
DUAL TRIGONOMETRICAL SERIES
by C. J. TRANTER

(Received 19th September, 1958)

1. Introduction. In a recent joint paper with J. C. Cooke [1], we have given a method
of determining the coefficients an in the " dual " Fourier-Bessel series

00 ~|

£ o%anJv(anr) = F(r) "

•d)
JE^ anJ,(anr) = 0 (1< r < a),

where - 1 ^ p <: 1, F(r) is specified and an is a positive root of Jv(ana) = 0. This method
reduced the problem to the solution of an infinite set of algebraical equations and it was shown
that, under certain circumstances, numerical values for the coefficients could be obtained
fairly readily.

By modifying the analysis (originally due to Beltrami) which I used in discussing certain
dual integral equations [2], I have now found it possible to obtain closed expressions for the
coefficients an in equations (1) in the special cases v - ±\,p = ±1 . In these cases the Bessel
functions are replaced by sines or cosines and it seems natural to describe the problem of this
note as one in " dual " trigonometrical series although W. M. Shepherd [3], in a discussion of a
similar but more restricted problem, describes it as one in trigonometrical series with mixed
conditions.

The solution given is formal only and, beyond some obviously necessary conditions
implied by the analysis, no attempt has been made to assign precise conditions under which
the solution obtained is valid.

2. The case v = \, p = 1. On writing v - \, p = 1, a = TT/C, r = x/c, an = n^An and
F{r) = (2/TTX)1 cf(x), equations (1) become

.(2)
£ nAn sin nx = f(x) (0 < x < c),

n = l
00

£ An sin nx = 0 (c < x < 77),
n=l

and these are the basic dual trigonometrical series from which the coefficients An are to be
determined.

00

If V(x) is the value of £ An sin nx when 0 < x < c, the usual method of determining

the coefficients in a sine series gives

2 Cc

An = - V(x) sin nx dx (3)
"V 0

Guided by the analysis previously used to solve a pair of dual integral equations [2], we assume
D
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00

that X An sin nx is continuous at x = c and write
n - l

siniicoseo jc (*2 - Sin2

Substituting for V(x) from (4) in (3) and changing the order of integration, we obtain

2/"1 . . , fSsin-Vsinjc) sin na; sin ire .
0 J 0 (« - sin2 ix cosec2 fc)»

If we write sin \x = a sin |c, the integral in x in (5) becomes

77J 0

f • sin {2w sin"1 (a sin lc)} a sin2 f c ,
J { ( 2 2 ) ( l 2 i 2 i ) } i
f • s

J 0 {(s2 - a2)(l-a2sin2ic)}i
/*« a 2

= 4«sin3|c r-j j7iJ(l + w, 1 - n; | ; a2sin2jc)da (6)
J o(s ~ a /

and, using the value of the definite integral in (6) as given by Magnus and Oberhettinger
[4, p. 11], we can write equation (5) as

An = 2M sin3 \c \ F(1 + n, 1 - n; 2 ; s2 sin Ic)s2
x(s) cfe.

J 0
•(7)

The function x(s) bas now to be chosen so that An satisfies the first of equations (2).
Proceeding along the lines previously followed in solving dual integral equations [2], we
multiply the first of equations (1) by sin \x and integrate with respect to x between 0 and x.
When the substitution sin \x — p sin ic is made, this gives

V A r s i n ((2 ? t ~ ^sin-^psinlc)} sin{(2«. + ljsin-^psin §c)}~

(8)
where

I(P) = f
J

'2 sin"1 (p sin \c)
f(x) sin \x dx (9)

0

Expressing the sines as hypergeometric functions and using the first of Gauss's recursion
formulae [4, p. 9], we can write equation (8) in the form

(l + n, 1 - n; | ; P
2sin2|c) = f^} ( 0<p<l ) (10)

n=i *p sin 2°
Substituting for An from (7) and interchanging the order of integration and summation, we
obtain

where

^(s, p, c) = 2 n3F(l+n, l-n; 2 ; s2sin2 \c) F(l +n, 1 -n ; f; p2 sin2 \c) (12)

The value of Sx (s, p, c) can be found as follows. Since [5, p. 140]
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S n«F(l + n, 1 - n ; 2 ; ««sin«ie) J2n(z) = ^ M " ™ * ^ ( 1 3 )
tt n i 45 sin "̂ c

and [5, p. 401]

C° 4Vn3qin3 3>r\i
J o2-*J2n(2)Jf(2Psin|c)^ = | r S

2"
 2 j »F(1 +n, 1 - n; |;p»sin«ic) (14)

multiplication of (13) by z~lj&(zp sin \c), integration with respect to z between 0 and oo and
use of (12), (14) gives

Sl{s' p' C) = Ws{P
3 sfa' o l

Evaluating the infinite integral on the right of (15) [5, p. 401], we obtain

{p>s)] (16)
Substitution from equation (16) in equation (11) gives

This is Schlomilch's integral equation and its solution [6, p. 229] is given by

Use of equation (9) enables this to be written

()
 4

(

and equations (17) and (7) provide a complete solution of the problem.

