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Riemannian median and its estimation

Le Yang

Abstract

In this paper, we define the geometric median for a probability measure on a Riemannian
manifold, give its characterization and a natural condition to ensure its uniqueness. In order
to compute the geometric median in practical cases, we also propose a subgradient algorithm
and prove its convergence as well as estimating the error of approximation and the rate of
convergence. The convergence property of this subgradient algorithm, which is a generalization
of the classical Weiszfeld algorithm in Euclidean spaces to the context of Riemannian manifolds,
also improves a recent result of P. T. Fletcher et al. [NeuroImage 45 (2009) S143–S152].

1. Introduction

The classical Fermat point of a triangle in the plane is the point minimizing the sum of distances
to the three vertices. This is a prototype of the more general Fermat–Weber problem concerning
the same question but for more than three points and in higher dimensions. The solution to
this problem is called the geometric median of these points and provides them with a notion
of centrality. For this reason, the geometric median is a natural estimator in statistics which
possesses another important property called robustness, that is, not sensitive to outliers. As a
consequence, the geometric median is a widely used robust estimator in both theoretical and
practical theory of robust statistics.

Naturally, one can also ask the question of how to find a point that minimizes the sum of
distances to a set of given points in a much more general space as long as it carries a distance.
This has been done in [30] where the existence of the geometric median of a probability measure
on a complete, separable and finitely compact metric space is proved. Recently, there has been
a growing interest in the methods that characterize statistical data lying on a Riemannian
manifold and their applications; see for example [6–9, 15, 16, 28], where the centrality of
empirical data is modeled by the Riemannain barycenter which was first introduced by Karcher
in his paper [19] and then has been extensively studied and generalized by many other authors
during the past thirty years [3–5, 13, 21, 22, 29]. As is well known, the barycenter is not
a robust estimator and is sensitive to outliers: in order to overcome this drawback Fletcher
et al. [17] defined the weighted geometric median of a finite set of discrete sample points lying
on a Riemannian manifold and proved its existence, uniqueness and robustness. For other
statistically-based work related to medians, we refer to [32] and the references therein.

In many cases, especially in practice, one often needs to calculate or at least estimate the
value of the geometric median. The first algorithm to do this computation was proposed by
Weiszfeld in his paper [34], which is now known as the Weiszfeld algorithm. From then on, due
to the fundamental importance of the Fermat–Weber problem in location theory, this algorithm
has been studied, improved on and generalized by numerous authors; two examples of the huge
literature on this subject are [23, 27].

In the context of Riemannnian manifolds, Fletcher et al. [17] proposed a Riemannian
analogue of the Weiszfeld algorithm to compute the geometric median. They proved a
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convergence result under the condition that the manifold is non-negatively curved and
conjectured a similar convergence result in the negatively curved case.

The aim of this paper is to define the geometric median of a probability measure on a
complete Riemannian manifold and investigate the question of uniqueness as well as the
problem of approximation. As in [19, 24] we suppose that the support of the probability
measure is contained in a convex ball and give a characterization of the geometric median
which is proved in the case of Euclidean space in [23] for a finite discrete set of sample points.
Then we prove the uniqueness for geometric medians under a natural condition imposed on the
probability measure and show that this condition yields a strong convexity property, which is
useful in error estimates. By regarding the Weiszfeld algorithm as a subgradient procedure, we
introduce a subgradient algorithm to estimate geometric medians and prove that this algorithm
always converges without condition of the sign of curvatures by generalizing the fundamental
inequality in [14] where it was proved in positively curved manifolds. Finally, the results of
approximating errors and rate of convergence are also obtained.

Throughout this paper, M is a complete Riemannian manifold with Riemannian metric 〈·, ·〉
and Riemannian distance d. The gradient operator and the Hessian operator on M are denoted
by grad and Hess, respectively. Moreover, for every point p in M , let dp denote the distance
function to p defined by dp(x) = d(x, p), x ∈M .

We fix an open geodesic ball

B(a, ρ) = {x ∈M : d(x, a)< ρ}

in M centered at a with a finite radius ρ. Let δ and ∆ denote, respectively, a lower and an
upper bound of sectional curvatures K in B̄(a, ρ). The injectivity radius of B̄(a, ρ) is denoted
by inj(B̄(a, ρ)). Furthermore, we assume that the radius of the ball verifies

ρ <min
{

π

4
√

∆
,

inj(B̄(a, ρ))
2

}
, (1.1)

where if ∆ 6 0, then π/(4
√

∆) is interpreted as +∞. Hence B̄(a, ρ) is convex (see [11,
Theorem 5.14]); that is, for every two points x and y in B̄(a, ρ), there is a unique shortest
geodesic from x to y in M , and this geodesic lies in B̄(a, ρ). Moreover, the geodesics in B̄(a, ρ)
vary continuously with its endpoints. As a consequence, the angle comparison theorem of
Alexandrov (see, for example, [1], [2, p. 3] and [10, Proposition II.4.9]) can be applied in
B̄(a, ρ). Similarly, it is easy to check that the angle comparison theorem of Toponogov (see [11,
Theorem 2.2]) can also be applied in B̄(a, ρ). Thus we have to introduce some notation of model
spaces that provide us with geometric information.

Notation. Let κ be a real number. The model space M2
κ is defined as follows:

(1) if κ > 0, then M2
κ is obtained from the sphere S2 by multiplying the distance function

by 1/
√
κ;

(2) if κ= 0, then M2
0 is the Euclidean space E2;

(3) if κ < 0, then M2
κ is obtained from the hyperbolic space H2 by multiplying the distance

function by 1/
√
−κ.

The diameter of M2
κ will be denoted by Dκ. More precisely,

Dκ =

{
π/
√
κ if κ > 0;

+∞ if κ6 0.

The distance between two points Ā and B̄ in M2
κ will be written as d̄(Ā, B̄).
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Moreover, we write for t ∈R,

Sκ(t) =


sin(
√
κt)/
√
κ if κ > 0;

t if κ= 0;
sinh(

√
−κt)/

√
−κ if κ < 0.

For the necessity of later comparison arguments, we recall some terminology about triangles
(see [10, p. 158 and Lemma I.2.14]). A geodesic triangle 4ABC in M is a figure consisting of
three distinct points A, B, C of M called the vertices and a choice of three shortest geodesics
AB, BC, CA joining them called the sides. A comparison triangle in M2

κ of4ABC is a geodesic
triangle 4ĀB̄C̄ in M2

κ such that d̄(Ā, B̄) = d(A, B), d̄(B̄, C̄) = d(B, C), d̄(C̄, Ā) = d(C, A).
Note that if the perimeter of4ABC is less than 2Dκ, that is, if d(A, B) + d(B, C) + d(C, A)<
2Dκ, then its comparison triangle in M2

κ exits and it is unique up to an isometry. Hence every
geodesic triangle in B̄(a, ρ) has its comparison triangles in M2

δ and M2
∆, respectively. Note

that, by convexity of B̄(a, ρ), every geodesic triangle in B̄(a, ρ) is uniquely determined by its
three vertices.

