the index is an
integer literal (A1), which is more in conformity with classical spreadsheet references.
Figure 2 shows an example of the use of standard functions in combination with
curried applications of column functions.

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

Implementing a functional spreadsheet in Clean 389

w File Edit Style Environment

EO Fig3.fs =202

map (twice (twice A)) [1 -4]|

Fig. 3. Use of column functions as first class citizens

The spreadsheet design avoids having to update the whole sheet when the entry
of a cell changes. This is done by saving the addresses of the cells that depend on
that particular cell (the dependencies). In this way, references create a dependency
structure in which a cell depends on one or more other cells. When a cell is changed,
the cells that depend on that cell are also updated, and so on. So, changing the
value of one cell may produce a chain reaction which recursively causes the change
of a large group of cells.

For a curried application of a column function or an application of a column
function to an expression which is not an integer denotation, it is not possible to
statically determine all dependencies. So, they have to be approximated safely. This
is done by considering such expressions to depend on all cells in the column.

Using references to other cells creates the possibility of defining cells with a cyclic
dependency structure. In many cases, however, such cycles correspond to erroneously
non-terminating evaluation. Therefore, as in classical spreadsheets, a cycle detector
is included which prohibits definitions that may lead to such cyclic dependencies of
cells. The cycle detector guarantees that non-termination cannot be caused by cyclic
dependencies of cells. It operates on partly evaluated cell expressions.

When the cell expression is parsed, standard functions and remote values are also
evaluated (also see section 4.3.1). For reasons of efficiency, the result of this is used as
the expression to evaluate when a change occurs of other cell expressions on which
this expression depends. (This is why the example in figure 2 is not prohibited: the
partly evaluated cell expression of foldr (+) 0 (map D [5..6]) is DS + D6.)

The cycle detector does allow the standard examples with, for instance, sub-totals
and totals in the same column. It can, however, require certain expressions that
heavily use curried column functions to be put in a different column (the expression
in column B of figure 3 would not be allowed in column A: its partly evaluated
expression is [ACACA(AL))), ACACA(A2))), A(ACA(A3))), A(A(A(A4)))] which
may be cyclic if put in a cell of column A).

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

390 W. de Hoon, L. Rutten and M. van Eekelen

" File Edit Style Environment w File Edit Style Environment
[E0===== fig4a.1s =——=05| [J&=——= Figb.Ts =0

 * x where x

|
I

<&

\.
[]
(0
5
[]
0
T

Fig. 4. Use of symbolic values in equations

3.3 Symbolic evaluation

The evaluation of expressions in the language is done symbolically using rewrite
semantics. Essentially, there is no difference between functions and constructors. In
definitions they can both occur at any position in a left-hand side of an equation
(e.g. besides the usual arithmetic equations, one of the rules of the predefined basic
function + is thata + (b + ¢) = (a + b) + c. In this rule the function + occurs
twice in the left-hand side, which is typically only allowed if rewrite semantics are
used).

Evaluation of a single cell expression is chosen to correspond to evaluation of an
initial term in a standard lazy functional language. So, evaluation of a single cell
expression is always performed to normal form. Another choice could have been to
make cell expressions correspond to sub-expressions in a standard lazy functional
language, and hence to reduce them to (weak) head normal form only. Since results
can contain symbolic values, head normal forms are reached relatively quickly. So,
this choice would have led to too many cases in which cell results would still contain
redexes. Another option to be considered in future would be to evaluate each cell
expression only as much as is needed to print results. This is a mixture of normal
form and (weak) head normal form reduction. This would allow, for example, infinite
lists to occur as cell results.

Symbolic values can either be symbolic variables or references to cells which are
(still) empty. The evaluation mechanism treats both cases in the same way.

When a symbolic equation cannot be solved, the equation itself, reduced as much
as possible, is returned as the result (figure 4a). When instead of symbolic values
basic values are used in the same equation (this can be done by manual substitution,
by adding local definitions (in the case of a symbolic variable) or by defining a
cell (in the case of a reference to an undefined cell), the equation may be solved
depending on the actual values (figure 4b).

For several pre-defined operators which exhibit properties like associativity, com-
mutativity and distributivity, the symbolic evaluator includes normalisation rules.
This makes it possible to symbolically solve simple algebraic equations (an example
of this is given in figure 5).

In the symbolic evaluator it has been chosen to implement the common asso-

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

Implementing a functional spreadsheet in Clean 391

» File Edit Style Environment
Fig5.1s

(x—g)*(x+g)==x‘2-g‘2{

Fig. 5. Solving symbolic algebraic equations

w File Edit Style Environment
EO0=——— Fig6.fs =——o17|
ats

sum [2%a+1,2%g+4 A 2%q+24]

Fig. 6. Symbolic evaluation of the sum of a list

ciativity, commutativity and distributivity rules for the arithmetic operators, not
excluding finite precision integers and floating point numbers. It has to be noted,
however, that when these rules are applied on such numbers, due to (rounding)
errors differences can occur between symbolically deduced results and concrete re-
sults. Arbitrary precision integer numbers may be incorporated in a future version.
However, the anomaly can only be removed satisfactorily when solutions for exact
real arithmetic (Cartwright and Boehm, 1990; Vuillemin, 1987) become practical.

The symbolic evaluator can also be used to check properties with lists containing
symbolic values (e.g. sum of one list is symbolically equal to sum of another).
Figure 6 gives an example of this in which the list not only contains symbolic
values, but is also generated using symbolic values in a dot-dot expression.

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

392 W. de Hoon, L. Rutten and M. van Eekelen

3.4 Predefined functions

Apart from the basic arithmetic functions like + and *, over 60 standard functions
are predefined. These do not only include classical spreadsheet functions like sum or
average, but also functions that are most often used in the functional programming
community, e¢.g. map and foldr. The definitions of the standard functions (the non-
basic predefined functions) are contained in the Help files. They could have been
given in exactly the same way by the user of the spreadsheet by using the ability to
define a set of functions in a dedicated environment for each separate sheet.

Besides the well-known standard functions, the FunSheet application supports
some special functions and constructors. There are functions to convert column
indications to integers (e.g. A is converted to 1), and vice versa. There is a function
to generate cell blocks. There is a special constructor $, which acts as a prefix
of a number that is maintained during arithmetic operations (useful for financial
calculations). There is a function to perform lambda-abstraction (\), of which the
definition is such that x; x5 ...x, \ e corresponds with the lambda term Ax;.Ax;
Axp. e. It is also used internally to implement ZF-expressions. Furthermore, there
is a function to simplify equations in which list expressions occur, by performing
induction on the length of lists. This function is called ilp (an abbreviation for
‘induce list property’). Its definition and two small examples of its use are given
below:

ilpp = p (0 & (pas=>p [a]l as])

Here, a and as are symbolic values, => is logical implication (a => b is de-
fined as b \/ ~ a), & \/, ~ are logical and, or and not, respectively. An example
of the use of ilp is in the expression ilp (1 \ 1 ++ [] == 1), which reduces
to True. In general, if ilp is applied to a property, then a and as may ap-
pear in the result of the application. For example, ilp (1 \ 1 ++ 1 == 1) re-
ducesto ~ as ++ as == as \/ as ++ [a | as] == as. This expression is False
ifas = [J.

