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Abstract
Let m, a, ¢ be positive integers with a=3,5 (mod 8). We show that when 1+c¢= a?, the
exponential Diophantine equation (m? + 1)* + (¢cm? — 1)’ = (am)* has only the positive integer solution
(x,y,2) =(1,1,2) under the condition m = =1 (mod a), except for the case (m, a, c¢) = (1, 3, 8), where
there are only two solutions: (x,y,z)=(1,1,2), (5,2,4). In particular, when a =3, the equation
(m? + 1) + (8m? — 1)’ = (3m)* has only the positive integer solution (x, y, z) = (1, 1, 2), except if m = 1.
The proof is based on elementary methods and Baker’s method.
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1. Introduction

Let a, b, ¢ be fixed relatively prime positive integers greater than one. The exponential
Diophantine equation
a+b =c* (1.1)

in positive integers x, y, z has been studied by a number of authors. In 1956,
Sierpifiski [S] considered the case of (a, b, ¢) = (3,4, 5), and showed that (x,y, z) =
(2,2,2) is the only solution. JeSmanowicz [J] conjectured that if a,b,c are
Pythagorean numbers, that is, positive integers satisfying a®> + b> = ¢, then (1.1) has
only the solution (x, y, 7) = (2, 2, 2). As an analogue of JeSmanowicz’s conjecture, the
second author proposed that if a, b, ¢, p, g, r are fixed positive integers satisfying
a? +b?=c" with a, b, c, p,q,r 22 and gcd(a, b) = 1, then, apart from a handful of
exceptions, (1.1) has only the solution (x,y, z) = (p, g, r). This conjecture has been
proved to be true in many special cases (see [CD, Le, M1, M2, T1, T2]), but is still
unsolved in general.

In the other direction, many of the recent works on (1.1) concern the case where two
of a, b and ¢ are congruent to +1 modulo a (relatively) large divisor of the other one.
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For example, see [HT1, HT2, HY, MT, T3]. In this paper, we consider the exponential
Diophantine equation
(m* + 1)* + (cm* — 1Y = (am)* (1.2)

with m a positive integer. Our main result is the following theorem.

TueoreM 1.1. Let a be a positive integer with a =3, 5 (mod 8). Let ¢ be a positive
integer with 1+ c =a’. Suppose that m=+1 (mod a). Then (1.2) has only the
positive integer solution (x,y,z)=(1,1,2), except for the case (m,a,c)=(1,3,8),
where the equation 2°+7° =3% has only the positive integer solution (x,y,z)=
(1,1,2), (5,2,4).

In particular, for a = 3, we can completely solve (1.2) without any assumption on .
The proof is based on applying a result on linear forms in p-adic logarithms due to
Bugeaud [Bu] to (1.2) with m =0 (mod 3).

CoROLLARY 1.2. Let m be a positive integer. Then the equation
(m* + 1) + 8m* = 1) = 3m)*

has only the positive integer solution (x,y,z) = (1,1, 2), except for the case m =1,
where the equation 2* + 7" = 3% has only the positive integer solutions (x,y,z) =
(1, 1,2), (5,2, 4).

2. Preliminaries

In order to obtain an upper bound for a solution of Pillai’s equation C* — B = A,
we need a lower bound for linear forms in two logarithms. Now we introduce some
notation. Let a; and a, be real algebraic numbers with |a;|>1 and |y > 1. We
consider the linear form

A =bylog ay — by log ay,

where b; and b, are positive integers. As usual, the logarithmic height of an algebraic
number a of degree n is defined as

1 - .
(@) = ~(log laol + )", Tog max(1, o)),
n =

where aq is the leading coefficient of the minimal polynomial of a (over Z) and
(@'9)1<j<n are the conjugates of @. Let A; and A, be real numbers greater than one

with I 1
oga;
tog A; > max{h(a), ==t =1,
og max{ (a)) D 'D
for i € {1, 2}, where D is the degree of the number field Q(a, a;) over Q. Define
, by b,

b = + .
DlogA; DlogA,
We choose to use a result due to Laurent [La, Corollary 2] with m = 10 and C, = 25.2.
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Prorosition 2.1 (Laurent [La]). Let A be given as above, with a; > 1 and ap > 1.
Suppose that a; and ay are multiplicatively independent. Then

1012
log [A] > ~25.2 D4(max{1og b +0.38, 3}) log A; log As.

