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SIMPLE EIGENVALUES AND BIFURCATION FOR A
MULTIPARAMETER PROBLEM

by D. F. McGHEE and M. H. SALLAM

(Received 5th June 1986)

1. Introduction

We are concerned with the problem of bifurcation of solutions of a non-linear
multiparameter problem at a simple eigenvalue of the linearised problem.

Let X and Y be real Banach spaces, and let A, Bh i=l,...,neB(X,Y). Let Jf:
R"xX->Y be a non-linear mapping. We consider the equation

= O (1.1)

where

£ (1.2)

and A=(A1,A2,...,An)6/?" is an n-tuple of spectral parameters.
Such non-linear multiparameters problems have been the subject of much recent work

(see e.g. [1, 2, 5]). The case n= 1 is covered by the work of Crandall and Rabinowitz [3].
However, for n> l , different definitions of the notion of a simple eigenvalue have been
given, and it is with this that we are mostly concerned.

In Section 2 we discuss different concepts of a simple eigenvalue of a multiparameter
operator (1.2) that have appeared in the literature. We propose a generalised definition
and give an illustrative example. Lemmas 2.5 and 2.6 are concerned with the nature of
the multiparameter simple eigenvalue and its associated eigenvector.

Section 3 considers the non-linear problem and the main result, Theorem 3.1, shows
the existence of non-trivial solutions of (1.1) bifurcating from simple eigenvalues of the
linearised operator (1.2) at points where the non-linear term satisfies some standard
conditions.

2. Definitions of a simple eigenvalue

Extensions to a multiparameter setting of the notion of a simple eigenvalue of a linear
operator have been made by various authors. Shearer [7] gives the following definition
of a simple eigenvalue of a two-parameter family of operators,

where geC(R2,B(X, Y)), r ^ l , the set of r times continuously (Frechet) differentiable
mappings of R2 into B(X, Y).
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78 D. F. McGHEE AND M. H. SALLAM

Definition 2.1. k° = (A?, k%) e R2 is called a simple eigenvalue for & if

(i) g(k°) e B(X, 7) is Fredholm with index zero and

dim N(g(k0)) =codim R(g(k0)) = 1;

(ii) there exists (<xuct2)eR2 such that

where x0 e N(g(k0)) and Dx.g denotes the Frechet derivative of g with respect to Ai;

/=1,2.

For g[k): = A-k1Bl-k1B2, A, Bu B2eB(X,Y) part (ii) of this definition reduces to
(ii)' there exists (<xua.2)eR2 such that

where x0 e N(A x - X°1B1 - X°2B2).

A natural extension of this definition to a linear n-parameter operator (1.2) is as
follows:

A° = (A?,...,An°)eK'1 is a simple eigenvalue of (1.2) if
(i) L{k°) is Fredholm with index zero and

dim N(L(A0)) = codim R(L(A0)) = 1;

(ii) there exists (a1;a2,...,ctn)eR" such that

where xoeN(L(;i0)).
However, Hale [5] (see also [2]) gives the following definition of a simple eigenvalue

of (1.2):

Definition 2.2. k° = (A?, k\,..., A?) e Rn is a simple eiganvalue of (1.2) if

(i) L{ko)eB(X, Y) is Fredholm with index 1 -n,

and

dim N(L(k0)) = 1, codim R(L(l0)) = n;

(ii) if Yo: = Span {B,x0, i = 1,. . . , n], where x0 e AA(L(A0)), then 7 = Yo 0 «(L(A0)).
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Remarks.

(1) If X= Y = R", then every linear operator L(A): /?"-•£" has index zero. Thus, in this
case, Hale's concept of a simple eigenvalue requires that « = 1 . This is rather
restrictive for finite dimensional problems.

(2) The rationale of Hale's definition is that simple eigenvalues are isolated points in
the parameter space, whereas Shearer's definition gives rise to curves in the
parameter space.