3. Example 1. As an example take v = h, p = l,f(x) = sin a;. Equation (17) gives

4

and equation (7) leads to

An = 4w sin4 | c f ^(1 + n, 1 - w; 2 ; s2 sin2 Jc)s3 rfs
Jo

cJP(l + n;l - n; 3;sin2|c)

when the definite integral is evaluated [4, p. 11].
At the end of his paper, Shepherd [3] gives this example for the special case in which

c = In. For this value of c,

2An = lnF(l+n,l-n; 3; |)
= F(n,l-n; 2; $)-F(l+n, -»; 2; i),

and each of the hypergeometric functions can be expressed in terms of gamma functions
through the formula [7, p. 104]
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mmF(a, l _ a ; 6 ; J ) = 2 1 - ^

It is then easy to verify that the value of An is in agreement with that given by Shepherd.

4. The case i> = -\,p = \. Here the coefficients An have to be determined from the dual
cosine series

.(18)

2 (2m- l)4ncos|(2m - l)x=f(x) (0 < x < c),
n - l

OD

2 An cos \{2n - \)x = 0 (c <x < n),
71 = 1

and the solution is very similar to that given in § 2. V (x) is now the value of
00

2 An cos |(2m - \)x when 0 < x < c,

so that
An = - fV(z) cos|(2w - l)xda; (19)

•"V o
In place of (4), we now write

(20)2 - sin2|a;cosec4c)i

and, working as before, we find that equations (19) and (20) lead to

An = 2 s i n | c P F(ra, 1 - n; 1 ; s*sin*$c)x{s) <te (21)
J o

Integrating the first of equations (18) with respect to x between 0 and x, we obtain the
equation corresponding to equation (10), namely

£ (2n - l)iinJP(n, 1 - n ; | ; p 2 s i n 4 c ) = - ^ ) ( 0 < p < l ) , (22)
n=i &p sin ^c

where now
f2sin-1(f>sinle)

/ (p )= f(x)dx (23)
J o

Substitution for An from (21) in (22) gives

ft5^ 1), (24)
with

^ s K P. c) = S (2n - 1) 2f(m, 1 - » ; 1; s2 sin2 ^c) ^(TC, 1 - n : | ; p2 sin2 ^c). .. .(25)

n = l

The value of Z2 (s, p, c) can be found in a similar way to that of Z1 (s, p, c) and is
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From equations (24) and (26) it follows that

with solution

Using the value of l(p) given in (23), we obtain

in"1 (p sin Ac)} , .„_.

and equations (27) and (21) give the complete solution in this case.

5. The case v = \, p = - 1 . Writing v = \,p = - 1 , a = n/c, r = x/c, an = n^An and
cF(r) = (2lnx)if(x)> equations (1) become

£ — sin we = fix) (0 < x < c),l
n = l w

oo

2 An sin nx = 0 (c < a; < w), j

and these are the basic dual trigonometrical series from which the coefficients An are to be
determined.

00

If <J{X) is the value of £ An sin nx when 0 < x < c, it follows that

2 fc

^4n = - CT(X) sin wx dx (29)
77J o

In line with the analysis used in discussing the analogous dual integral equations [2], we express
a(x) in the form*

a(x) = 1(1) sin ^a; _ T1 £'(s) sin $xds
(1 - sin2 ix cosec2 £c)t J 8in Ja; cosec ic (s

2 - sin2 \x cosec2 ̂ c)*

Substituting for a(x) from (30) in (29) and changing the order of integration, we obtain

-A - ?l\\ f 8 ' " n X S m ^ X ^ X [*t'l\rl r28in~1(8SinJc) s inws in jxdx
2 " ~ U J o ( l - sin2^xcosec2|c)i ~ J o

 W Jo (s2 - sin^xcosec2|c)»"

If we write sin |a; = a sin \c and work as in equations (6) and (7), the integral in x on the
extreme right of (5) can be written

Tms2sin3%cF{l + n, 1 - n; 2 ; s 2 s in 2 | c ) (32)

*This form is suggested by the relations obtained by combining equations (21) and (24) of reference [2].
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The first integral in x on the right of (31) can be found by setting s = 1 in (32), so that equation
(31) gives

^ c o s e c H c = £(1)-F(1 +n,\ -n;2; sin8 Ac) - P s 2 f (s) F(l + n, 1 - n ; 2 ; s2 sin2 \c) ds.
2n " J o

(33)
Integrating by parts and using the relation [4, p. 10]

^ + n, 1 - n; 2 ; s2sin2|c)} = 2sF(l + n, 1 - n; I ; s2sin2A.c),

we can write equation (33) as

4^ cosec3ic = f«£(a) ^(-l + n, I - n; I; s2sinHc) ds
4w J o

the last step resulting from the transformation formula for the hypergeometric function

[4, p. 8].
The function f (s) has now to be chosen so that An satisfies the first of equations (28).