The two estimations given in the lemma below are very useful to our further discussions;
they are direct corollaries to the classical Hessian comparison theorems (see, for example, [31,
Lemma IV.2.9] and [18, Theorem 4.6.1]).

Lemma 1.1. Let p ∈ B̄(a, ρ) and γ : [0, b]→ B̄(a, ρ) be a geodesic, then:

(i) Hess dp(γ̇(t), γ̇(t)) >D(ρ,∆)|γ̇nor
p (t)|2

for every t ∈ [0, b] such that γ(t) 6= p, where D(ρ,∆) = S′∆(2ρ)/S∆(2ρ)> 0 and γ̇nor
p (t)

is the normal component of γ̇(t) with respect to the geodesic from p to γ(t)
in B̄(a, ρ);

(ii) Hess 1
2d

2
p(γ̇(t), γ̇(t)) 6 C(ρ, δ)|γ̇|2

for every t ∈ [0, b], where the constant C(ρ, δ) > 1 is defined by

C(ρ, δ) =

{
1 if δ > 0;

2ρ
√
−δ coth(2ρ

√
−δ) if δ < 0.

2. Definition of a Riemannian median

As in [19], we consider a probability measure µ on M whose support is contained in the open
ball B(a, ρ) and define a function

f : B̄(a, ρ)−→R+, x 7−→
∫
M

d(x, p)µ(dp).

This function is 1-Lipschitz, hence continuous on the compact set B̄(a, ρ). Moreover, by the
first estimation in Lemma 1.1, it is also convex. The convexity of f yields that its local minima
coincide with its global ones, so that we do not need to distinguish the two. Now we give the
following definition.

Definition 1. A minimum point of f is called a median of µ. The set of all the medians
of µ will be denoted by Mµ. The minimal value of f will be denoted by f∗.

It is easily seen that Mµ is compact and convex. In order to give a characterization of Mµ,
we need the following proposition, which implies that f is not differentiable in general.
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Proposition 2.1. Let γ : [0, b]→ B̄(a, ρ) be a geodesic, then

d

dt
f(γ(t))

∣∣∣∣
t=t0+

= 〈γ̇(t0), H(γ(t0))〉+ µ{γ(t0)}|γ̇|, t0 ∈ [0, b),

d

dt
f(γ(t))

∣∣∣∣
t=t0−

= 〈γ̇(t0), H(γ(t0))〉 − µ{γ(t0)}|γ̇|, t0 ∈ (0, b],

where for x ∈ B̄(a, ρ),

H(x) =
∫
M\{x}

−exp−1
x p

d(x, p)
µ(dp),

is a tangent vector at x satisfying |H(x)|6 1. Particularly, if µ{x}= 0, then grad f(x) =H(x).
Moreover, H is continuous on B̄(a, ρ)\supp(µ).

Proof. We only prove the first identity since the proof of the second one is similar. Let
t0 ∈ [0, b) and ε > 0 be sufficiently small, then

f(γ(t0 + ε))− f(γ(t0))
ε

=
∫
M

d(γ(t0 + ε), p)− d(γ(t0), p)
ε

µ(dp)

=
∫
M\{γ(t0)}

d(γ(t0 + ε), p)− d(γ(t0), p)
ε

µ(dp) + µ{γ(t0)}|γ̇|.

Letting ε→ 0+ and using bounded convergence we obtain
d

dt
f(γ(t))

∣∣
t=t0+

=
∫
M\{γ(t0)}

d

dt
d(γ(t), p)

∣∣∣∣
t=t0

µ(dp) + µ{γ(t0)}|γ̇|

=
∫
M\{γ(t0)}

〈γ̇(t0), grad dp(γ(t0))〉µ(dp) + µ{γ(t0)}|γ̇|

= 〈γ̇(t0), H(γ(t0))〉+ µ{γ(t0)}|γ̇|.

Now we give the characterization of Mµ, which is proved in [23], for a finite number of points
in an Euclidean space.

Theorem 2.2. The set of all the medians of µ is characterized by

Mµ = {x ∈ B̄(a, ρ) : |H(x)|6 µ{x}}.

Proof. (⊂) Let x ∈Mµ. If H(x) = 0, then there is nothing to prove. So we assume that
H(x) 6= 0. Consider the geodesic in B̄(a, ρ):

γ(t) = expx

(
−t H(x)
|H(x)|

)
, t ∈ [0, b].

By Proposition 2.1 and the definition of Mµ we obtain

|H(x)|= µ{x} − d

dt
f(γ(t))

∣∣∣∣
t=0+

6 µ{x}.

(⊃) Let x ∈ B̄(a, ρ) such that |H(x)|6 µ{x}. For every geodesic γ : [0, 1]→ B̄(a, ρ) with
γ(0) = x and γ(1) = y, by the convexity of f , Proposition 2.1 and the Cauchy–Schwartz
inequality, we obtain

f(y)− f(x) >
d

dt
f(γ(t))

∣∣∣∣
t=0+

> |γ̇|(−|H(x)|+ µ{x}) > 0,

so that x ∈Mµ.

In order to describe the location of Mµ, we need the following geometric lemma which is
also useful in the next section.

https://doi.org/10.1112/S1461157020090531 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157020090531


RIEMANNIAN MEDIAN AND ITS ESTIMATION 465

Lemma 2.3. Let 4ABC be a geodesic triangle in B̄(a, ρ) such that ∠A> π/2, then
∠B < π/2 and ∠C < π/2.

Proof. We prove this for the case when ∆> 0. The proof for the case when ∆ 6 0 is similar.
It suffices to show that ∠B < π/2. Let d(B, C) = a1, d(C, A) = b1 and d(A, B) = c1. Consider a
comparison triangle 4ĀB̄C̄ of 4ABC in M2

∆. Since K 6 ∆ in B̄(a, ρ), Alexandrov’s theorem
yields that ∠A6 ∠Ā, ∠B 6 ∠B̄. By the following identity in M2

∆,

sin(
√

∆a1) cos ∠B̄ = cos(
√

∆b1) sin(
√

∆c1)− sin(
√

∆b1) cos(
√

∆c1) cos ∠Ā,

we obtain ∠B̄ < π/2 and this completes the proof.

Proposition 2.4. Mµ is contained in the smallest closed convex subset of B(a, ρ)
containing the support of µ.

Proof. Let V be this set. By Theorem 2.2 it suffices to show that if x ∈ B̄(a, ρ)\V then
H(x) 6= 0. In fact, let y be a point in V such that d(x, y) = inf{d(x, p) : p ∈ V }, then the
convexity of V yields ∠xyp> π/2 for every p ∈ V . Hence by Lemma 2.3 we obtain ∠pxy < π/2
and this gives that

〈H(x), exp−1
x y〉 =

∫
V

〈−exp−1
x p, exp−1

x y〉
d(x, p)

µ(dp)

= −d(x, y)
∫
V

cos ∠pxy µ(dp)< 0.