(3) In the literature use has been made of both definitions. For example, Zachman [9]
implicitly uses Definition 2.1, while Turyn [8] uses Definition 2.2.

Here we propose the following:

Definition 2.3. 1° = ($,...,X°)eR" is a generalised simple eigenvalue (G-simple
eigenvalue) of (1.2) if

(i) dim iV(L(A0)) = 1,0 < codim K(L(A0)) = m ̂  n;

(ii) BiX0#R(L{X0)), i=l,...,n, where x0eN(L(A0)) and

7 = span {BiXo, i = 1,...,n} 0 R(L{A0)).

This is exactly Definition 2.2 if m = n. On the other hand, although we allow
codim J?(L(vl0)) = 1 as in Definition 2.1, the direct sum in condition (ii) is stronger than
the condition required by Shearer. Further refinements in this area are presently being
pursued.

As a simple example of Definition 2.3 consider the following:

Example 2.4. Let X = R2, Y = R3,

A =

For A0=(0,0,0),

0

0

0

1

0

0
, «i =

0

1

0

0

0

0_

. B2 =

0

0

1

0

0

0_
, B 3 =

0

1

- 1

0

1

0_

B1e1 = E2:=(0,U0)T; B2e1 = £ 3 : = (0,0, l ) r , B3ei=E2-E3. It is easily seen that X° =
(0,0,0) is a G-simple eigenvalue of
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However, we should note that for k = (k1,k2,k3)eR3

L(k)x = 0,

x2 \0
0
0

-—*v — 0 2 — 2 — 2
'"'"''A 2 — vj A j — — A2 — A3.

Thus we have an eigencurve though A° = (0,0,0): the straight line At = — A2= -A3, and
each point on this line is a G-simple eigenvalue with the same eigenvector. In this sense
we have a G-simple eigencurve.

In general, if k°eR" is a G-simple eigenvalue of (1.2), then the cosetT: = k° + K, where
K is some well defined n — m dimensional subspace of R" will consist entirely of
eigenvalues with the same eigenvector: this follows from the implied linear dependence
of B,x0, i=l,...,n, where x0 e iV(L(A0)). To see this, we re-order the parameters so that
{Btx0, i=l,...,m} forms a basis for yo: = Span{B,xo, i=l,...,n}. Then X = XO@XU

X o : = JV(L(A0)) = span {x0}

Now

BjX0 =

y1; yi:=.R(L(A0)).

f° r some ai}, i = 1,...m, j = m+l,...n,

(2.1)

so that

where

>Ax0 - £ Ut)B,x0 = 0 t = (tm + u... tn) e R"
1

A(t) =

and

(2.2)

(2.3)

*j = (ttij, a2J,... amJ, 0 , . . . , 0 , - 1 , 0 , . . . , 0),

where — 1 appears in the jth position. The equation (2.2) shows that x0 is an
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eigenvector corresponding to the eigenvalue A(t) for all teR"~m. The set

81

(2.4)

is a coset as described above.
What is not claimed is that each point in F is a G-simple eigenvalue since the

dimension of the null space and the co-dimension of the range may vary, and further
property (ii) in Definition 2.3 may not be satisfied. The next two lemmas consider the
nature of eigenvalues of (1.2) close to the G-simple eigenvalue A0.

Lemma 2.5. Let X° be a G-simple eigenvalue of (1.2) with corresponding eigenvector
x0. Given e>0, there exists <5>0 such that, if keR" and x = xo + x1eX, xieX1(see (2.1))
satisfy

and

L(k)x =

then

(2.5)

Proof.

Since L(k°) is a bijection of Xy onto Yy: = R(L{X0)), there exists c > 0 such that

Therefore

Thus (2.5) hold for |A-A°|<<5: = ce/K(l
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We use the following notation introduced by Binding [1]:

for A = {X1,X2,...,XJeR"

Xm. = (X1,...,Xm)eRm, fim: = (Xm + l,...,kn)eRn-m,

so that

A = (Am)/iJ.