3.5 Use of FunSheet

Apart from being used in a way which is standard for a spreadsheet, the FunSheet
application offers new opportunities to explore the use of the symbolic evaluator.

Testing properties of a particular spreadsheet set up by the user using specific
values is rather error-prone (e.g. X * Y == X + Y is not true in general, but for
several specific values the equation does hold — see also figure 4). An important
way to avoid spreadsheet errors is offered by the symbolic evaluation mechanism:
the system can try to symbolically prove certain properties by simplifying equations.
An example of a commutativity diagram proof is given in figure 7. The example
proves that while the cells that are referred to are still empty, the sum of the sums
of rows is equal to the sum of the sums of columns. It shows how a user can prove
that a particular set-up of a spreadsheet has a required property by adding symbolic
equations.

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

Implementing a functional spreadsheet in Clean 393

« File Edit Style Environment

EO=—— Fig?.fs

sum ¢(C1...C3) == sum (R4...B4

IR

True

[QI<xk

Fig. 7. Proof of commutativity of summing rows and columns

% File Edit Style Environment |
S[[=—F= Fig8.fs =F="= %
sum CA1...A4> == sum cB1...E:4J] uts

l-4%a+4%b+4==

0

Fig. 8. Returned equation can be used as a requirement to satisfy a desired property

In some commercial spreadsheet applications, a similar equation to that in fig-
ure 7 might accidentally also yield True, since there the value of an empty cell is
sometimes taken to be zero. This is clearly an error-prone property of such spread-
sheet applications. It is clear that such general, automatically performed proofs can
greatly improve a spreadsheet’s reliability. However, the power of such a symbolic
evaluator is inherently limited: the equations which it can prove are determined by
the transformation rules it knows (this holds for every proof system).

Another area in which FunSheet offers new opportunities is an area which is a
kind of reverse engineering. The property that, when an equation is to be solved, the
system returns an equivalent equation simplified as much as possible, can be used to
inform the user what the requirements are to satisfy a certain property. In figure 8,
an example is given in which an equation is returned that indicates what the relation
must be between the symbolic variables a and b to satisfy the property that the sum

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

394 W. de Hoon, L. Rutten and M. van Eekelen

L File ERAREITICIETE
New #EN
Open... #0

[Relp N

Quit #0

Fig. 9. FunSheet’s File-menu definition

of the two columns are equal. This reverse engineering could be used in practice, for
example, by filling in a tax-form spreadsheet partly symbolically. Then, for instance,
near the end of a fiscal year, a user could ask the system to return the equation which
states which requirements have to be met to achieve a certain threshold for getting
tax returns. The only change the user would have to make to the tax form is to type in
the threshold equation in a cell. The user could then fulfil the resulting requirements
(e.g. donating the right amount of money to a good cause) before the fiscal year ends.

4 Implementation issues

Since the design sets out to re-use existing software as components in the imple-
mentation, the implementation will have to be modular and highly structured. The
main components (user interface, editor, symbolic evaluator, spreadsheet structures)
access each other only through interface modules defining abstract data structures
with access functions.

4.1 Input/Outpur

The Clean I/O library makes it possible to write efficient event-based interactive
programs in a purely functional language. Essentially, an interactive Clean program
gets a representation of the world as an extra parameter. This world is given as
an argument to a driver together with a specification of the required I/O devices
which specifies what kind of device it is and what the call-back functions are for
each possible event. This driver is the library function StartID which repeatedly
takes an event from the event queue and calls the corresponding call-back function.
The 1/0O specification is an algebraic data structure which must be an instance
of the algebraic data type defined in the library. Uniqueness types (indicated by
*) guarantee that an object will be privately ‘accessed. This enables an efficient

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

Implementing a functional spreadsheet in Clean 395

and realistic implementation of the I/O functions using destructive screen and file
updates. For more information on the Clean I/O System the reader is referred to
Achten and Plasmeijer (1995).

To show how such an abstract device definition is used in the spreadsheet program,
figure 9 gives an example of the File menu definition as it occurs in the code for
the spreadsheet user interface. This definition of an algebraic data structure is an
instance of the general algebraic data type which can be used in Clean to specify
Menu-devices. The picture next to the definition shows the concrete device in the
case of the menu definition being mapped to a Macintosh system.

Although the spreadsheet has been written in Clean version 0.8, in the Clean
program examples 1.0 syntax (which is similar to the syntax of most other functional
languages) is used to avoid unnecessary distraction of the reader (also, see sections

5.1 and 5.4).
PullDownMenu FileId "File" Able [
MenuItem NewId "New" (Key ’n’) Able New,
MenuItem OpenId "Open..." (Key ’0’) Able Open,
MenuSeparator,
MenuItem Saveld "Save" (Key ’s’) Unable Save,
Menultem SvAsId "Save As..." NoKey Unable Savels,
Menultem RenId "Rename..." NoKey Unable Rename,
MenuSeparator,
MenuItem Closeld "Close" (Key ’w’) Unable Close,
MenuItem ClsAllld "CloseAll" NoKey Unable CloseAll,
MenuSeparator,
Menultem Helpld "Help" (Key */’) Able Help,
MenuSeparator,
MenulItem QuitId "Quit" (Key ’q’) Able Quit]

The type of each call-back function must be an instance of :: *s *(I0State
*g) -> (*s, *I0State *s), in which I0State is a polymorphic I/O library type
representing the external I/O status of the program and its event-queue. Each
call-back function is a state transition function with two arguments. The first ar-
gument is the specific state of the program (for the spreadsheet program this is
the type State, see section 4.3.3). The second argument (of type I0OState State)
represents the world with which input and output is performed. Each call-back
function (New, ..., Quit) delivers a tuple with a new program state and a new

I0State:
 *xI0 = I0State State
New :: State I0 — (State, I0)
6ﬁit :: State I0 — (State, I0)

An event-handling driver is started (usually as the main function executed
by the program) with the function StartI0. As the type of StartIO0 shows, it
takes an I/O specification, an initial program state, an initial I/O action and the
event queue. When it is finished, it delivers the final program state and event

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

396 W. de Hoon, L. Rutten and M. van Eekelen

queue:
StartI0 :: (IOSystem *s) *s (InitI0 *s) *Events — (*s, *Events)

Event-handling drivers can be nested with the library function NestIO which is
similar to StartI0. It takes an I/O specification, an initial program state, an initial
I/O action to start with and it takes its parent’s I0State (which represents the
world including the event-queue). NestI0 delivers its own final program state and
the original parent’s I0State to continue. Effectively, this means that at any point
in a program a sub-program can be called with its own user interface:

NestIO :: (IOSystem *t) *t (InitI0 *t) *(IOState *s) — (*t, *I0State #*s)

The spreadsheet program uses this nesting when calling the window-based editor
of new functions with its own user interface. Since a nested I/O system returns
its own program state, the I0State of the editor had to be slightly extended to
return the new function environment. Of course, the editor’s user interface (the
algebraic data structure describing the main menu and its call-back functions) was
also extended with a facility to check and test functions and the state of the editor
had to be extended with an environment (of type Env, see the next section) to be
aware of function definitions. However, due to the use of NestI0, all other function
definitions of the editor program could remain unchanged. So, the function NestIO
played a vital role in re-using the editor program. It dealt with switching I/O
interfaces when switching from the sheet to the editor, and it dealt with passing the
required information about the functions between them.