The proof is completed by observing that exp−1
x y 6= 0.

3. Uniqueness of the Riemannian median

In the Euclidean case, it is well known that if the sample points are not colinear, then the
geometric median is unique. Hence we obtain a natural condition for µ to ensure the uniqueness
for medians in the Riemannian case:

∗ The support of µ is not totally contained in any geodesic. This means that for every geodesic
γ : [0, 1]→ B̄(a, ρ), we have µ(γ[0, 1])< 1.

Before giving the uniqueness theorem for medians, we introduce a procedure for extending
geodesics in B̄(a, ρ). Let γ : [0, 1]→ B̄(a, ρ) be a geodesic such that γ(0) = x and γ(1) = y. By
the completeness of M and the fact that the diameter of B̄(a, ρ) equals 2ρ < inj(B̄(a, ρ)), we can
extend γ from its endpoint y, along the direction of γ̇(1), to the point ŷ where the extended
geodesic first hits the boundary of B̄(a, ρ). Similarly, we can also apply this procedure in
the opposite direction: extend γ from its starting point x, along the direction of −γ̇(0), to
the point x̂ where the extended geodesic firstly hits the boundary of B̄(a, ρ). Then we write
γ̂ : [0, 1]→ B̄(a, ρ), the geodesic such that γ̂(0) = x̂ and γ̂(1) = ŷ. Obviously, γ[0, 1]⊂ γ̂[0, 1].
Furthermore, the strong convexity of B(a, ρ) (see [11, Theorem 5.14]) yields γ̇nor

p (t) 6= 0 for
every p ∈ B̄(a, ρ)\γ̂[0, 1] and t ∈ [0, 1].

Theorem 3.1. If condition ∗ holds, then the median of µ is unique.

Proof. We will prove this by showing that f is strictly convex, that is, for every geodesic
γ : [0, 1]→ B̄(a, ρ), the function f ◦ γ is strictly convex. By the first estimation in Lemma 1.1,
for every p ∈ B̄(a, ρ)\γ̂[0, 1] the function t 7→ d(γ(t), p) is strictly convex, and for p ∈ γ̂[0, 1] it
is trivially convex. Since the condition ∗ yields that µ(B̄(a, ρ)\γ̂[0, 1])> 0, by integration we
obtain the strict convexity of f and the proof is completed.
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Remark 1. For the Riemannian barycenters of µ in B(a, ρ) to be unique, Kendall showed
that (see [21, Theorem 7.3] and [22]) the assumption

ρ <min
{

π

2
√

∆
, inj(a)

}
(3.1)

suffices (certainly, without condition ∗). Naturally, one may wonder that, under condition ∗,
whether the median of µ remains unique if condition (1.1) is replaced by the weaker one (3.1).
Unfortunately, this is not true. A counterexample may be found in [20], which shows that if
three points on the upper hemisphere S2

+ are symmetrically located in a circle which is parallel
and close to the equator, then there are at least three medians.

In the proof of Theorem 3.1, we have seen that f is strictly convex if condition ∗ holds.
However, under the same condition, we can show that f is in fact strongly convex (see [33,
Definition 6.1.1]). That is, there exits a constant τ > 0 such that for every geodesic γ : [0, 1]→
B̄(a, ρ), the following inequalities hold:

f(γ(t)) 6 (1− t)f(γ(0)) + tf(γ(1))− τ |γ̇|2(1− t)t, t ∈ [0, 1]. (3.2)

This is equivalent to saying that for every geodesic γ : [0, 1]→ B̄(a, ρ), the function t 7→
f(γ(t))− τ |γ̇|2t2 is convex on [0, 1]. To see this, we begin with an equivalent formulation
of condition ∗.

Lemma 3.2. Condition ∗ holds if and only if there exist two constants εµ > 0 and ηµ > 0,
such that for every geodesic γ : [0, 1]→ B̄(a, ρ), we have

µ(B(γ, εµ)) 6 1− ηµ,

where for ε > 0, B(γ, ε) = {x ∈ B̄(a, ρ) : d(x, γ[0, 1])< ε}.

Proof. We only have to show the necessity since the sufficiency is trivial. Assume that
this is not true, then for every ε > 0 and η > 0, there exists a geodesic γ : [0, 1]→ B̄(a, ρ)
such that µ(B(γ, ε))> 1− η. Then we obtain a sequence of geodesics (γn)n>1 : [0, 1]→ B̄(a, ρ)
verifying µ(B(γn, 1/n))> 1− 1/n. Since the sequence (γn(0), γ̇n(0))n is contained in the
compact set E = {(x, v) ∈ TM : x ∈ B̄(a, ρ), |v|6 2ρ}, there is a subsequence (γnk(0), γ̇nk(0))k
and a point (x, v) ∈ E, such that (γnk(0), γ̇nk(0))→ (x, v). Let γ be the geodesic starting
from x with velocity v, then by the classical theory of ordinary differential equations we
know that γnk → γ uniformly on [0, 1]. Particularly, γ[0, 1]⊂ B̄(a, ρ). Then for every j > 1,
B(γnk , 1/nk)⊂B(γ, 1/j) for sufficiently large k, hence µ(B(γ, 1/j)) > 1− 1/nk. By letting
k→∞ and then letting j→∞, we obtain µ(γ[0, 1]) = 1. This contradicts condition ∗.

The lemma below gives a basic angle estimation, which is also useful in the next section. In
the following, we write

σ = sup{d(p, a) : p ∈ supp µ}.

Note that σ < ρ, since the support of µ is contained in the open ball B(a, ρ).

Lemma 3.3. Let 4ABC be a geodesic triangle in B̄(a, ρ) such that A= a, B ∈ B̄(a, σ)
and C ∈ B̄(a, ρ)\B̄(a, σ), then

cos ∠C >
S∆(d(C, A)− σ)
S∆(d(C, A) + σ)

.

Proof. We prove this lemma for the case when ∆> 0. The proof for the case when ∆ 6 0
is similar. Let d(B, C) = a1, d(C, A) = b1 and d(A, B) = c1. Consider a comparison triangle
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4ĀB̄C̄ of4ABC in M2
∆. Since K 6 ∆ in B̄(a, ρ), Alexandrov’s theorem yields that ∠C 6 ∠C̄.

Hence, observing c1 6 σ and b1 − σ 6 a1 6 b1 + σ, we obtain

cos ∠C > cos ∠C̄ =
cos(
√

∆c1)− cos(
√

∆a1) cos(
√

∆b1)
sin(
√

∆a1) sin(
√

∆b1)

>
cos(
√

∆σ)− cos(
√

∆(b1 − σ)) cos(
√

∆b1)
sin(
√

∆(b1 + σ)) sin(
√

∆b1)

=
sin(
√

∆(b1 − σ))
sin(
√

∆(b1 + σ))
=
S∆(d(C, A)− σ)
S∆(d(C, A) + σ)

.

