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ON THE EXPONENTIAL DIOPHANTINE EQUATION
(m2 + 1)x

+ (cm2 − 1)y
= (am)z
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Abstract

Let m, a, c be positive integers with a ≡ 3, 5 (mod 8). We show that when 1 + c = a2, the
exponential Diophantine equation (m2 + 1)x

+ (cm2 − 1)y
= (am)z has only the positive integer solution

(x, y, z) = (1, 1, 2) under the condition m ≡ ±1 (mod a), except for the case (m, a, c) = (1, 3, 8), where
there are only two solutions: (x, y, z) = (1, 1, 2), (5, 2, 4). In particular, when a = 3, the equation
(m2 + 1)x

+ (8m2 − 1)y
= (3m)z has only the positive integer solution (x, y, z) = (1, 1, 2), except if m = 1.

The proof is based on elementary methods and Baker’s method.

2010 Mathematics subject classification: primary 11D61.

Keywords and phrases: exponential Diophantine equation, integer solution, lower bound for linear forms
in two logarithms.

1. Introduction

Let a, b, c be fixed relatively prime positive integers greater than one. The exponential
Diophantine equation

ax + by = cz (1.1)

in positive integers x, y, z has been studied by a number of authors. In 1956,
Sierpiński [S] considered the case of (a, b, c) = (3, 4, 5), and showed that (x, y, z) =

(2, 2, 2) is the only solution. Jeśmanowicz [J] conjectured that if a, b, c are
Pythagorean numbers, that is, positive integers satisfying a2 + b2 = c2, then (1.1) has
only the solution (x, y, z) = (2, 2, 2). As an analogue of Jeśmanowicz’s conjecture, the
second author proposed that if a, b, c, p, q, r are fixed positive integers satisfying
ap + bq = cr with a, b, c, p, q, r ≥ 2 and gcd(a, b) = 1, then, apart from a handful of
exceptions, (1.1) has only the solution (x, y, z) = (p, q, r). This conjecture has been
proved to be true in many special cases (see [CD, Le, M1, M2, T1, T2]), but is still
unsolved in general.

In the other direction, many of the recent works on (1.1) concern the case where two
of a, b and c are congruent to ±1 modulo a (relatively) large divisor of the other one.
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For example, see [HT1, HT2, HY, MT, T3]. In this paper, we consider the exponential
Diophantine equation

(m2 + 1)x + (cm2 − 1)y = (am)z (1.2)

with m a positive integer. Our main result is the following theorem.

T 1.1. Let a be a positive integer with a ≡ 3, 5 (mod 8). Let c be a positive
integer with 1 + c = a2. Suppose that m ≡ ±1 (mod a). Then (1.2) has only the
positive integer solution (x, y, z) = (1, 1, 2), except for the case (m, a, c) = (1, 3, 8),
where the equation 2x + 7y = 3z has only the positive integer solution (x, y, z) =

(1, 1, 2), (5, 2, 4).

In particular, for a = 3, we can completely solve (1.2) without any assumption on m.
The proof is based on applying a result on linear forms in p-adic logarithms due to
Bugeaud [Bu] to (1.2) with m ≡ 0 (mod 3).

C 1.2. Let m be a positive integer. Then the equation

(m2 + 1)x + (8m2 − 1)y = (3m)z

has only the positive integer solution (x, y, z) = (1, 1, 2), except for the case m = 1,
where the equation 2x + 7y = 3z has only the positive integer solutions (x, y, z) =

(1, 1, 2), (5, 2, 4).

2. Preliminaries

In order to obtain an upper bound for a solution of Pillai’s equation Cz − By = A,
we need a lower bound for linear forms in two logarithms. Now we introduce some
notation. Let α1 and α2 be real algebraic numbers with |α1| ≥ 1 and |α2| ≥ 1. We
consider the linear form

Λ = b2 log α2 − b1 log α1,

where b1 and b2 are positive integers. As usual, the logarithmic height of an algebraic
number α of degree n is defined as

h(α) =
1
n

(
log |a0| +

n∑
j=1

log max{1, |α( j)|}

)
,

where a0 is the leading coefficient of the minimal polynomial of α (over Z) and
(α( j))1≤ j≤n are the conjugates of α. Let A1 and A2 be real numbers greater than one
with

log Ai ≥max
{
h(αi),

|logαi|

D
,

1
D

}
,

for i ∈ {1, 2}, where D is the degree of the number field Q(α1, α2) over Q. Define

b′ =
b1

D log A2
+

b2

D log A1
.