Below, the definition of the call-back function SwitchToEditor is given. This
call-back function is called when the user of the spreadsheet performs the command
Define/Test Function from the Environment menu. It employs NestIO and some
access functions to transfer the definitions of the user-defined functions from the
editor to the spreadsheet, and vice versa:

SwitchToEditor :: State I0 — (State, I0)
SwitchToEditor spreadsheetstate io
= (newspreadsheetstate, newio)
where
newspreadsheetstate
= AdaptSpreadsheetFunctionEnv newfunctionenv spreadsheetstate
newfunctionenv
= GetEditorFunctionEnv editorstate
(editorstate, newio)
= NestI0 IOSystemEditor (InitialEditorState funenv) InitIOEditor io
funenv

= GetSpreadsheetFunctionEnv spreadsheetstate

It is interesting to compare the definition above with the initial expression of
the original stand-alone editor application which is given below (note that the defi-

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

Implementing a functional spreadsheet in Clean 397

nitions of the arguments of StartI0 were changed as described above to be able to
deal with functions):

StartI0 I0SystemEditor InitialEditorState InitI0OEditor io

4.2 Expressions and function definitions

For evaluation of function definitions and expressions, several environments are
important.The following two environments are the same for all sheets. The Basic
environment contains function definitions concerning values of basic type. These
definitions include transformation rules for employing the associativity and distribu-
tivity laws of basic operators. These rules employ functions that are internal to
the evaluator. Therefore, it has not been made possible for the user to change or
extend these definitions, although they are put in a standard text file which was
helpful for the ease of the development process. The Standard environment contains
the predefined standard functions. These functions are predefined for reasons of
efficiency and user convenience.

Each sheet has its own instance of the following environments. The User-defined
function environment contains the definitions that are given by the user employing
the built-in editor. The Label definition environment contains the definitions of
labels, which are effectively just synonyms for particular cells. For each column
function, the Column function environment contains the set of rule alternatives that
correspond to the cells of the column.

Evaluation of functions from the user’s environment is generally an order of
magnitude less efficient than evaluation of functions from the standard environment,
since the user’s functions are interpreted instead of compiled. So, for reasons of
efficiency, the predefined function definitions are given to a special Clean application
which uses the spreadsheet language parser and generates a Clean definition and
implementation module for each predefined function. These modules are compiled
and linked in the standard way, together with all other modules from which the
spreadsheet application is built. An advanced user with access to all Clean sources
can easily take his or her own function definitions and compile and link them to
achieve a better efficiency.

Apart from the optimised compilation process (see section 4.2.4), there is no
difference in the evaluation mechanism for the various environments mentioned
above. Evaluation is done entirely symbolically.

4.2.1 Parsing

Lexical analysis and parsing of expressions and definitions is relatively straightfor-
ward. It was already available in the symbolic evaluator. Compound expressions
adhere to an operator grammar. Cell references can be formulated as A 1 (an appli-
cation of a column function to a row index), but also as A1. For the latter case and
for recognising and parsing remote references to values in sheets situated on disk,

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

398 W. de Hoon, L. Rutten and M. van Eekelen

a few adjustments had to be made to the lexical analysis present in the symbolic
evaluator.

4.2.2 Representation of expressions, function definitions and environments

The symbolic evaluator implements a purely functional language which supports
symbolic values. Semantically, a symbolic expression may contain one ore more free
variables. A free variable is an identifier which is not defined as a function, constant,
or constructor. To explain the meaning of functions written in the FunSheet lan-
guage, we will consider their translations to Clean. The translated functions operate
on arguments of type Value. Values are evaluated using the definitions from the
environments rewriting their subgraphs in the same way as standard combinator
graph rewriting is performed:

:: Value = EV // Empty value
| F Id [Valuel // Application of a function
// without definition or of a free
// variable to a list of arguments
| C Id [Value] // Application of a constructor to
// alist of arguments
I INT Int // Basic values
| REAL Real
| CHAR Char
I BOOL Bool
I Msg String // Error message
I A Id [Alt] [Value] // Application of a function with
// definition to a list of arguments
| B Id Fns [Valuel // Application of a compiled
// function to a list of arguments
:: Fns = FnO Value // Nullary function; Value is the
// type of the result
I Fnl (Value — Value) // Unary function
I FoL ([Value] - Value) // N-ary function with arguments
// in a list
0 Id ;== String

Example: 1+1 is represented as A "+" {alternatives of + } [INT 1,INT 1].

A function environment is represented as a list of constructor and function

definitions:
:: Env == [Rule] // Environment is a list of rules
:: Rule = Cn Id [Value] // Constructor definition
J Fn Id [Alt] // Function definition
it Alt ;== ([Value], Value) // Tuple with a list of patterns

// and a right-hand side

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

Implementing a functional spreadsheet in Clean 399

4.2.3 Interpreted symbolic evaluation of expressions

When an expression is to be interpreted, it is given as an argument to an interpreter
that also takes an environment and substitutes the definitions for the function
applications, reducing the expression to normal form employing symbolic evaluation
lazily.

To simplify this evaluation process, all local definitions of an environment are
transformed to global definitions. The local function definitions could be translated
either to closures via applications of the predefined lambda abstraction function (\,
see also section 3.4) or to global function definitions by adding parameters using
lambda lifting. A mechanism for lambda lifting was already available in the symbolic
evaluator. The use of \ is less efficient than the use of lambda lifting, since \ itself is
not built-in but treated like any other predefined function. So, in this case, lambda
lifting was the most natural choice to deal with local function definitions.