Lemma 3.4. Let 4ABC be a geodesic triangle in B̄(a, ρ) such that ∠A> π/2. Consider
a geodesic triangle 4A1B1C1 in M2

δ such that d̄(A1, C1) = d(A, C), d̄(A1, B1) = d(A, B) and
∠A1 = ∠A. Then sin ∠C > sin ∠C1.

Proof. We prove this for the case when δ > 0. The proof for the case when δ 6 0 is similar.
First, observe that by Lemma 2.3 we have ∠B < π/2 and ∠C < π/2. Let 4A2B2C2 be a
comparison triangle of 4ABC in M2

δ . Since K > δ in B̄(a, ρ), Toponogov’s theorem yields
that ∠A2 6 ∠A= ∠A1 and ∠B2 6 ∠B. Assume that d(B, C) = a2, d(A, C) = b2, d(A, B) = c2
and d̄(B1, C1) = a1. Since ∠A2 6 ∠A1, we have a2 6 a1. By the law of cosines in M2

δ we obtain

d

da1
cos ∠C1 =

d

da1

cos(
√
δc2)− cos(

√
δa1) cos(

√
δb2)

sin(
√
δb2) sin(

√
δa1)

=

√
δ(cos(

√
δb2)− cos(

√
δa1) cos(

√
δc2))

sin(
√
δb2) sin2(

√
δa1)

>

√
δ(cos(

√
δb2)− cos(

√
δa2) cos(

√
δc2))

sin(
√
δb2) sin2(

√
δa1)

=

√
δ sin(

√
δa2) sin(

√
δc2)

sin(
√
δb2) sin2(

√
δa1)

cos ∠B2 > 0

so that cos ∠C1 is non-decreasing with respect to a1 when a1 > a2. Hence, cos ∠C1 > cos ∠C2,
that is ∠C1 6 ∠C2. Then observing ∠C2 6 ∠C < π/2, we obtain sin ∠C > sin ∠C1. The proof
is complete.

The following lemma is important for giving a lower bound of the Hessian of the distance
function. Though the two estimations below are very simple, they are sufficient for our purposes.

Lemma 3.5. Let 4ABC be a geodesic triangle in B̄(a, ρ).
(i) If ∠A= π/2, then

sin ∠C > L1(ρ, δ)d(A, B),

where the constant

L1(ρ, δ) =


2
√
δ/π if δ > 0;

1/4ρ if δ = 0;√
−δ/sinh(4ρ

√
−δ) if δ < 0.

(ii) If A ∈ ∂B̄(a, ρ), B ∈ B̄(a, σ) and ∠A> π/2, then

sin ∠C > L(σ, ρ, δ,∆)d(A, B),
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where the constant

L(σ, ρ, δ,∆) = L1(ρ, δ)
S∆(ρ− σ)
S∆(ρ+ σ)

.

Proof. We prove this lemma for the case when δ > 0. The proof for the case when δ 6 0
is similar. Let 4A1B1C1 be as in Lemma 3.4, then sin ∠C > sin ∠C1. Let d̄(B1, C1) = a1 and
d(A, B) = c1, then the law of sines in M2

δ yields

sin ∠C1 =
sin(
√
δc1)

sin(
√
δa1)

sin ∠A>
2
√
δc1
π

sin ∠A,

since sin θ > 2θ/π for θ ∈ [0, π/2]. Hence the first estimation holds if ∠A= π/2. To show the
second estimation, by the convexity of B̄(a, ρ) we obtain

∠A6 ∠CAa+ ∠aAB <
π

2
+ ∠aAB.

Since ∠A> π/2, by Lemma 3.3,

sin ∠A> cos ∠aAB >
S∆(ρ− σ)
S∆(ρ+ σ)

.

The second estimation follows immediately and the proof is complete.

We know that f is convex, thus along every geodesic it has a second derivative in the sense
of distribution; the following proposition gives its specific form as well as the Taylor formulae.

Proposition 3.6. Let γ : [0, b]→ B̄(a, ρ) be a geodesic. Then for t0 ∈ [0, b) and t ∈ [t0, b],

f(γ(t)) = f(γ(t0)) +
d

ds
f(γ(s))

∣∣∣∣
s=t0+

(t− t0) +
∫
(t0,t)

(t− s)ν(ds) (3.3)

and for t0 ∈ (0, b] and t ∈ [0, t0],

f(γ(t)) = f(γ(t0)) +
d

ds
f(γ(s))

∣∣∣∣
s=t0−

(t− t0) +
∫
(t,t0)

(s− t)ν(ds),

with ν being the second derivative of f ◦ γ on (0, b) in the sense of distribution, which is a
bounded positive measure given by

ν =
(∫

M\γ[0,b]

Hess dp(γ̇, γ̇)µ(dp)
)
· λ|(0,b) + 2|γ̇| · (µ ◦ γ)|(0,b),

where λ|(0,b) and (µ ◦ γ)|(0,b) denote the restrictions of Lebesgue measure and the measure
µ ◦ γ on (0, b), respectively.

Proof. We shall only prove the first identity, since the proof of the second one is similar.
Observe that since γ is a homeomorphism of (0, b) onto its image, µ ◦ γ is a well-defined measure
on (0, b). By Taylor’s formula,∫

M\γ[0,b]

d(γ(t), p)µ(dp)

=
∫
M\γ[0,b]

(
d(γ(t0), p) +

d

ds
d(γ(s), p)

∣∣∣∣
s=t0

(t− t0) +
∫ t
t0

(t− s) d
2

ds2
d(γ(s), p) ds

)
µ(dp)
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=
∫
M\γ[0,b]

d(γ(t0), p)µ(dp) +
〈
γ̇(t0),

∫
M\γ[0,b]

−exp−1
γ(t0)p

d(γ(t0), p)
µ(dp)

〉
(t− t0)

+
∫ t
t0

(t− s) ds
∫
M\γ[0,b]

Hess dp(γ̇(s), γ̇(s))µ(dp).

It is easily seen that∫
M\γ[0,b]

d(γ(t0), p) = f(γ(t0))−
∫
γ[0,t0)

d(γ(t0), p)µ(dp)−
∫
γ(t0,b]

d(γ(t0), p)µ(dp),

and, by Proposition 2.1, that〈
γ̇(t0),

∫
M\γ[0,b]

−exp−1
γ(t0)p

d(γ(t0), p)
µ(dp)

〉

= 〈γ̇(t0), H(γ(t0))〉 −
〈
γ̇(t0),

∫
γ[0,t0)∪γ(t0,b]

−exp−1
γ(t0)p

d(γ(t0), p)
µ(dp)

〉
= 〈γ̇(t0), H(γ(t0))〉 − |γ̇|µ(γ[0, t0)) + |γ̇|µ(γ(t0, b])

=
d

ds
f(γ(s))

∣∣∣∣
s=t0+

− |γ̇|µ(γ[0, t0]) + |γ̇|µ(γ(t0, b]).