We choose to use a result due to Laurent [La, Corollary 2] with m = 10 and C2 = 25.2.
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P 2.1 (Laurent [La]). Let Λ be given as above, with α1 > 1 and α2 > 1.
Suppose that α1 and α2 are multiplicatively independent. Then

log |Λ| ≥ −25.2 D4
(
max

{
log b′ + 0.38,

10
D

})2

log A1 log A2.

Next, we shall quote a result on linear forms in p-adic logarithms due to
Bugeaud [Bu]. Here we consider the case where y1 = y2 = 1 in the notation of [Bu,
page 375].

Let p be an odd prime. Let a1 and a2 be nonzero integers prime to p. Let g be the
least positive integer such that

ordp(ag
1 − 1) ≥ 1, ordp(ag

2 − 1) ≥ 1,

where we denote the p-adic valuation by ordp( · ). Assume that there exists a real
number E such that

1
p − 1

< E ≤ ordp(ag
1 − 1).

We consider the integer
Λ = ab1

1 − ab2
2 ,

where b1 and b2 are positive integers. We let A1 and A2 be real numbers greater than
one with

log Ai ≥max{log |ai|, E log p} i = 1, 2,

and we put b′ = b1/log A2 + b2/log A1.

P 2.2 (Bugeaud [Bu]). With the above notation, if a1 and a2 are
multiplicatively independent, then we have the upper estimate

ordp(Λ) ≤
36.1g

E3(log p)4
(max{log b′ + log(E log p) + 0.4, 6E log p, 5}

)2 log A1 log A2.

3. Proof of Theorem 1.1

3.1. The case m = 1. We first show that when m = 1, (1.2) has only the positive
integer solution (x, y, z) = (1, 1, 2), except for the case (a, c) = (3, 8).

L 3.1. Let a be a positive integer with a ≡ 3, 5 (mod 8). The equation

2x + (a2 − 2)y = az (3.1)

has only the positive integer solution (x, y, z) = (1, 1, 2) except for the case a = 3,
where the equation 2x + 7y = 3z has only the positive integer solutions (x, y, z) =

(1, 1, 2), (5, 2, 4).

R 3.2. In 1958, Nagell [N2] showed that the equation

2x + 7y = 3z

has only the positive integer solutions (x, y, z) = (1, 1, 2), (5, 2, 4).

P. We use the following proposition to show our assertion.
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P 3.3.

(i) (Bennett [Be]) Let a and b be integers with a, b ≥ 2. Then the equation

ax − by = 2

has at most one solution in positive integers x and y.
(ii) (Nagell [N1]) The equation

x2 + 4 = yn

has only the positive integer solution (x, y, n) = (11, 5, 3) with y odd and n ≥ 3.

Let (x, y, z) be a solution of (3.1).

Case 1: x = 1. It follows from (i) in Proposition 3.3 that

az − (a2 − 2)y = 2

has only the positive integer solution y = 1, z = 2.

Case 2: x = 2. If a ≡ 3 (mod 8), then, from (3.1),

1 =

(
−1
a

)(
−2
a

)y

= (−1) · 1 = −1,

where (·/·) denotes the Jacobi symbol. This is impossible.
If a ≡ 5 (mod 8), then

4 + 7y ≡ 5z (mod 8).

Hence y is even and z is odd. It follows from (ii) in Proposition 3.3 that

((a2 − 2)y/2)2 + 4 = az

has no solutions y, z.

Case 3: x ≥ 3. Taking (3.1) modulo 8 implies that

7y ≡ 3z, 5z (mod 8),

so y and z are even, say y = 2Y and z = 2Z. Thus

(aZ + (a2 − 2)Y )(aZ − (a2 − 2)Y ) = 2x,

so
aZ + (a2 − 2)Y = 2x−1 and aZ − (a2 − 2)Y = 2.

Adding these yields
2x−2 + 1 = aZ .

If x = 3, 4, then the above equation has no solutions. Indeed,

a2 = (a2 − 2) + 2 ≤ (a2 − 2)Y + 2 = aZ = 2x−2 + 1 ≤ 5,
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which is impossible. If x ≥ 5, then 1 ≡ aZ (mod 8). Since a ≡ 3, 5 (mod 8), we see
that Z is even, say Z = 2Z1. Then

(aZ1 + 1)(aZ1 − 1) = 2x−2,

so
aZ1 + 1 = 2x−3 and aZ1 − 1 = 2.

We therefore obtain a = 3, Z1 = 1 and so x = 5, Y = 1. �

3.2. The case m ≥ 2. Let (x, y, z) be a solution of (1.2). By Lemma 3.1, we may
suppose that m ≥ 2. We examine parities of x, y, z. Using a ≡ 3, 5 (mod 8) and m ≡ ±1
(mod a), we show the following lemma.