Lemma 2.6. Let X° be a G-simple eigenvalue of (1.2), and let F be defined by (2.3)-
(2.4). Then there exists a neighbourhood UcR" of X° such that TnU consists entirely of
G-simple eigenvalues of (1.2) with dimN(L(X))=l, codimK(L(A)) = mV;iernU, and U
contains no other eigenvalues of(\.2).

Proof. Consider the mapping ip:RmxR"'mxXl^Y defined by

*(Am,/illl,x1) = L(A)(xo + x1) (2.6)

where x0 is the eigenvector of (1.2) corresponding to A0. \jt is continuous and

Taking the Frechet derivative of (2.6) with respect to (Am,xx) we obtain

[(D(i..»l)MO°>0)](*lli,x1)= - I AA
i = l

and it follows that

is a linear homeomorphism. From the implicit function theorem (see e.g. [4]), there
exists a (5-neighbourhood VscR"~m of /*£ and unique continuous functions A*: Vs->Rm

and z*:Vi^X1 such that

and

i.e.

fim)) = 0Vfime Vb. It follows from the above discussion that
Vt) <=F and that z*(/iJ
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From stability theory for Fredholm operators (see [6]) it follows that for sufficiently
small |A-A°|, dim N(L(A)) gdim N(L(A0)) = 1, so that for sufficiently small 5

JV(L(A*(/iJ, / i j) = span {x0 + z*(//J} = span {x0}. (2.7)

Further by the stability of the index,

codim R(L(k*m(nm), / i j ) = codim K(L(A0)) = m V/im e Vt.

Now, define <p(X): RmxX1^-Y by

wherea=(a1 , . . . ,a je i?m.
By the definition of a G-simple eigenvalue, <$>(k°) is an isomorphism. Since </>(•) is

continuous, it follows that, for | JL—>L° | sufficiently small, 4>{k) is also an isomorphism, so
that

7 = R{L{k)) + span {B,x0, i = 1,..., m}

for | A-A01 sufficiently small. If, in addition (A*(/iJ, / i j e F, then codim K(L(A)) = m and

span {B;x0, i= 1,2,... ,m}.

It follows from (2.7) that, for U = {keR"\ \k-k°\ sufficiently small}, FnU consists
entirely of G-simple eigenvalues.

In addition, the uniqueness result of the implicit function theorem shows that there
exists e>0 such that, if

\Xm-k°m\<£, \\Xl\\<e, \fim-fio
m\<d

and

then

Finally, we must show that there is a neighbourhood of A° = (A°,/i°) which contains
no eigenvectors which cannot be written in the form xo + x1; XyeXv

Let Xo = (x0/||x0||), so that ||x(}|| = l. From Lemma 2.5, there exists A<min(£,(5) such
that, if A is an eigenvalue of (1.2) with |A — A°|<A and N(L(A)) = span

,x^ eXt, then
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Therefore, xo
o + (xJa)eN(L(X)), \km-k°m\<e, ||x,/a|| = £, and |fim-/i°|<<5, which together

with ij/(Xm,ftm,xJa) = O imply

3. Bifurcation at a (/-simple eigenvalue

Our main result is that given some standard conditions on the non-linear term in
(1.1), a G-simple eigenvalue of (1.2) is a bifurcation point for the non-linear problem.

Theorem 3.1. Let k°eR" be a G-simple eigenvalue of (1.2) and let Jr:R"y.X^Y
satisfy

Cl: jVeCr(R" x X, Y), the space of r-times continuously Frechet differentiable mappings,

C2: U )
C3: Dx^((Am, ,0,0) = 0.