Since

f(γ(t)) =
∫
M\γ[0,b]

d(γ(t), p)µ(dp) +
∫
γ[0,b]

d(γ(t), p)µ(dp),

we obtain

f(γ(t))− f(γ(t0))− d

ds
f(γ(s))

∣∣∣∣
s=t0+

(t− t0)−
∫ t
t0

(t− s) ds
∫
M\γ[0,b]

Hess dp(γ̇(s), γ̇(s))µ(dp)

=−
∫
γ[0,t0)

d(γ(t0), p)µ(dp)−
∫
γ(t0,b]

d(γ(t0), p)µ(dp)− |γ̇|µ(γ[0, t0])(t− t0)

+ |γ̇|µ(γ(t0, b])(t− t0) +
∫
γ[0,b]

d(γ(t), p)µ(dp)

=
(
−

∫
γ[0,t0)

d(γ(t0), p)µ(dp)− |γ̇|µ(γ[0, t0))(t− t0) +
∫
γ[0,t0)

d(γ(t), p)µ(dp)
)

+
(
−

∫
γ(t0,b]

d(γ(t0), p)µ(dp) + |γ̇|µ(γ(t0, b])(t− t0) +
∫
γ(t0,b]

d(γ(t), p)µ(dp)
)

=
(
−

∫
γ[0,t0)

d(γ(t0), p)µ(dp)−
∫
γ[0,t0)

d(γ(t0), γ(t))µ(dp) +
∫
γ[0,t0)

d(γ(t), p)µ(dp)
)

+
(
−

∫
γ(t0,t)

d(γ(t0), p)µ(dp) +
∫
γ(t0,t)

d(γ(t0), γ(t))µ(dp) +
∫
γ(t0,t)

d(γ(t), p)µ(dp)
)

+
(
−

∫
γ[t,b]

d(γ(t0), p)µ(dp) +
∫
γ[t,b]

d(γ(t0), γ(t))µ(dp) +
∫
γ[t,b]

d(γ(t), p)µ(dp)
)

= 2
∫
γ(t0,t)

d(γ(t), p)µ(dp) = 2|γ̇|
∫
(t0,t)

(t− s)(µ ◦ γ)(ds).
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Hence (3.3) holds. To show that ν is the second derivative of f ◦ γ on (0, b) in the sense of
distribution, let ϕ ∈ C∞c (0, b) and choose t0 = 0 in (3.3), then Fubini’s theorem and integration
by parts yield∫

(0,b)

f(γ(t))ϕ′′(t) dt = f(γ(0))
∫
(0,b)

ϕ′′(t) dt+
d

ds
f(γ(s))

∣∣∣∣
s=0+

∫
(0,b)

tϕ′′(t) dt

+
∫
(0,b)

ϕ′′(t) dt
∫
(0,t)

(t− s)ν(ds)

=
∫
(0,b)

ν(ds)
∫
(s,b)

(t− s)ϕ′′(t) dt=
∫
(0,b)

ϕ(s)ν(ds).

The proof is complete.

Now we are ready to show that condition ∗ yields the strong convexity of f . Certainly, this
also gives a proof of the uniqueness of the median.

Theorem 3.7. If condition ∗ holds, then f is strongly convex. More precisely, (3.2) holds for
τ = (1/2)ε2

µηµD(ρ,∆)L(σ, ρ, δ,∆)2 > 0. Moreover, with this choice of τ , for every x ∈ B̄(a, ρ),

f(x) > f∗ + τd2(x, m),

where m is the unique median of µ.

Proof. Let γ : [0, 1]→ B̄(a, ρ) be a geodesic, then by the first estimation in Lemma 1.1 we
obtain that for every s ∈ [0, 1],∫

M\γ[0,1]

Hess dp(γ̇(s), γ̇(s))µ(dp) >
∫
B̄(a,σ)\B(γ̂,εµ)

D(ρ,∆)|γ̇nor
p (s)|2µ(dp)

= D(ρ,∆)|γ̇|2
∫
B̄(a,σ)\B(γ̂,εµ)

sin2 ∠(γ̇(s), exp−1
γ(s) p)µ(dp).

Then for every p ∈ B̄(a, σ)\B(γ̂, εµ), let q = q(p) be the metric projection of p onto γ̂[0, 1].
If q ∈ γ̂(0, 1) and γ(s) 6= q, then the geodesic triangle 4pqγ(s) is a right triangle with
∠pqγ(s) = π/2. Hence the first estimation in Lemma 3.5 yields that

sin ∠(γ̇(s), exp−1
γ(s) p) > L1(ρ, δ)d(p, q) > L1(ρ, δ)εµ.

If q ∈ {γ̂(0), γ̂(1)} and γ(s) 6= q, then ∠pqγ(s) > π/2. Hence by the second estimation in
Lemma 3.5,

sin ∠(γ̇(s), exp−1
γ(s) p) > L(σ, ρ, δ,∆)d(p, q) > L(σ, ρ, δ,∆)εµ.

Since L(σ, ρ, δ,∆)< L1(ρ, δ), we always have

sin ∠(γ̇(s), exp−1
γ(s) p) > L(σ, ρ, δ,∆)εµ.

Thus by Lemma 3.2 we obtain∫
M\γ[0,1]

Hess dp(γ̇(s), γ̇(s))µ(dp) > ε2
µηµD(ρ,∆)L(σ, ρ, δ,∆)2|γ̇|2 = 2τ |γ̇|2.
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Then for every t ∈ [0, 1) by Proposition 3.6,

f(γ(1)) = f(γ(t)) +
d

ds
f(γ(s))

∣∣∣∣
s=t+

(1− t) +
∫
(t,1)

(1− s)ν(ds)

> f(γ(t)) +
d

ds
f(γ(s))

∣∣∣∣
s=t+

(1− t) + 2τ |γ̇|2
∫
(t,1)

(1− s) ds

= f(γ(t)) +
d

ds
f(γ(s))

∣∣∣∣
s=t+

(1− t) + τ |γ̇|2(1− t)2. (3.4)

Similarly, for every t ∈ (0, 1],

f(γ(0)) > f(γ(t)) +
d

ds
f(γ(s))

∣∣∣∣
s=t−

(−t) + τ |γ̇|2t2. (3.5)

It follows by (3.4), (3.5) and Proposition 2.1 that for every t ∈ (0, 1),

f(γ(t)) 6 (1− t)f(γ(0)) + tf(γ(1))− τ |γ̇|2(1− t)t

−
(
d

ds
f(γ(s))

∣∣∣∣
s=t+

− d

ds
f(γ(s))

∣∣∣∣
s=t−

)
(1− t)t

6 (1− t)f(γ(0)) + tf(γ(1))− τ |γ̇|2(1− t)t.