To easily deal with recursion, the choice was made to let recursive applications
of function definitions refer directly to their definitions. The way in which this is
achieved is similar to the way recursion in combinator rewriting is usually dealt
with. There, a Y-combinator is used which in an implementation is optimised by
creating a cyclic graph for it (so-called knot-tying). Since Clean is a graph rewriting
language, cyclic graph expressions can be expressed directly (see the definition of
MakeRecursive). So, recursive applications in an environment are made effective by
explicitly replacing them (this is done by the function DistRule) by references to
the root of the environment (hence creating a cyclic reference):

MakeRecursive :: Env — Env
MakeRecursive envn = e where e = Map (DistRule e) env

The function MakeRecursive uses this method to replace all applications of
identifiers of functions (F ...) by applications of the corresponding function with its
definition (A ...) or by a direct call to a standard function (B ...). Lazy evaluation
ensures that this process is applied only when necessary. At this point, graph
rewriting and lazy evaluation turned out to be most useful in the implementation.

4.2.4 Compiled symbolic evaluation of expressions

For reasons of efficiency, the predefined function definitions are given to a special
Clean application that translates FunSheet functions to Clean code, which is linked
into the application so that they can be evaluated efficiently.

As free variables are not allowed in Clean, treatment of these symbolic values
by compiled FunSheet functions has to be coded explicitly. A FunSheet function
alternative which has a non-variable pattern in its left-hand side is translated to two
Clean alternatives. The first alternative is employed to catch unwanted matchings
of free variables with non-variable patterns. The second alternative corresponds
directly with the original alternative.

As a simple example, let us consider the following alternative.

£f0 = 0

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

400 W. de Hoon, L. Rutten and M. van Eekelen

This will be translated to the following two Clean alternatives (in which variable
is a function defined below):

fv | variable v = F "f" [v]
f (INT 0) INT O

Let us consider the more general case of an alternative of a function £, printed
as "f", with n arguments:

fp...ppn = T

This alternative will be translated into the following two (schematically written)
Clean alternatives:

f vy ...vp, | condition F "f" [vy, ..., v,
f Pi .--Pn = r

The condition is an expression over the free variables vy ...v,. If £ x; ...x, is
evaluated for some expressions x; ...x,, condition is True if and only if matching
some x; with a p; would involve matching a free variable with a non-variable
pattern. The condition can be expressed as a function of p; ...p, and vy ...v,. Its
implementation follows below. From the implementation it can be inferred that
evaluation of a condition does not have an effect on the strictness (and hence
termination) properties of the translated function in which the condition occurs, if
the function is applied to arguments which do not contain free variables:

condition :: [Value] [Value] — Value
condition [F £ a | ps] [v | vs] = condition ps vs
condition [p | ps] [v | vs] = or (pattern_condition p v)

(condition ps vs)
condition [] (] = F "False" []
pattern_condition :: Value Value — Value

pattern_condition p=:(C f a) v
= or (F "variable" [v])
(and (F "same_structure" [p, v])
(condition a (select_arguments a 1 v)))
pattern_condition p v = F "variable" [v];

select_arguments :: [Value] Int Value — [Value]

select_arguments [a | as] i v

= [F "nth_argument" [F (ToString i) [J, v] | select_arguments as (i + 1) v]
select_arguments [] i v = []

The or and and functions below are used to simplify the condition, if possible:

or :: Value Value — Value
or x (F "False" []1) = x
or x y = F"ll" [x, y]

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

Implementing a functional spreadsheet in Clean 401

and :: Value Value — Value
and x (F "False” []) = F ”False” []
and x y = F7&&” [x,]

The functions below will only be used at the run-time of a compiled FunSheet
program. They are linked with the Clean code which is (partly) generated by the
functions above: :

variable :: Value — Bool
variable (F f a) = True

variable x = False

same_structure 11 Value Value — Bool
same_structure (C f a) (Cgb) = f==g&k#a==4%#0D>
same_structure x y = False

nth_argument :: Int Value — Value

nth_argument n (C £ a) select n a

select :: Int [Value]l] — Value
select n [a | as] | n == = a
| otherwise = select (n - 1) as

As a more complicated example, let us consider the following alternative:

f0] = 0

This will be translated to the following two Clean alternatives.

f v | variable v ||
(same_structure (C ":" [INT 0, C "[1" [11) v &&
(variable (nth_argument 1 v) ||
variable (nth_argument 2 v))) = F "f" [v]
£ (C":* [INTO, C"[1" [J]) = INT O

Here, || and && are infix operators in Clean for the “or” and ”and” functions,
respectively.

It is possible that a non-trivial Value value occurs more than once in a condition,
or that it occurs in a left-hand side pattern and in the condition of the corresponding
right hand side. Then in the final translated code a node identifier will be defined as
value in a where-expression, and the original occurrences of value will be replaced
with that node identifier. For example, if condition looks like ...value ...value ...,
it will be translated to ...v ...v ...where v = value, v being a node identifier.
This obviously saves space. It also saves time since values do not have to be
rebuilt.

An example where node identifiers are generated is the following. Consider the
alternative:

£ (0] = 0

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

402 W. de Hoon, L. Rutten and M. van Eekelen

It will be translated to the following two Clean alternatives:

f v | variable v ||
(same_structure (C ":" [n1, C "[I" [J]) v &&
((variable n2 ||
(same_structure nl n2 &&
(variable (nth_argument 1 n2) ||
variable (nth.argument 2 n2)))) ||
variable (nth_argument 2 v)))

=F "f' [v]
where
nl =C ":" [INT O, C "[1" (1]
n2 = nth_argument 1 v
£ (C":" [C": [INT O, C "[]J*)], C "[1" [11) = INT O

Apart from generating conditions from patterns, the translation of the FunSheet
language to Clean is quite straightforward. One aspect of the translation still needs
to be addressed. If the set of alternatives of a FunSheet function is not exhaustive,
then one extra alternative is generated at the end of its translated counterpart in
Clean. If the function, say f, expects n arguments, then this extra alternative looks
like

fvi...v, = F"f" [vq, ..., v,]

where v; ...v, are node identifiers. By adding this alternative, a head normal form
will be yielded when the other generated alternatives do not match.

4.3 The main data structures of the spreadsheet

The spreadsheet data structures contain information that has to do with the efficiency
of the program as well as information concerning the contents of the cells and the
visual aspects of the sheet.

4.3.1 Cell

The most important information stored in the cells are the entries. These are the
input strings given by the user. The user must be able to adjust these entries, and to
access them they have to be saved in the cells.

The parsing information of the entries is also stored in the cells after partial
evaluation is performed on it as follows. The entry is first parsed and evaluated
using the standard environment of the interpreter. This results in an expression (of
type Value) that is evaluated as far as possible using standard functions only. Then,
this partly evaluated cell expression is further evaluated to its result (also of type
Value), using all the information available. Because it might use references, it is
possible (and very likely) that some of these values will change, and therefore will
affect the result. When one of these references changes, the entry does not have

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

Implementing a functional spreadsheet in Clean 403

to be parsed and partly evaluated again, since the partly evaluated expression is
saved in the cell. Also, when cells are evaluated again after the user has changed
function definitions, this partly evaluated expression is taken as the starting point
of re-evaluation. In the environment (of type Env), the final result is saved in
the right-hand side of the corresponding alternative of the corresponding column
function.