Next, we shall quote a result on linear forms in p-adic logarithms due to
Bugeaud [Bu]. Here we consider the case where y; =y, = 1 in the notation of [Bu,
page 375].

Let p be an odd prime. Let a; and a; be nonzero integers prime to p. Let g be the
least positive integer such that

ord,(af —1)>1, ordy(d5 -1)>1,
where we denote the p-adic valuation by ord,(-). Assume that there exists a real
number E such that 1
pTl <E< Ordp(a‘f - 1)
We consider the integer

_ b _ b
A—a1 a,,

where b; and b, are positive integers. We let A; and A, be real numbers greater than
one with
log A; > max{log|a;, Elog p} i=1,2,

and we put b’ = b;/log A, + by /log A;.

Prorosition 2.2 (Bugeaud [Bu]). With the above notation, if a; and a, are
multiplicatively independent, then we have the upper estimate

36.1g

m(max{log b’ + log(E log p) + 0.4, 6E log p, 5})2 log A; log A,.
ogp

ord,(A) <

3. Proof of Theorem 1.1

3.1. The case m =1. We first show that when m =1, (1.2) has only the positive
integer solution (x, y, z) = (1, 1, 2), except for the case (a, ¢) = (3, 8).

LemMmaA 3.1. Let a be a positive integer with a =3, 5 (mod 8). The equation
'+ (@ -2 = 3.1

has only the positive integer solution (x,y,z)= (1, 1,2) except for the case a =3,
where the equation 2° + 7 =3% has only the positive integer solutions (x,y,z) =
(1,1,2), (5,2,4).

RemArk 3.2. In 1958, Nagell [N2] showed that the equation
22X+ 7V =37
has only the positive integer solutions (x, y, z) = (1, 1, 2), (5,2, 4).

Proor. We use the following proposition to show our assertion.
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ProrosiTION 3.3.
(1) (Bennett [Be]) Let a and b be integers with a, b > 2. Then the equation

a-b=2

has at most one solution in positive integers x and y.
(i) (Nagell [N1]) The equation
¥ +4=y

has only the positive integer solution (x, y, n) = (11,5, 3) with y odd and n > 3.
Let (x, y, z) be a solution of (3.1).
Case I: x = 1. It follows from (i) in Proposition 3.3 that
a—(a* -2y =2
has only the positive integer solution y =1, z =2.

Case 2: x=2.If a=3 (mod 8), then, from (3.1),

R -

a

where (-/-) denotes the Jacobi symbol. This is impossible.
Ifa=5 (mod 8), then
4 + 7" =5% (mod 8).

Hence y is even and z is odd. It follows from (ii) in Proposition 3.3 that
(@ =2y +4=0a
has no solutions y, z.
Case 3: x > 3. Taking (3.1) modulo 8 implies that
7 =3% 5% (mod 8),
so y and z are even, say y = 2Y and z = 2Z. Thus
(@ + (@ -2 - (@ -2 =27,

SO
& +@-2'=2""" and &*-@*-2)¥=2.

Adding these yields
27+ 1=d"

If x = 3, 4, then the above equation has no solutions. Indeed,

A=@-2)+2<@-2)"+2=a*=2"2+1<5,
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which is impossible. If x> 5, then 1 =a” (mod 8). Since a=3,5 (mod 8), we see
that Z is even, say Z = 2Z;. Then

(@ + )(d - 1)=2"72,

SO
a® +1=2"3 and da» -1=2.
We therefore obtaina=3,Z; =1andsox=5,Y=1. O

3.2. The case m > 2. Let (x,y,z) be a solution of (1.2). By Lemma 3.1, we may
suppose that m > 2. We examine parities of x, y, z. Usinga =3,5 (mod 8) and m = +1
(mod a), we show the following lemma.

Lemma 3.4. If (x,, 2) is a solution of (1.2), then both x and y are odd, and 7 is even.

Proor. Let (x, y, z) be a solution of (1.2). Suppose that our conditions are all satisfied.