The strong convexity of f is proved. To show the last inequality, let γ : [0, 1]→ B̄(a, ρ) be the
geodesic such that γ(0) =m and γ(1) = x. Then (3.4) yields

f(x) > f(m) +
d

ds
f(γ(s))

∣∣∣∣
s=0+

+ τ |γ̇|2 > f(m) + τ |γ̇|2 = f∗ + τd2(x, m).

The proof is complete.

4. A subgradient algorithm

To begin with, we recall the definition of the subgradient of a convex function on a Riemannian
manifold. For our purpose, it suffices to consider this notion in a convex subset of the
manifold.

Definition 2. Let U be a convex subset of M and let h be a convex function defined
on U . For every x ∈ U , a vector v ∈ TxM is called a subgradient of h at x if for every geodesic
γ : [0, b]→ U with γ(0) = x, we have

h(γ(t)) > h(x) + 〈γ̇(0), v〉t, t ∈ [0, b].

Our idea to approximate the median of µ by a subgradient method, stems from the following
simple observation.

Lemma 4.1. For every x ∈ B̄(a, ρ), H(x) is a subgradient of f at x.

Proof. Let γ : [0, b]→ B̄(a, ρ) be a geodesic such that γ(0) = x, then by Proposition 2.1,
together with the convexity of f , we get for every t ∈ [0, b] that

f(γ(t)) > f(γ(0)) +
d

ds
f(γ(s))

∣∣∣∣
s=0+

t

= f(x) + (〈γ̇(0), H(x)〉+ µ{x}|γ̇|)t
> f(x) + 〈γ̇(0), H(x)〉t.
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We proceed to give some notation which is necessary for introducing the subgradient
algorithm.

Notation. If x ∈ B̄(a, ρ) and H(x) 6= 0, then we write

γx(t) = expx

(
−t H(x)
|H(x)|

)
, t> 0.

rx = sup{t ∈ [0, 2ρ] : γx(t) ∈ B̄(a, ρ)}.

Note that for x ∈ B̄(a, ρ) such that H(x) 6= 0, by the convexity of B̄(a, ρ) and the fact that
2ρ < inj(B̄(a, ρ)), we have γx[0, rx]⊂ B̄(a, ρ).

The following simple lemma shows that every rx is strictly positive. More importantly, it
ensures theoretically the possibility of the choice of stepsizes in the convergence theorem of the
subgradient algorithm.

Lemma 4.2. The following estimation holds:

inf{rx : x ∈ B̄(a, ρ), H(x) 6= 0}> 0.

Proof. Since the support of µ is contained in B(a, ρ), for every x ∈ ∂B̄(a, ρ), H(x)
is transverse to ∂B̄(a, ρ) and hence rx > 0 for every x ∈ B̄(a, ρ) such that H(x) 6= 0.
Moreover, there exists ε > 0 such that supp(µ)⊂B(a, ρ− ε). Then for x ∈B(a, ρ− ε) such
that H(x) 6= 0 we have rx > ρ− d(x, a)> ε. On the other hand, since H is continuous on
B̄(a, ρ)\B(a, ρ− ε), rx vary continuously with x on this compact set. Thus there exists a point
x0 ∈ B̄(a, ρ)\B(a, ρ− ε) such that inf{rx : x ∈ B̄(a, ρ)\B(a, ρ− ε)}= rx0 . Hence we obtain
inf{rx : x ∈ B̄(a, ρ), H(x) 6= 0}> min{ε, rx0}> 0.

Now we introduce the subgradient algorithm to approximate the medians of the probability
measure µ.

Algorithm 1. Subgradient algorithm for Riemannian medians:
Step 1:
Choose a starting point x0 ∈ B̄(a, ρ) and let k = 0.
Step 2:
If H(xk) = 0, then xk ∈Mµ and stop. If not, then go to Step 3.
Step 3:
Choose a stepsize tk ∈ (0, rxk ] and let xk+1 = γxk(tk), then come back to Step 2 with k = k + 1.

Remark 2. It should be noted that, in the above algorithm, we have already restricted
every stepsize tk to be in the interval (0, rxk ]. From now on, we shall always make this restriction
implicitly to ensure that the sequence (xk)k will never get out of the ball B̄(a, ρ).

Now we turn to the convergence proof of the above algorithm under some further conditions
on the stepsizes. In Euclidean spaces, it is well known that the following type of inequalities
are of fundamental importance to conclude the convergence of subgradient algorithms (see, for
example, [12, 26]):

‖xk+1 − y‖2 6 ‖xk − y‖2 + αt2k + β
2tk
‖vk‖

(f(y)− f(xk)).

For a non-negatively curved Riemannian manifold, Ferreira and Oliveira obtained a
generalization of the above inequality in [14] by using Toponogov’s comparison theorem. But,
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their method is not applicable in our case since B̄(a, ρ) is not assumed to be non-negatively
curved. However, we can still obtain a similar result using a different method.

Lemma 4.3. Let (xk)k be the sequence generated by Algorithm 1. If H(xk) 6= 0, then for
every point y ∈ B̄(a, ρ),

d2(xk+1, y) 6 d2(xk, y) + C(ρ, δ)t2k +
2tk
|H(xk)|

(f(y)− f(xk)).

Particularly,

d2(xk+1,Mµ) 6 d2(xk,Mµ) + C(ρ, δ)t2k + 2tk(f∗ − f(xk)). (4.1)

Proof. By Taylor’s formula and the second estimation in Lemma 1.1, there exists ξ ∈ (0, tk)
such that

1
2
d2(xk+1, y) =

1
2
d2(γxk(tk), y)

=
1
2
d2(γxk(0), y) +

d

dt

[
1
2
d2(γxk(t), y)

]
t=0

tk +
1
2
d2

dt2

[
1
2
d2(γxk(t), y)

]
t=ξ

t2k

=
1
2
d2(xk, y) +

〈
γ̇xk(0), grad

1
2
d2
y(xk)

〉
tk +

1
2

Hess
1
2
d2
y(γ̇xk(ξ), γ̇xk(ξ))t2k

6
1
2
d2(xk, y) +

〈H(xk), exp−1
xk
y〉

|H(xk)|
tk +

C(ρ, δ)
2

t2k.

By Lemma 4.1, H(xk) is a subgradient of f at point xk and hence

〈H(xk), exp−1
xk
y〉6 f(y)− f(xk).

Consequently,

1
2
d2(xk+1, y) 6

1
2
d2(xk, y) +

tk
|H(xk)|

(f(y)− f(xk)) +
C(ρ, δ)

2
t2k,

and the first inequality holds. The second one follows from f∗ 6 f(xk) and |H(xk)|6 1.

As in the Euclidean case, once the fundamental inequality is established, the convergence of
the subgradient algorithm is soon achieved and the proof is elementary. Since the fundamental
inequality (4.1) in Lemma 4.3 is very similar to the Euclidean case, the proof of the following
convergence theorem is also very similar to that in the Euclidean case, hence we omit it and
refer to [12, 14, 26].