Changing the entry of a certain cell may affect a large group of cells in the
sheet. Other cells can refer to this particular cell with labels or direct references. To
increase efficiency, avoiding having to check the entire sheet for references to this
particular cell, a list of used-by references is retained in the cell. This list is also
used by the cycle detector. For efficient adjustment of these references, the list of
cell references and label names which the entry of a certain cell uses, is also stored
in the cell. These lists are determined from the partly evaluated cell expression.

Via access functions, Cell is defined as an abstract type with the following con-
crete representation (: == indicates a type synonym definition):

i1 Cell = FilledCell CellContents

| EmptyCell;
:: CellContents == (Entry, Expression, Uses, IsUsedBy)
:: Entry == String
:: Expression == Value
:: Uses == ([Address], [LabelName])
:: LabelName == String
:: IsUsedBy == [Address]

4.3.2 Sheet

Sheet is an abstract type, corresponding to a concrete type which is a tuple of several
components. The set of cells is represented as a Matrix of Cells, where Matrix is
defined as a list of lists since proper arrays were not available when the program
was written.

Since it is possible to open more than one sheet, one must be able to identify each
one of those sheets. This is achieved by keeping the Name and the WindowId in the
sheet, too.

Each sheet has a local function environment. This environment actually consists of
two environments: the first contains the column-functions; the second contains the
user-defined functions. To be able to save the latter the actual text of the user-defined
Sfunctions is also added to the sheet (the text of the column functions is saved in the
cells).

Furthermore, a sheet contains format information, i.e. information about the format
of groups of cells (rows and columns). The height and width of rows and columns
can be adjusted. The corresponding properties are stored in separate lists defined in
the sheet.

A sheet also has a part which contains information concerning the interactions
between the user and the program. This information includes the frame (ie. a
rectangle in window co-ordinates) that is selected by the mouse, and the input

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

404 W. de Hoon, L. Rutten and M. van Eekelen

tuple that is being edited in the cell. The input tuple contains a boolean indicating
whether something has been changed, the input text, and the selected cell block (i.e.
a rectangle in cell matrix co-ordinates).

Finally, it contains information about the labels. The labels are also added to
the environment, but when the user needs information about (one of) the defined
labels he or she cannot get this information from the environment. Therefore, this
information has to be extracted from the sheet:

: Sheet :== (Identify, Matrix Cell, Interaction, Row,
Column, [Labell, ParseEnv, Font)

:: Identify == (Windowld, Name)

:: Name == String

:: Matrix a == [[a]]

:: Interaction == (Input, MouseFrame)

:: MouseFrame == Rectangle

:: Rectangle == (Address, Address)

: Address == (Int, Int)

: Input == (Changed, TextBeforeCursor, TextAfterCursor,
CellBlock)

:: Changed == Bool

:: TextBeforeCursor :== String

:: TextAfterCursor ;== String

:: CellBlock 1= Rectangle

:: Row :== [Height]

:: Height :== Int

:: Column :== [Width]

:: Width == Int

:: Label :== (Name, CellBlock, LabelUsers)

:: LabelUsers ;== [Address]

:: ParseEnv :== (FunctionDefsText,
(UserFunctionEnv, ColumnFunctionEnv))

: FunctionDefsText ;== String

:: UserFunctionEnv ;== Env

: ColumnFunctionEnv :== Env

4.3.3 State

Finally, there is the abstract program state State, containing all global information
needed by the spreadsheet. This state is uniquely typed (a * is used to indicate
uniqueness of the type it precedes) and it is used by all call-back functions that
handle events that are generated by the user (see section 4.1). Besides a list of sheets
(as defined above), the state contains information that is sheet-independent. So, the
state contains the files-environment needed for file-10 (reading and saving files) and
the clipboard containing a list of the entries of the copied cells:

:: *State ;== (!MyFiles, [Sheet], Clipboard)
:: *MyFiles = NOFILES
| FILES !Files
:: Clipboard == [CopiedCell]
:: CopiedCell :== Entry

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

Implementing a functional spreadsheet in Clean 405

In the State definition above the tuple-component MyFiles is defined as a strict
component (which itself is defined with a strict Files part). When you write a sheet
to a file (make a backup of it) you want to make sure this is done right away so
that power failures will not result in losing all the information. For this reason, the
MyFiles component is forced to be evaluated each time a call-back function delivers
a new state.

5 Reflection
5.1 Lessons learnt during the implementation

The application was developed with version 0.8 of Clean. Intended as an intermediate
language, the syntax of this version was rather poor. One of the reasons for starting
this project was to gain an insight into the essential extensions that were needed to
upgrade Clean to a proper programming language.

Obviously, programming was hampered by the absence of well-known goodies
such as local function definitions, infix expressions, overloading, ZF-expressions,
pattern match wild cards and a lay-out rule.

More specific, and of more general importance, are the following:

e The Clean programming environment has only limited support for larger
programs (a search facility which enables the user to open quickly definition or
implementation modules or to find quickly the definition or the implementation
of a selected function identifier). For larger projects, a project manager is
required which keeps track of the modules that are part of the project and
incorporates facilities like quickly finding all applications of a given function
throughout (parts of) the project, printing (parts of) the project, changing
layout or comments in a definition module without having to recompile
all dependent modules, an option to add inferred strictness automatically to
exported types in definition modules and a warning for specified strictness that
cannot be inferred. Adding structure to the project defining layers in which
definition modules can depend on each other might also be very helpful.

o In this project it turned out to be hard to keep track of the definitions that are
available within a certain module, since when the implicit import mechanism is
used not only all definitions contained in the definition module of an imported
module are imported, but also all definitions that are imported by the imported
module. So, either the project manager should assist the programmer in this,
or implicit imports should be abandoned (they are, however, very useful for
importing a complete library throughout a project).

o The Clean 0.8 version has relatively primitive support for uniqueness typing.
Uniqueness types are checked but not inferred. There are no ways to define,
via a projection function, a read-only access on a (part of) a unique data
structure without having to produce a tuple with the unique data structure
and its projection. In other words, the concept of observation of a unique
typed object is not present. Furthermore, for data structures that are defined

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

406 W. de Hoon, L. Rutten and M. van Eekelen

by the user as being unique the code generator does not generate code that
makes use of this information.

e Lack of record definitions: when in the development process a type which is
defined as a tuple (e.g. Cell, Sheet and State, see section 4.3) is extended,
all functions that use pattern matching on this tuple have to be changed
since the number of tuple elements changes. This can be avoided by defining
access functions for all components. This has the disadvantage that pattern
matching cannot be used anymore which can make function definitions longer -
and harder to read.