L 3.4. If (x, y, z) is a solution of (1.2), then both x and y are odd, and z is even.

P. Let (x, y, z) be a solution of (1.2). Suppose that our conditions are all satisfied.
Now it follows from 1 + c = a2 that cm2 − 1 = (a2 − 1)m2 − 1 > am. Hence z ≥ 2

from (1.2). Taking (1.2) modulo m2 implies that 1 + (−1)y ≡ 0 (mod m2). Since m ≥ 2,
we see that y is odd. In view of 1 + c = a2 and m ≡ ±1 (mod a), (1.2) leads to

2x + (c − 1)y ≡ 2x − 2y ≡ 0 (mod a),

so (2/a)x = (2/a)y. Since (2/a) = −1, from a ≡ 3, 5 (mod 8), we have x ≡ y (mod 2).
Therefore, the fact that y is odd implies that x is odd.

We first show that (m/(cm2 − 1)) = 1 and (a/(cm2 − 1)) = −1. Note that cm2 − 1 ≡
−1 (mod 8). Write m = 2αt with α ≥ 0 and t odd. Then( m

cm2 − 1

)
=

( 2
cm2 − 1

)α( t
cm2 − 1

)
= 1 ·

( t
cm2 − 1

)
=

( t
cm2 − 1

)
= 1.

If a ≡ 3 (mod 8), then( a
cm2 − 1

)
= −

(cm2 − 1
a

)
= −

(c − 1
a

)
= −

(
−2
a

)
= (−1) · 1 = −1.

If a ≡ 5 (mod 8), then( a
cm2 − 1

)
=

(cm2 − 1
a

)
=

(c − 1
a

)
=

(
−2
a

)
= −1.

Therefore, ( am
cm2 − 1

)
=

( a
cm2 − 1

)( m
cm2 − 1

)
= (−1) · 1 = −1.

Since 1 + c = a2, ( m2 + 1
cm2 − 1

)
=

(m2 + cm2

cm2 − 1

)
=

( a2m2

cm2 − 1

)
= 1.

In view of these, we conclude that z is even from (1.2). �
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We can easily show that if m is even, then (1.2) has only the positive integer solution
(x, y, z) = (1, 1, 2) by taking (1.2) modulo m3.

L 3.5. If m is even, then (1.2) has only the positive integer solution (x, y, z) =

(1, 1, 2).

P. If z ≤ 2, then we obtain (x, y, z) = (1, 1, 2) from (1.2). Hence we may suppose
that z ≥ 3. It follows from Lemma 3.4 that x and y are odd.

Taking (1.2) modulo m3 implies that

1 + m2x − 1 + cm2y ≡ 0 (mod m3),

so
x + cy ≡ 0 (mod m),

which is impossible, since x is odd, c is even and m is even. This completes the proof
of Lemma 3.5. �

L 3.6. In (1.2), if m is odd then x = 1.

P. From Lemma 3.4, it follows that y is odd and z is even. Suppose that x ≥ 2.
Taking (1.2) modulo 4 implies that

3y ≡ (am)z ≡ 1 (mod 4).

This implies that y is even, which contradicts the fact that y is odd. We therefore obtain
x = 1. �

3.3. Pillai’s equation Cz − By = A. From Lemmas 3.4 and 3.6, it follows that x = 1
and y is odd. If y = 1, then we obtain z = 2 from (1.2). From now on, we may suppose
that y ≥ 3. Hence our theorem is reduced to solving Pillai’s equation

Cz − By = A (3.2)

with y ≥ 3, where A = m2 + 1, B = cm2 − 1 and C = am.
We now want to obtain a lower bound for y.

L 3.7. In (3.2), y ≥ (m2 − 1)/c.

P. Since y ≥ 3, (3.2) yields

(am)z = m2 + 1 + (cm2 − 1)y ≥ m2 + 1 + (cm2 − 1)3 > (am)3.

Hence z ≥ 4. Taking (3.2) modulo m4 implies that

m2 + 1 − 1 + cm2y ≡ 0 (mod m4),

so 1 + cy ≡ 0 (mod m2). Hence we obtain our assertion. �

We next want to obtain an upper bound for y.
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L 3.8. In (3.2), y < 2521 log C.

P. From (3.2), we now consider the following linear form in two logarithms:

Λ = z log C − y log B (>0).