Now it follows from 1 + ¢ = a® that cm?> — 1 = (@> — 1)m*> — 1 > am. Hence z>2
from (1.2). Taking (1.2) modulo m? implies that 1 + (—1)* =0 (mod m?). Since m > 2,
we see that y is odd. In view of 1 + ¢ =a? and m = 1 (mod a), (1.2) leads to

2+ (c—-1Y=2"-2"=0 (mod a),

so (2/a)* = (2/a)y. Since (2/a) = —1, from a=3,5 (mod 8), we have x =y (mod 2).
Therefore, the fact that y is odd implies that x is odd.

We first show that (m/(cm? — 1)) = 1 and (a/(cm? — 1)) = —1. Note that cm?> — 1 =
—1 (mod 8). Write m = 2% with @ > 0 and ¢ odd. Then

(i) =) (=)= (=)= (=)=

If a =3 (mod 8), then

()= =)= D) = 1=,

Ifa=5 (mod 8), then
2 _ — —
(=)= () ()= (F) -

(cmim— l)z(cm;l— 1)(cm;n— 1): D-1=-L

Therefore,

Since 1 + ¢ = a2,

m? + 1 m? + cm? a*m?
(1)~ ) = ()
cm? -1 cm? — 1 cm? — 1
In view of these, we conclude that z is even from (1.2). O
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We can easily show that if m is even, then (1.2) has only the positive integer solution
(x,y,2) = (1, 1, 2) by taking (1.2) modulo m>.

Lemma 3.5. If m is even, then (1.2) has only the positive integer solution (x,y,7) =
(1,1,2).

Proor. If z <2, then we obtain (x, y, z) = (1, 1, 2) from (1.2). Hence we may suppose
that z > 3. It follows from Lemma 3.4 that x and y are odd.
Taking (1.2) modulo m? implies that

l+m’x—1+cem’y=0 (mod m?),

SO
x+cy=0 (mod m),

which is impossible, since x is odd, ¢ is even and m is even. This completes the proof
of Lemma 3.5. O

Lemma 3.6. In (1.2), if m is odd then x = 1.

Proor. From Lemma 3.4, it follows that y is odd and z is even. Suppose that x > 2.
Taking (1.2) modulo 4 implies that

3 =(@am)y=1 (mod 4).

This implies that y is even, which contradicts the fact that y is odd. We therefore obtain
x=1. m|

3.3. Pillai’s equation C* — B” = A. From Lemmas 3.4 and 3.6, it follows that x = 1
and y is odd. If y = 1, then we obtain z = 2 from (1.2). From now on, we may suppose
that y > 3. Hence our theorem is reduced to solving Pillai’s equation

C:-B=A (3.2)

withy23,whereA:m2 +1,B=cm?®-1and C = am.
We now want to obtain a lower bound for y.

Lemma 3.7. In (3.2), y > (m?> = 1)/c.
Proor. Since y > 3, (3.2) yields

(am) =m* + 1+ (cm® = 1Y >m? + 1 + (cm* = 1)* > (am)®.
Hence z > 4. Taking (3.2) modulo m* implies that
m?*+1—1+cm*y=0 (mod m*),

so 1+ cy=0 (mod m?). Hence we obtain our assertion. m|

We next want to obtain an upper bound for y.
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Lemma 3.8. In (3.2), y <2521 log C.

Proor. From (3.2), we now consider the following linear form in two logarithms:
A=zlogC—-ylogB (>0).

Using the inequality log(1 + ¢) < ¢ for ¢ > 0,

Z

C A A
0<A:10g(§):10g(1 n E)< = (3.3)
Hence
log A <log A —ylog B. (3.4)

On the other hand, we use Proposition 2.1 to obtain a lower bound for A. It follows
from Proposition 2.1 that

log A > —-25.2(max{log b’ + 0.38, 10})? (log B) (log €), (3.5)

where b’ = y/log C + z/log B.
We note that B! > C?. Indeed,

B! —C*=B(C:-A)-C*=(B-1)C* - AB
> (em?® = 2)(1 + o)m* = (m* + D(em® = 1) > 0.