e All I/O functions have the full program state as their argument. In many cases
a large part of the state is needed only locally to the I/O function itself each
time it is called. There are no language constructs to support this in the Clean
0.8 1/0 library.

o The ability to define interleaved processes with a separate I/O interface would
allow the programmer to give more structure to the program. The Help facility,
for example, could then be redesigned in such a way that it could be always
visible and run in a separate window with a separate menu bar accessible just
by clicking on its window. In a similar way, the function editor could be used
side-by-side with the sheet itself.

e The Macintosh linker has a limit size of 32K for an object file to be linked
into an application. It is a nuisance having to split up a module just because
the linker cannot deal with the size of the generated code.

e There are no design rules for time and space efficiency of different language
constructs. When writing an industry standard efficient application, it may
prove to be vital for the designer to know the influence of the used language
constructs on the time and space behaviour.

e There is no support to extend specifications of I/O systems with call-back
functions using subtyping to specifications of I/O systems with an extended
program state. With such a facility, the text editor could be extended to a
function editor in a very general way. Now the main menu specification itself
had to be copied textually, and it had to be changed and extended. With such
a facility the main menu specification could be passed as an argument to a
function which takes each call-back function of the algebraic data structure
and replaces it with a new function (defined in terms of the original one via
projections and extensions) that operates on the extended state.

All these critiques have been input to the design process of the Clean language
version 1.0 and the new I/O library version 1.0. Apart from the 32K limit, structuring
definition modules in layers, and abandoning implicit imports, all of them have been
incorporated in the design. The required functionality for the spreadsheet served as
an important test case in various stages of the design.

5.1.1 Higher order functions

Higher order functions were used throughout the implementation. The 1/O library
(with its algebraic data structure describing the I/O components and containing

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

Implementing a functional spreadsheet in Clean 407

call-back functions for the possible events) could not have been written without the
availability of higher order functions. Its definition modules contain many higher
order functions.

Of course, there were also several cases in implementation modules of the use of
(variants of) standard functions like fold and map with (curried applications of)
functions as arguments where this was felt needed (in particular, in the symbolic
evaluator this occurred quite often). It is our experience that overall efficiency was
not hampered by such use of higher-order functions (with the exception of the use
of foldr, which is inherently quite inefficient).

5.1.2 Lazy evaluation and graph rewriting

At many points in the implementation, lazy evaluation and explicit sharing were
used. The most important use of the combination of these two techniques has already
been discussed in section 4.2.3 (in dealing with recursion in the symbolic evaluator).

An example of the use of lazy evaluation in the spreadsheet is the following. When
a cell is changed, in principle all cells that depend upon it have to be recalculated.
However, for cells that are not visible in the window, and of which the value is not
used by cells that are visible, such recalculation is not yet necessary. Depending on
the use, this recalculation will be required later (when the window is scrolled) or
never (when the same cell is changed again). Lazy evaluation can take care of that
with hardly any programming effort. The only thing which is required is that on
the topmost level of interaction the list of frames to be updated is restricted to the
visible ones. Due to lazy evaluation, the calculations corresponding to invisible cells
will then be delayed automatically.

Lazy evaluation is turned at different points into strict evaluation for various
reasons. The required behaviour can be inherently strict (see the discussion on saving
files in section 4.3.3), or the interface to the outside world can require arguments to
be evaluated before they are passed (needed in many places in the I/O library), or
the memory management of the resulting application would otherwise turn out to be
unsatisfactory (used internally in the editor to avoid certain space leaks).

5.1.3 Clean 1/0

The advantage of Clean I/O is its relatively direct way of interfacing to system
calls. In particular, for the relatively I/O intensive parts like scrolling (in the sheet
or editor) this was important to achieve a proper efficiency of interaction.

It is our impression that, using Clean 1/0, it is easier to modify and read 1/0
programs than using an imperative language. A large part of the debugging of the
system was done by someone other than the original programmer. Due to referential
transparency, it was relatively easy to correct a bug as soon as it was identified as
a wrong definition of a particular function. Only the definition of the function itself
had to be considered, and all required information was present via the arguments
of the function. The absence of side-effects proved to be very useful for debugging
the program.

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

408 W. de Hoon, L. Rutten and M. van Eekelen

Source size Object size

lines kb %(kb) kb %(kb)

Sheet and cell manipulation 3518 129 14 390 15
Editor 4774 181 19 417 16
Symbolic evaluator 2378 76 8 510 19
I/0 library 11594 458 48 925 35
Help tool 193 8 1 16 1
Translated standard environment 1733 99 10 362 14
Total 24190 951 100 2620 100

Table 1. Source sizes and object sizes

Apart from having the advantage of referential transparency, the user can rela-
tively easily define higher levels of abstraction. This can be done both on a small
scale defining useful higher order extensions of the I/O library (e.g. for often used
dialogues), as well as on a large scale on which a user could define a new style of 1/0.

5.2 Performance and code sizes
5.2.1 Code sizes

FunSheet requires 4 Mbytes of free memory. It will be possible to decrease the
amount of necessary memory greatly when efficient code generation for general
uniqueness types becomes available in Clean 1.0.

The spreadsheet application is constructed by combining and adapting exist-
ing software components written in a lazy functional programming language. The
project described here consisted of designing and implementing the sheet and cell
manipulation part (performed by an MSc student) and improving and extending the
symbolic evaluator part (performed by a PhD student). Taken together, the project
took about 10 student months.

The source code of FunSheet is organised in six major parts: sheet and cell
manipulation, editor, symbolic evaluator, I/O library, help tool, and standard en-
vironment (including the basic environment). The standard environment is written
in the spreadsheet language. It takes about 560 lines, or about 15 kb. When the
system is compiled, the files of the standard environment are translated to Clean
modules, which are then compiled to object code. The generated implementation
modules take about 99 kby and the generated definition modules take about 9 kb.
The size of the standard environment is about 14% of the size of the corresponding
generated Clean modules.

The source sizes in Table 1 do not include the sizes of the definition modules. These
modules take about 5200 lines of Clean code, or about 150 kb. This is 16% of the
corresponding implementation modules. The size of the combined implementation
and definition modules is about 29,400 lines, or about 1100 kb. When the spreadsheet
application was implemented, the editor and I/O library were already available. The

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

Implementing a functional spreadsheet in Clean 409

size of their implementation modules is about 67% of the size of all spreadsheet
implementation modules. Of course, for the required functionality of the spreadsheet
it would have been possible to use much less lines if existing code was not reused
(the editor and the I/O library are quite general). With the conversion to Clean
1.0 the number of lines is expected to decrease significantly due to the larger
expressive power of the high level syntactical constructs present in Clean 1.0 (e.g. a
single ZF-expression or record definition can replace several function definitions for
construction, filtering, access and update of the data structures).