Theorem 4.4. If the stepsizes (tk)k verify

lim
k→∞

tk = 0 and

∞∑
k=0

tk = +∞,

then the sequence (xk)k generated by Algorithm 1 satisfies

lim
k→∞

d(xk,Mµ) = 0 and lim
k→∞

f(xk) = f∗.

Moreover, if the stepsizes (tk)k also verify

∞∑
k=0

t2k <+∞,

then there exists some m ∈Mµ such that xk→m.
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Now we consider the problem of the choice of stepsizes. By Lemma 4.2 we can choose (tk)k
that verifies the conditions of the preceding theorem and hence yields the desired convergence of
our algorithm. For example, we may take tk = rxk/(k + 1) for every k > 0. But the drawback is
that we do not know much about rxk . However, with further analysis we can obtain an explicit
lower bound for it.

Lemma 4.5. For every x ∈ B̄(a, ρ)\B̄(a, σ),

rx >
2d(x, a)S∆(d(x, a)− σ)
C(ρ, δ)S∆(d(x, a) + σ)

.

Proof. Since x ∈ B̄(a, ρ)\B̄(a, σ), we have H(x) 6= 0 and hence rx is well defined. Moreover,
the diameter of B̄(a, ρ) is 2ρ < inj(B̄(a, ρ)), thus the definition of rx yields that γx(rx) ∈
∂B̄(a, ρ). By Taylor’s formula and the second estimation in Lemma 1.1, there exists ξ ∈ (0, rx)
such that

1
2
ρ2 =

1
2
d2(γx(rx), a)

=
1
2
d2(x, a) +

d

dt

[
1
2
d2(γx(t), a)

]
t=0

rx +
1
2
d2

dt2

[
1
2
d2(γx(t), a)

]
t=ξ

r2
x

=
1
2
d2(x, a) +

〈
γ̇x(0), grad

1
2
d2
a(x)

〉
rx +

1
2

Hess
1
2
d2
a(γ̇x(ξ), γ̇x(ξ))r2

x

6
1
2
d2(x, a) +

〈H(x), exp−1
x a〉

|H(x)|
rx +

C(ρ, δ)
2

r2
x.

The Gauss lemma yields that 〈exp−1
x p, exp−1

x a〉> 0 for p ∈ supp µ, hence

〈H(x), exp−1
x a〉=−

∫
supp µ

〈exp−1
x p, exp−1

x a〉
d(x, p)

µ(dp)< 0.

Combine this with d(x, a) 6 ρ, C(ρ, δ)> 0 and rx > 0, we obtain that

rx >
1

C(ρ, δ)

{
−〈H(x), exp−1

x a〉
|H(x)|

+

√
〈H(x), exp−1

x a〉2
|H(x)|2

+ C(ρ, δ)(ρ2 − d2(x, a))
}

>
1

C(ρ, δ)

{
−〈H(x), exp−1

x a〉
|H(x)|

+
|〈H(x), exp−1

x a〉|
|H(x)|

}
=

−2
C(ρ, δ)

〈H(x), exp−1
x a〉

|H(x)|
>

−2
C(ρ, δ)

〈H(x), exp−1
x a〉

=
2

C(ρ, δ)

∫
supp µ

〈exp−1
x p, exp−1

x a〉
d(x, p)

µ(dp)

=
2d(x, a)
C(ρ, δ)

∫
supp µ

cos ∠pxaµ(dp).

Now it suffices to use Lemma 3.3 to obtain that for every p ∈ supp(µ),

cos ∠pxa>
S∆(d(x, a)− σ)
S∆(d(x, a) + σ)

.

We are ready to give the desired lower bound.
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Lemma 4.6. For every x ∈ B̄(a, ρ) such that H(x) 6= 0 we have

rx >
ρ− σ

C(ρ, δ)F (ρ,∆) + 1
,

where the constant F (ρ,∆) > 1 is given by

F (ρ,∆) =

{
1 if ∆ > 0;

cosh(2ρ
√
−∆) if ∆< 0.

Proof. We prove this for the case when ∆> 0. The proof for the cases when ∆ 6 0 is similar.
For every x ∈ B̄(a, ρ)\B̄(a, σ), by Lemma 4.5 we have

rx >
2d(x, a)
C(ρ, δ)

sin(
√

∆(d(x, a)− σ))
sin(
√

∆(d(x, a) + σ))
.

Note that 0<
√

∆(d(x, a)± σ)< 2ρ
√

∆< π/2 and that (sin u/sin v) > (u/v) for 0< u6 v 6
π/2, then we obtain

rx >
2d(x, a)
C(ρ, δ)

d(x, a)− σ
d(x, a) + σ

>
2d(x, a)
C(ρ, δ)

d(x, a)− σ
2d(x, a)

=
d(x, a)− σ
C(ρ, δ)

.

On the other hand, we always have rx > ρ− d(x, a) and hence

rx > max
{
ρ− d(x, a),

d(x, a)− σ
C(ρ, δ)

}
.

Observe that

min
{

max
{
ρ− d(x, a),

d(x, a)− σ
C(ρ, δ)

}
: σ < d(x, a) 6 ρ

}
=

ρ− σ
C(ρ, δ) + 1

,

then we obtain

rx >
ρ− σ

C(ρ, δ) + 1
.

Moreover, for every x ∈ B̄(a, σ) such that H(x) 6= 0,

rx > ρ− σ > ρ− σ
C(ρ, δ) + 1

.

The proof is complete.

Thanks to the above estimation, we get a practically useful version of Theorem 4.4.

Theorem 4.7. Let (ak)k be a sequence in (0, 1] such that

lim
k→∞

ak = 0 and

∞∑
k=0

ak = +∞.

Then we can choose

tk =
(ρ− σ)ak

C(ρ, δ)F (ρ,∆) + 1
in Algorithm 1 and, with this choice of stepsizes, the generated sequence (xk)k satisfies

lim
k→∞

d(xk,Mµ) = 0 and lim
k→∞

f(xk) = f∗.

Moreover, if (ak)k also verifies that
∞∑
k=0

a2
k <+∞,

then there exists some m ∈Mµ such that xk→m.
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Proof. This is a simple corollary to Lemma 4.6 and Theorem 4.4.

Now we turn to the questions of error estimates and the rate of convergence of the subgradient
algorithm under condition ∗.

Proposition 4.8. Let condition ∗ hold and let the stepsizes (tk)k satisfy

lim
k→∞

tk = 0 and

∞∑
k=0

tk = +∞.

Then there exists N ∈N, such that for every k >N ,

d2(xk, m) 6 bk,

where m is the unique median of µ and the sequence (bk)k>N is defined by

bN = (ρ+ σ)2 and bk+1 = (1− 2τtk)bk + C(ρ, δ)t2k, k >N,

which converges to 0 when k→∞. More explicitly, for every k >N ,

bk+1 = (ρ+ σ)2
k∏

i=N

(1− 2τti) + C(ρ, δ)
( k∑
j=N+1

t2j−1

k∏
i=j

(1− 2τti) + t2k

)
.