Then (X0,Q)eR"xX is a bifurcation point for solutions of (I.I) and there exists a set of
solutions

{(i.,x) = ((X*{u,fim),fiJ,x*(u,/tm))\ue{-d,d)czR for some 6>0; |/*-/i°|<e/or some £>0}

where k*:Rx /?"~m->/?m and x*:Rx R"~m-^X are C'1 mappings.

Proof. The results follow by an application of the Liapunov-Schmidt method (see
[2]). Let Qo and Q^ be the projections of Y onto Yo and Yv respectively (see (2.1)). Then

M(l,x)=0 (3.1)

^>QlM{k,x) = Q and QoM(X,x) = 0, (3.2)

the so-called auxiliary equation and bifurcation equation respectively.
The auxiliary equation takes the form

liJ,xo + x1) = 0 (3.3)

where x = xo + xl, Xjel, i = 0,1.
Consider the mapping \p: Rm x R"~m x Xo x Xx -»Y^ defined by

(3.4)

Using C2 and C3 we obtain
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Since Q^L{k0) is a linear homeomorphism of Xt onto Yu it follows from the implicit
function theorem that there exists a neighbourhood UczRmxR"~mxX0 of (A°,JI°,O),

and a unique mapping :*eC(l/ ,X,) such that

and

) = 0

i.e.

Q,Uik)z*(km, /im, x0) + Q^{{km, ftm), x0 + z*(Am, iim, x0)) = 0. (3.5)

Since, from C2, the point (Am, jim, 0,0) satisfies (3.3) and, by the implicit function
theorem, z* is unique, it follows that

^m,0)eC/. (3.6)

Differentiation of (3.5) with respect to x0 and using C3 and (3.6) gives

Since for |Am-A°| sufficiently small Q J L ^ / I " ) is a homeomorphism of Xt onto Yt we
can conclude that

DXoz*(Am,/i°,0) = 0 for |Am-A°| sufficiently small.

This may require the neighbourhood U to be restricted.
Differentiating (3.6) repeatedly with respect to fim gives

Therefore z*eCr(U,X1) satisfies

(1) z*(Am)^,0) = 0,

(2) DXoz*(Am,/i°,0) = 0,

(3) D^z*(Xm, ̂ , 0 ) = 0,

and so by Taylor's theorem

(3.7)

as
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The bifurcation equation becomes

Z*(*m, fm, X0)) + <2o^Pm, ftj, *0 + Z*Um, Pm, X0)) = 0

i = l i = m + 1

+ QoJWiKo Pm), X0 + Z*(*-m, Mm, Xo)) = 0. (3.8)

Let xo = uxo, ||xo|| = l, ueR. Using the basis vectors B.-xg, i=l,...,m, the bifurcation
function

F = (Fl,F2,...,Fm):RmxR"-mxR->Rm

is defined by

f £ m) nm, u) BiX°0_f .I £

: = - u £ (A, - A?)B;x8 - « £ (A, - A?)B,
i = l «=m+l

It follows that

F(Am, /im) u) = - u( km - k°m) + G(Xm, fim, u)

where

DuG(*m,P°m,0)=0,

and

Thus we can write

where S e C'^R1" xR"~mxR, Rm), and the bifurcation equation reduces to

H( km, p m , u): = - (km - X°m) + Q{km, nm,«)=0 (3.9)
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where

5(CriS,0) = 0 and DjJK&l&O^O.

Therefore

H(k°m,ti,0) = 0 and DlmH(k°m,M°m,0)=-ldm,

where Idm denotes the identity mapping on Rm, and so by the implicit function theorem,
there exist a neighbourhood

V<=Rn-mxRof(nl,0) and a unique function kleCr-\V,Rm) such that

and

Thus (1.1) has a non-trivial solution ((A*, pm), x*) e R" x X given by

x* = uxg + z*(A*( ĵm, u), //„,, ux%)

for (|im, «) e V such that (A*(/im, u), fim, ux°0) e 17.

Acknowledgement. We are indebted to the referee for the suggestion of a significant
improvement to Lemma 2.6.
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