The application size itself is approximately 1 Mbyte. The spreadsheet applica-
tion, the stand-alone version of the editor, and the Concurrent Clean System are
freely available for non-commercial use via FTP (pub/Clean at ftp.cs.kun.nl) or
WWW (www.cs.kun.nl/~clean). The Concurrent Clean System is available for sev-
eral platforms (Macintosh, PC, Sun3 and Sun4). The FunSheet application runs on
a Macintosh only, since for the use of non-scrolling margins in windows a small
extension was made to the library which is not yet ported to the other platforms.
This extension will be incorporated in the new library that is being made with the
Clean 1.0 system.

5.2.2 Efficiency of interpreted and translated FunSheet programs

The standard environment is translated to Clean code to increase its execution
efficiency. Let us take the nfib function as an example. The definition of nfib in
the FunSheet language is

1 if n<=1
nfib (o - 1) + nfib (n - 2) + 1;

nfib n

A measure for the number of function calls per second of an implementation is
the nfib number. The nfib number is equal to the limit of nfib n divided by the
time in seconds to compute nfib n, for n approaching infinity. On a 33 MHz
68030 Macintosh, the nfib number of the interpreted definition is about 700. If the
definition is made part of the standard environment, it will be translated to the
following Clean code when the FunSheet application is built.

$nfibn = $if ($<=1n 1)
(INT 1)
($+ ($+ ($nfib ($- n (INT 1))
($nfib ($- n (INT 2)))) (INT 1))

On the same machine the nfib number of the translated definition is about 7000.
Because the spreadsheet language is untyped, the translated definition is strewn with
type tags. Therefore, it is still two orders of magnitudes slower than the following
nfib function written in Clean. Its nfib number is about 700,000 on the same
machine:

1
nfib (n - 1) + nfib (n - 2) + 1

nfibn | n<=1
| otherwise

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

410 W. de Hoon, L. Rutten and M. van Eekelen

5.3 FEvaluation

As an application FunSheet is positioned somewhere between calculators and com-
mercially available conventional spreadsheets. This makes comparison somehow
inappropriate. Nevertheless, below an attempt is made to determine the value of its
most important properties.

++ The fact that its expressions are fully functional makes it much easier to reason
about than conventional spreadsheets.

++ The possibility of proving symbolic equalities can greatly improve the reliability
of a user’s actual spreadsheet designs.

+ Its I/O efficiency is very good. There are no delays in editing cell or function
definitions nor in ‘walking’ across the spreadsheets using arrow keys and
scrolling the spreadsheet when necessary. With respect to these aspects the
efficiency is about the same as the efficiency of Excel.

+/- The function evaluation efficiency of the spreadsheet language is about the
same as Miranda™ 1 (varying from approximately twice as fast for standard
function applications to five times as slow for user-defined function appli-
cations). The efficiency is good if one considers that symbolic evaluation is
employed on untyped expressions. However, the sheet evaluation mechanism
which deals with computing all effects of a cell change is an order of magni-
tude slower than Excel. The used representation of the matrix of cells as a list
of lists is probably the main cause of this. The function evaluation mechanism
could not be compared with Excel since Excel only has a macro facility which
is defined in such a way that the parameters are in fact global variables giving
rise to unwanted semantics when recursion is used.

- The current application is a first version which has not yet gone through the
process of use and improvement which is necessary to make a proper product
out of it. There is a small list of known bugs which still has to be removed.

- — It does not (yet) incorporate diagram/print/report facilities nor imports from
other spreadsheet applications. Rows and columns cannot be hidden. Apart
from copying, there are no facilities for filling a number of cells at a time.

The first two properties of FunSheet do not hold for any of the existing commer-
cially available spreadsheets.

5.4 Future improvements[extensions

It is the intention to include diagram, print and report facilities in a future version
of FunSheet. Furthermore, a concept with similar capabilities as relative addressing
(which means that special facilities are provided to address cells in a way which
is relative to the current cell) will be incorporated. Classically, there are two ways
to provide relative addressing: by including a special syntax for the address of a
cell relative to the current cell (this would invalidate referential transparency), or by

t Miranda is a trademark of Research Software Ltd.

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

Implementing a functional spreadsheet in Clean 411

changing certain addresses in cell formulae in a relative way while copying these for-
mulae to other cells (this would imply implicit context switches). It is our intention to
investigate whether an explicit method might be a useful extension. One method to
be considered is to allow the user to explicitly apply any function on a list of copied
cells while pasting them: a general feature which could be used for ‘relative address-
ing’ and for other purposes. Another method to be considered is to allow the user to
edit column functions,eg. A 1 = 1; A2=1; Ai=A@G-1)+4 @G- 2);
could be a way to define that the cells in column A have to be filled with the
fibonacci numbers. This would allow changing dependencies via standard edit func-
tions.

The code (Clean 0.8) will be converted to Clean 1.0 not just by using the
automatic conversion facility but by employing the new features available in Clean
1.0. Apart from more readable code due to the availability of more syntactic
sugar, an important advance is expected due to the use of observation types and
of user-defined unique data structures. The use of a destructive array (defined
with uniqueness types) for the cell matrix instead of a list of lists is expected to
greatly improve the overall efficiency. Due to the propagation property of uniqueness
(Smetsers et al., 1993), the type for Sheet must then also be unique since it contains
a unique component (destructing the component will destruct the surrounding
structure too).

The interfaces between the different components are intended to be redesigned
such that the interface to a component will be fully contained in one definition
module while compiling the corresponding implementation module separately will
yield a stand alone application of the component. In practice, this will make it easier
to guarantee that the interface is kept stable while the component changes.

Finally, it is our intention to develop a distributed version in which different parts
of a sheet can be changed and updated on different processors.

5.5 Related work

None of the spreadsheets we could find in the literature incorporated symbolic
evaluation.

Nas (Wray and Fairbairn, 1989) is an interactive functional program based on
ideas from spreadsheets. Its language is first order. It incorporates a way in which
to address the previous value of a cell: a feature which made it possible to model a
flip-flop constructed from NOR-gates within the system.

The concept of time is modelled as an extra dimension within a first order func-
tional dataflow spreadsheet in Du and Wadge (1990). Their system is based on
intensional logic.

The inherent concurrency of a spreadsheet computation is explored in Yoder
and Cohn (1994). They allow first order recursive function definitions. Their paper
argues that spreadsheet languages can offer both intuition and access to parallel
computational resources.

In Harvey and Wright (1994), the authors describe a simple spreadsheet written
in Scheme. The implementation serves as an example for Scheme students. To

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

412 W. de Hoon, L. Rutten and M. van Eekelen

avoid a lot of complexity, the spreadsheet has no graphical user interface. Also,
no dependency structure between cells is implemented. Therefore, every cell will be
re-evaluated when a cell is changed by the user of the spreadsheet. Lazy functions
are not incorporated in the spreadsheet. Finally, user-defined functions can only be
added to the source code of the system.