Writing sin \x = p sin \c and expressing the sine as a hypergeometric function, we can write
this equation as

S AnF(l + n, 1 - n; f; p2sin2Ac) = <f>(p) ( 0 < p < l ) , (35)
n=l

where
^

Substituting for An from (34) and interchanging the order of integration and summation, we
obtain

23{S' p' C)ds

where

^s(s. P, c) = S w ^ K 1 - n; 1 ; s2sin2ic)i1(l + n, 1 - »i; 3 ; p2sin2|c) (38)
ln = l

The value of Sa (s, p, c) can be found in a similar way to that used previously [equations
(13)-(16)] : it is

ro (p < s),
23(s, p, c) = < , ,

UP (p s ) c o s e c ^c \p>s)-)

Substitution for 23(s, p, c) from (39) in (37) now gives

This is Schlomilch's integral equation and, using the form of solution given by Copson [8], we
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have

oglo) L 1 ft
~\ n • * i — ~ cosec Me - j - ,
1 - s2 sin2 | c I (isj

By equation (36), this can be written

dP, (40)
- P 2 ) ( l - /

and the complete solution is given by equations (40) and (34).

6. The case v = - £, p = - 1. Here the coefficients An have to be determined from
the dual cosine series

.(41)

£ -^n c o s i(2« - l)a; = 0 (c < a;
n = l

and the solution again proceeds in a similar way. a(x) is now the value of
00

£ An cos |(2w - l)a; when 0 < x < c,

so that
An = -f<7(a;)cos!(2tt - l)xdx (42)

fj o

In place of (30), we now write

J(J) _ w _ f n*) ̂  (43)
(1 - sin2 Ja; cosec2 Jc)* J 8lnJ:ccosecl(; (s2 - sin2|a;cosec2ic)i'

and, working as before, we find that equations (42) and (43) lead to

hA,,cosec$c = g(l)F{n, 1 - n; 1; sin2|c) - [lg'(s)F(n,l -n; 1; s2sin2|c) ds (44)
J o

To enable the solution in this case to be reduced to that of Schlomilch's integral equation,
a slightly different procedure is now adopted. The first of equations (41) is differentiated with
respect to x before making the substitution sin \x = p sin fc. This leads to

P sin \c £ (2ra - 1) An F{n, 1 - n; f; p2 sin2 |c) = - 2/'{2 sin-1 (p sin £c)} (0 < p < 1). (45)
n = l

Substitution for An from (44) in (45) gives

f(l)2?,(l,P,c)- fVw^(*,P,c)«fa- - f { 2 8 i n l ( C i C ) }
 ( 0 < P < 1 ) (46)

where

1 - w ; l;s2sin2^c) JP(w, 1 - n; | ; p2sin2ic) (47)
n = l
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On using the value of Z2(s, p, c) given by equation (26), equation (46) can be written

, - r % r r d » = 2/'{2sin-i(PsiniC)}.

Again using the form of solution of Schlomilch's integral equation given by Copson [8], we
obtain

4 d fy/'{2sin-i(psin|c)}J

* (S> = n • ds J o W^TF P>

and hence

where C is a constant. This constant can be determined by substituting from (48) in (44) and
then choosing C so that the first of equations (41) is satisfied. Once C has been found in this
manner, equations (48) and (44) give the solution to this case.

7. Example 2. As a second example take v = - £ , p = - 1 , f(x) = constant =/(0).
In this case, f'(x) = 0 and equation (48) gives f (s) = C. Equation (44) gives

An = 2C sin \cF{n, 1-n; 1 ; sin2 \c)

= 2Csin |cPB_x(cose) (49)

when use is made of the expression for the Legendre polynomial as a hypergeometric function.
The first of equations (41) then yields, with x = 0,

in*c S P r l ( C ( * C ) =/(0) (50)
n=i zn - i

The sum of the series in equation (50) can be found as follows. Since

"-2 = (1 - 2A2cosc + A*)-*,
n=l

it follows that

» Pn-ttcOSC) f1 dh
»=i 2w - 1 J 0 ( l - 2A2cosc + A4)* l ;

By writing y = 2h/(l +hi), the integral on the right of equation (51) is easily transformed into
the integral

dy

and this is £i?(cos \c) in the usual notation of elliptic integrals. Equations (50), (51) now pro-
vide the value of the constant C and equation (49) gives

I am indebted to Professor J. C. Cooke for some very helpful conversations.
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