Using the inequality log(1 + t) < t for t > 0,

0 < Λ = log
(Cz

By

)
= log

(
1 +

A
By

)
<

A
By
. (3.3)

Hence
log Λ < log A − y log B. (3.4)

On the other hand, we use Proposition 2.1 to obtain a lower bound for Λ. It follows
from Proposition 2.1 that

log Λ ≥ −25.2(max{log b′ + 0.38, 10})2 (log B) (log C), (3.5)

where b′ = y/log C + z/log B.
We note that By+1 >Cz. Indeed,

By+1 −Cz = B(Cz − A) −Cz = (B − 1)Cz − AB

≥ (cm2 − 2)(1 + c)m2 − (m2 + 1)(cm2 − 1) > 0.

Hence b′ < (2y + 1)/log C.
Put M = y/log C. Combining (3.4) and (3.5) leads to

y log B < log A + 25.2
(
max

{
log

(
2M +

1
log C

)
+ 0.38, 10

})2

(log B)(log C),

so

M < 1 + 25.2
(
max

{
log

(
2M +

1
2

)
+ 0.38, 10

})2

,

since log C = log(am) ≥ log 9 > 2 and A < B. We therefore obtain M < 2521. This
completes the proof of Lemma 3.8. �

We are now in a position to prove Theorem 1.1. Recall that A = m2 + 1, B =

(a2 − 1)m2 − 1 and C = am. Since A + B = C2 and z is even, (3.2) can be written as

(C2)Z − By = C2 − B

with z = 2Z. Then y ≥ Z. If y = Z, then we obtain y = Z = 1. If y > Z, then we consider
a ‘gap’ between the trivial solution (y, Z) = (1, 1) and (possibly) another solution
(y, Z), and show that making the ‘gap’ small leads to a contradiction. (See Bennett
[Be, page 901] and Terai [T2, page 21] for a ‘gap principle’ for solutions of Pillai’s
equation.) Since C2Z > By, it follows from Lemma 3.8 that

1 ≤ y − Z < y −
log B
log C2

y =
log(C2/B)

2 log C
y <

2521
2

log
(C2

B

)
.
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By definition of B and C,

C2

B
=

a2m2

(a2 − 1)m2 − 1
=

1
1 − (m2 + 1)/a2m2

.

Therefore α := 1 − (e2/2521)−1 < (m2 + 1)/a2m2. Since m ≥ 3, this yields

a2 <
1
α

(
1 +

1
m2

)
≤

1
α

(
1 +

1
9

)
= 1401.111.

Consequently, a ≤ 37.
It follows from Lemmas 3.7 and 3.8, together with a ≤ 37, that

m2 − 1 < 2521(a2 − 1) log(am) ≤ 3448728 log(37m).

Hence m ≤ 6538.
From (3.3), we have the inequality∣∣∣∣∣ log B

log C
−

z
y

∣∣∣∣∣ < A
yBy log C

,

which implies that |log B/log C − z/y| < 1/2y2, since y ≥ 3. Thus z/y is a convergent
in the simple continued fraction expansion to log B/log C.

On the other hand, if pr/qr is the rth such convergent, then∣∣∣∣∣ log B
log C

−
pr

qr

∣∣∣∣∣ > 1
(ar+1 + 2)q2

r
,

where ar+1 is the (r + 1)th partial quotient to log B/log C (see, for example,
Khinchin [K]). Put z/y = pr/qr. Note that qr ≤ y. It follows, then, that

ar+1 >
By log C

Ay
− 2 ≥

Bqr log C
Aqr

− 2. (3.6)

Finally, we checked by Magma [BC] that for each a ≤ 37 with a ≡ 3, 5 (mod 8), (3.6)
does not hold for any r with qr < 2521 log(am) in the range 3 ≤ m ≤ 6538. This
completes the proof of Theorem 1.1. �

4. Proof of Corollary 1.2

Let m be a positive integer. Let (x, y, z) be a positive solution of the Diophantine
equation

(m2 + 1)x + (8m2 − 1)y = (3m)z. (4.1)

By Theorem 1.1, we may assume m ≡ 0 (mod 3). Similarly to the proof of Lemma 3.4,
we can show that y is odd. Here, we apply Proposition 2.2. For this we set p := 3,
a1 := m2 + 1, a2 := 1 − 8m2, b1 := x, b2 := y, Λ := (m2 + 1)x − (1 − 8m2)y. Then we
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may take g = 1, E = 2, A1 = m2 + 1, A2 := 8m2 − 1. Hence

2z ≤
36.1

8(log 3)4
(max{log b′ + log(2 log 3) + 0.4, 12 log 3})2 log(m2 + 1) log(8m2 − 1),

where b′ := x/log (8m2 − 1) + y/log (m2 + 1). Suppose z ≥ 4. We will observe that this
leads to a contradiction. Taking (4.1) modulo m4, we find x + 8y ≡ 0 (mod m2). In
particular, we see M := max{x, y} ≥ m2/9. Therefore, since z ≥ M and b′ ≤ M/log m,

2M ≤
36.1

8(log 3)4

(
max

{
log

( M
log m

)
+ log(2 log 3) + 0.4, 12 log 3

})2

× log(m2 + 1) log(8m2 − 1).