In Boon (1994), the author reflects on advantages and disadvantages of spread-
sheets. The particular advantages of a functional spreadsheet are discussed and an
implementation is described of a functional spreadsheet written in Scheme. The
sheet incorporates dependency computations, user-defined functions, and higher
order functions.

6 Conclusions

o The functional spreadsheet design is an interesting kind of spreadsheet with
novel properties that can have great value for spreadsheet practice.

o The FunSheet application can be used in everyday spreadsheet practice. It is
not a competitor for standard commercial spreadsheets, but after extension
and improvement through more extensive user experience it may find its own
niche between calculators and existing commercial spreadsheets.

e Reuse and adaptation of existing software components (I1/0O library, help tool,
editor and symbolic evaluator) turned out to be possible with a functional
language.

¢ The lack of side-effects made debugging relatively straightforward.

e However, the experience with the project did yield a number of important
aspects of the language Clean and its programming environment (version
0.8) that hampered the software development. The experience of this project
showed the importance of incorporating these aspects in future versions of the
language. Clean 1.0 will incorporate most of them.

o Considering the relatively small scale of this project, the software productivity
of the project was quite high.

o Considering the functionality with respect to user interaction and symbolic
evaluation, and the facts that huge parts of the software were reused and
code generation for unique data types was not available yet, the efficiency of
FunSheet is satisfactory.

Acknowledgements

The authors would like to thank the referees and the editors for their valuable
comments, corrections and suggestions. They really made a difference.

References

Achten, P. M. and Plasmeijer, M. J. (1995) The Ins and Outs of Clean 1/0. J. Functional
Programming 5(1), pp. 81-110.

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

Implementing a functional spreadsheet in Clean 413

Barendregt, H. P, van Eekelen, M. C. J. D. Glauert, J. R. W,, Kennaway, J. R., Plasmeijer, M. J.
and Sleep, M. R. (1987) Term Graph Rewriting. In: de Bakker, J. W,, Nijman, A. J. and
Treleaven, P. C. eds., Proc. Parallel Architectures and Languages Europe, Eindhoven, The
Netherlands. Lecture Notes in Computer Science Vol, 259, pp. 141-158. Springer-Verlag,

Barendsen, E. and Smetsers, J. E. W. (1993) Conventional and Uniqueness Typing in Graph
Rewrite Systems (extended abstract). In: Shyamasundar, R. K., ed., Proc. 13th Conference on
the Foundations of Software Technology and Theoretical Computer Science, Bombay, India,
December 15-17. Lecture Notes in Computer Science Vol 761, pp. 41-51. Springer-Verlag.

Boon, J. (1994) A Purely Functional Spreadsheet. Third Year Project Report. University of
York, UK.

Brus, T, van Eekelen, M. C. J. D., van Leer, M. O. and Plasmeijer, M. J. (1987) Clean:
A Language for Functional Graph Rewriting. In: Kahn. G., ed., Proc. 3rd International
Conference on Functional Programming Languages and Computer Architecture, Portland,
Oregon, USA.

Carlsson, M. and Hallgren, Th. (1993) Fudgets — A Graphical User Interface in a Lazy
Functional Language. In: Proc. Conference on Functional Programming Languages and
Computer Architecture, Copenhagen, Denmark, pp. 321-330. ACM Press.

Cartwright, R. and Boehm, B. (1990) Exact Real Arithmetic, formulating real numbers as
functions. In: Turner, D. A., ed., Research Topics in Functional Programming, University of
Texas at Austin Year of Programming Series, pp. 43-64. Addison Wesley.

Casimir and Rommert (1992) Real Programmers Don’t Use Spreadsheets. ACM SIGPLAN
Notices 27(6): 10-16.

Du, W. and Wadge, W. W. (1990) The Eductive Implementation of a Three-Dimensional
Spreadsheet. Software - Practice and Experience 20(11): 1097-1114.

Harvey, B. and Wright, M. (1994) Simply Scheme: Introducing Computer Science. MIT Press.

de Hoon, W. A. C. A. J. (1993) Designing a spreadsheet in a pure functional graph rewriting
language. Computer Science Master Thesis 300, University of Nijmegen, The Netherlands.

de Hoon, W. A. C. A. J, Rutten, L. M. W, J. and van Eekelen, M. C. J. D. (1994) FunSheet:
A Functional Spreadsheet. In: Proc. 6th International Workshop on the Implementation of
Functional Languages, Norwich, UK, pp. 11.1-11.24.

Litecky, C. (1990) Spreadsheet Macro Programming: a Critique with Emphasis on Lotus
1-2-3. J. Systems and Software 13(3): 197-200.

Nocker, E. G. J. M. H., Smetsers, J. E. W,, van Eekelen, M. C. J. D. and Plasmeijer, M. J.
(1991) Concurrent Clean. In: Aarts, E. H. L., van Leeuwen, J. and Rem, M,, eds., Proc:
Parallel Architectures and Languages Europe, Eindhoven, The Netherlands, pp. 202-219.
Springer-Verlag.

Peyton Jones, S. L. and Wadler, P. (1993) Imperative Functional Programming. In: Proc.
20th Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
Charleston, SC, pp. 71-84.

Plasmeijer, M. J. and van Eekelen, M. C. J. D. (1993) Functional Programming and Parallel
Graph Rewriting. Addison-Wesley.

Plasmeijer, M. J. and van Eekelen, M. C. J. D. (1995) Clean 1.0 Reference Manual. Technical
Report, University of Nijmegen, The Netherlands (in preparation), draft available at
http://www.cs.kun.nl/nclean.

Pountain, D. (1994) Functional Programming Comes of Age. Byte Magazine 19(8): 183-184.

Smetsers, J. E. W,, Barendsen, E., van Eekelen, M. C. J. D. and Plasmeijer, M. J. (1993) Guar-
anteeing Safe Destructive Updates through a Type System with Uniqueness Information
for Graphs. In: Schneider H. J. and Ehrig H., eds., Proc. Workshop Graph Transformations
in Computer Science, Schloss Dagstuhl, Germany. Lecture Notes in Computer Science Vol
776. Springer-Verlag.

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

414 W. de Hoon, L. Rutten and M. van Eekelen

Turner, D. A. (1990) An Approach to Functional Operating Systems. In: Turner, D. A. (ed-
ttor), Research topics in Functional Programming, pp. 199-217. Addison-Wesley Publishing
Company.

Vuillemin, J. (1987). Arithmétic réelle exacte par les fractions continues. Technical Report
760, INRIA, France.

Wray, S. C. and Fairbairn, J. (1989) Non-strict languages — Programming and Implementation.
The Computer Journal 32(2): 142—-151.

Yoder, A. and Cohn, D. L. (1994) Real Spreadsheets for Real Programmers. Technical Report
94-9, University of Notre Dame.

https://doi.org/10.1017/50956796800001404 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800001404