Proof. Since tk→ 0, there exists N ∈N such that for every k >N we have 2τtk < 1. By
Theorem 3.7,

f(xk)− f∗ > τd2(xk, m).

Combining this and Lemma 4.3 we obtain

d2(xk+1, m) 6 (1− 2τtk)d2(xk, m) + C(ρ, δ)t2k.

By Proposition 2.4, d2(xN , m) 6 (ρ+ σ)2 = bN . Then by induction it is easily seen that
d2(xk, m) 6 bk for every k >N . To prove bk→ 0, we first show

lim inf
k→∞

bk = 0.

If this is not true, then there exist N1 >N and η > 0 such that for every k >N1 we have bk > η
and C(ρ, δ)tk < τη. Thus

bk+1 = bk + tk(C(ρ, δ)tk − 2τbk) 6 bk − τηtk.

By summing the above inequalities we obtain

τη

k∑
i=N1

ti 6 bN1 − bk+1 6 bN1 ,

which contradicts
∑∞
k=0 tk = +∞ and the assertion is proved.

For every k >N , we consider the following two cases: if bk >C(ρ, δ)tk/(2τ), then

bk+1 < bk − 2τtk(C(ρ, δ)tk/(2τ)) + C(ρ, δ)t2k = bk;

and if bk 6 C(ρ, δ)tk/(2τ), then

bk+1 6 (1− 2τtk)C(ρ, δ)tk/(2τ) + C(ρ, δ)t2k = C(ρ, δ)tk/(2τ).

Hence we always have
bk+1 6 max{bk, C(ρ, δ)tk/(2τ)},

which yields by induction that for every n> k,

bn+1 6 max{bk, (C(ρ, δ)/(2τ)) max{tk, tk+1, . . . , tn}}.
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Then by taking the superior limit on the left-hand side and then the inferior limit on the
right-hand side we conclude that bk→ 0.

Finally, the explicit expressions of (bk)k are obtained by induction.

We proceed to show that if (tk)k is chosen to be the harmonic series, then the rate of
convergence of our algorithm is sublinear. To do this, we use the following lemma in [25].

Lemma 4.9. Let (uk)k>0 be a sequence of non-negative real numbers such that

uk+1 6

(
1− α

k + 1

)
uk +

ζ

(k + 1)2
,

where α and ζ are positive constants. Then

uk+1 6



1
(k + 2)α

(
u0 +

2αζ(2− α)
1− α

)
if 0< α < 1;

ζ(1 + ln(k + 1))
k + 1

if α= 1;

1
(α− 1)(k + 2)

(
ζ +

(α− 1)u0 − ζ
(k + 2)α−1

)
if α > 1.

Proposition 4.10. Let condition ∗ hold and we choose tk = r/(k + 1) for every k > 0 with
some constant r > 0, then

d2(xk+1, m) 6



1
(k + 2)α

(
(ρ+ σ)2 +

2αr2C(ρ, δ)(2− α)
1− α

)
if 0< α < 1;

r2C(ρ, δ)
k + 1

(1 + ln(k + 1)) if α= 1;

1
(α− 1)(k + 2)

(
r2C(ρ, δ) +

(α− 1)(ρ+ σ)2 − r2C(ρ, δ)
(k + 2)α−1

)
if α > 1,

where m is the unique median of µ and α= 2τr.

Proof. As in the proof of Proposition 4.8, we have for every k > 0,

d2(xk+1, m) 6

(
1− 2τr

k + 1

)
d2(xk, m) +

r2C(ρ, δ)
(k + 1)2

.

Then it suffices to use Lemma 4.9 with α= 2τr and ζ = r2C(ρ, δ) by observing that d(x0, m) 6
ρ+ σ.
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XXVIII, Lecture Notes in Mathematics 1583 (Springer, Berlin, 1994) 300–311.
4. M. Arnaudon, ‘Barycentres convexes et approximations des martingales dans les variétés’, Séminaire de
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Probabilités-XXV, Lecture Notes in Mathematics 1485 (Springer, Berlin, 1991) 220–233.

14. O. P. Ferreira and P. R. Oliveira, ‘Subgradient algorithm on Riemannian manifolds’, J. Optim. Theory
Appl. 97 (1998) no. 1, 93–104.

15. P. T. Fletcher and S. Joshi, ‘Principle geodesic analysis on symmetric spaces: statistics of diffusion
tensors’, Proceedings of ECCV Workshop on Computer Vision Approaches to Medical Image Analysis
(2004), 87–98.

16. P. T. Fletcher et al., ‘Statistics of shape via principle geodesic analysis on Lie groups’, Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (2003) 95–101.

17. P. T. Fletcher et al., ‘The geometric median on Riemannian manifolds with application to robust atlas
estimation’, NeuroImage 45 (2009) S143–S152.

18. J. Jost, Riemannian geometry and geometric analysis (Springer, Berlin, 2005).

19. H. Karcher, ‘Riemannian center of mass and mollifier smoothing’, Commun. Pure Appl. Math. xxx (1977)
509–541.

20. I. N. Katz and L. Cooper, ‘Optimal location on a sphere’, Comput Math. Appl. 6 (1980) 175–196.

21. W. S. Kendall, ‘Probability, convexity, and harmonic maps with small image I: uniqueness and fine
existence’, Proc. London Math. Soc. (3) 61 (1990) no. 2, 371–406.

22. W. S. Kendall, ‘Convexity and the hemisphere’, J. London Math. Soc. (2) 43 (1991) no. 3, 567–576.

23. H. W. Kuhn, ‘A note on Fermat’s problem’, Math. Program. 4 (1973) 98–107, North-Holland Publishing
Company.

24. H. Le, ‘Estimation of Riemannian barycentres’, LMS J. Comput. Math. 7 (2004) 193–200.

25. A. Nedic and D. P. Bertsekas, ‘Convergence rate of incremental subgradient algorithms’, Stochastic
optimization: algorithms and applications (eds S. Uryasev and P. M. Pardalos; Kluwer Academic
Publishers, Dordrecht, 2000) 263–304.

26. A. Nedic and D. P. Bertsekas, ‘Incremental subgradient methods for non-differentiable optimization’,
SIAM J. Optim. 12 (2001) no. 1, 109–138.

27. L. M. Jr. Ostresh, ‘On the convergence of a class of iterative methods for solving Weber location problem’,
Oper. Res. 26 (1978) no. 4, 597–609.

28. X. Pennec, ‘Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements’,
J. Math. Imaging Vision 25 (2006) 127–154.

29. J. Picard, ‘Barycentres et martingales sur une variété’, Ann. Inst. H. Poincaré Probab. Statist 30 (1994)
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