(4.2)

If m ≥ 3450, then

2M ≤
36.1

8(log 3)4

(
log

( M
log m

)
+ log(2 log 3) + 0.4

)2

log(m2 + 1) log(8m2 − 1).

Since m2 ≤ 9M, the above inequality gives

2M ≤ 3.1(log M − log(log 3450) + 1.19)2 log(9M + 1) log(72M − 1).

We therefore obtain M ≤ 22486, which contradicts the fact that M ≥ m2/9 ≥ 1322500.
If m < 3450, then inequality (4.2) gives

2M ≤
649.8

(log 3)2
log(m2 + 1) log(8m2 − 1).

This implies m ≤ 693. Hence all x, y and z are also bounded. It is not hard to
verify by Magma [BC] that there is no (m, x, y, z) under consideration satisfying (4.1).
We conclude z ≤ 3. In this case, one can easily show that (x, y, z) = (1, 1, 2). This
completes the proof of Corollary 1.2. �

5. Concluding remarks

In Theorem 1.1, when 1 + c = a2 with a odd, we considered the equation

(m2 + 1)x + (cm2 − 1)y = (am)z.

The proof is based on the properties that m2 + 1 ≡ 2 (mod 8) with m odd and cm2 −

1 ≡ −1 (mod 8).
On the other hand, we cannot apply our method used in the proof of Theorem 1.1

to the equation
(cm2 + 1)x + (m2 − 1)y = (am)z, (5.1)
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since cm2 + 1 ≡ 1 (mod 8) and m2 − 1 ≡ 0 (mod 8) with m odd. But it would be
interesting to make the remark that (5.1) has (at least) two solutions (x, y, z) = (1, 1, 2)
and (2, 3, 4) for m and a satisfying

m2 − 2a2 = 1.

We can easily verify this. There are infinitely many m, a, since m, a are solutions of
the Pell equation t2 − 2u2 = 1. Similarly, when 2 + c = a2, the equation

(cm2 + 1)x + (2m2 − 1)y = (am)z (5.2)

also has (at least) two solutions (x, y, z) = (1, 1, 2) and (2, 3, 4) for m and a satisfying

a2 − 2m2 = −1.

There are infinitely many m, a, since m, a are solutions of the Pell equation
t2 − 2u2 = −1. Note that gcd(cm2 + 1, m2 − 1) = gcd(cm2 + 1, 2m2 − 1) = a2 (>1)
in (5.1) and (5.2). These give new (nontrivial) ‘counterexamples’ to the generalised
Jeśmanowicz’ conjecture (Terai’s conjecture), which states that if a, b, c, p, q, r
are fixed positive integers satisfying ap + bq = cr with min{a, b, c, p, q, r} ≥ 2 and
gcd(a, b) = 1, then the Diophantine equation

ax + by = cz

has only the positive integer solution (x, y, z) = (p, q, r), except for (a, b, c) = (2, 7, 3)
and (a, b, c) = (2, 2k − 1, 2k + 1), where k is a positive integer with k ≥ 2. (See [M1,
M2, T1, T2].) So far, the known ‘counterexamples’ with gcd(a, b) , 1 have been the
following:

2n + 2n = 2n+1 (with n ≥ 1),

3 + 6 = 32, 33 + 63 = 35.

References

[Be] M. A. Bennett, ‘On some exponential equations of S. S. Pillai’, Canad. J. Math. 53 (2001),
897–922.

[BC] W. Bosma and J. Cannon, ‘Handbook of Magma functions’, School of Mathematics and
Statistics, University of Sydney, available at http://magma.maths.usyd.edu.au/magma/.

[Bu] Y. Bugeaud, ‘Linear forms in p-adic logarithms and the Diophantine equation (xn − 1)/(x − 1) =

yq’, Math. Proc. Cambridge Philos. Soc. 127 (1999), 373–381.
[CD] Z. Cao and X. Dong, ‘An application of a lower bound for linear forms in two logarithms to the
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