Hence b’ < (2y + 1)/log C.
Put M = y/log C. Combining (3.4) and (3.5) leads to

] c) +0.38, 10})2(10g B)(log O),

ylog B<log A + 25.2(max{log(2M + I
0g

o)
1 2
M<1+ 25.2(max{log(2M ; 5) +0.38, 10}) :
since log C = log(am) >1og9 >?2 and A < B. We therefore obtain M <2521. This
completes the proof of Lemma 3.8. O

We are now in a position to prove Theorem 1.1. Recall that A=m?+ 1, B=
(@*> = )m?> — 1 and C = am. Since A + B = C? and z is even, (3.2) can be written as

(C?Y¥ -B'=C>-B

with z=2Z. Theny > Z. If y = Z, then we obtain y =Z = 1. If y > Z, then we consider
a ‘gap’ between the trivial solution (y,Z) =(1,1) and (possibly) another solution
(v, Z), and show that making the ‘gap’ small leads to a contradiction. (See Bennett
[Be, page 901] and Terai [T2, page 21] for a ‘gap principle’ for solutions of Pillai’s
equation.) Since C* > B, it follows from Lemma 3.8 that

1<y-Z<y-

log B log(C?/B) 2521 Cc?
y= y< log(—).
log C? 2log C 2 B
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By definition of B and C,

C? 3 a*m? 3 1
B (@-Dm2-1 1-—m?+1/a’m?

Therefore a := 1 — (€2/?221)~! < (m? + 1)/a’m?. Since m > 3, this yields

2 < 1(1 . L)g 1(1 + l): 1401.111.
a m?) T« 9

Consequently, a < 37.
It follows from Lemmas 3.7 and 3.8, together with a < 37, that

m? — 1 <2521(a® — 1) log(am) < 3448728 log(37m).

Hence m < 6538.
From (3.3), we have the inequality
logB z A
logC yl yBlogC’

which implies that [log B/log C — z/y| < 1/2y?, since y > 3. Thus z/y is a convergent
in the simple continued fraction expansion to log B/log C.
On the other hand, if p,/q, is the rth such convergent, then
1
(ar+l + 2)4% ’

logB  p:

logC ¢,

where a,;; is the (r+ 1)th partial quotient to log B/log C (see, for example,
Khinchin [K]). Put z/y = p,/q,. Note that ¢, <y. It follows, then, that

Y qr
B logC_ZZB logC_

2. 3.6
Ay Ag, (5.6)

aryl >
Finally, we checked by Magma [BC] that for each @ < 37 witha =3, 5 (mod 8), (3.6)
does not hold for any r with ¢, <2521 log(am) in the range 3 <m < 6538. This
completes the proof of Theorem 1.1. |

4. Proof of Corollary 1.2

Let m be a positive integer. Let (x, y, z) be a positive solution of the Diophantine
equation
(m* + 1) + (8m* — 1) = (3m)*. 4.1

By Theorem 1.1, we may assume m =0 (mod 3). Similarly to the proof of Lemma 3.4,
we can show that y is odd. Here, we apply Proposition 2.2. For this we set p := 3,
ay:=m*+1, ay:=1-8m?, by :=x, by =y, A= (m?® + 1)* = (1 — 8m?y. Then we
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may take g =1, E=2,A; = m?+ 1, A, ;= 8m* — 1. Hence
36.1 , ) ) )

27 < ——(max{log b" + log(2 log 3) + 0.4, 12 log 3})” log(m~ + 1) log(8m~ — 1),
8(log 3)*

where b’ := x/log (8m* — 1) + y/log (m* + 1). Suppose z > 4. We will observe that this
leads to a contradiction. Taking (4.1) modulo m*, we find x + 8y =0 (mod m?). In
particular, we see M := max({x, y} > m?/9. Therefore, since z > M and b’ < M/log m,

< 36.1 (ma {lo( M
———(max
~ 8(log 3)* g log m

x log(m? + 1) log(8m? — 1).

2
) +1og(2 log 3) + 0.4, 12 log 3})
“2)

If m > 3450, then

36.1 M 2 5 5
2M < 3(0g 3)° (log(log m) + log(2 log 3) + 0.4) log(m~ + 1) log(8m* — 1).

Since m? < 9M, the above inequality gives
2M < 3.1(log M — log(log 3450) + 1.19)? log(OM + 1) log(72M — 1).

We therefore obtain M < 22486, which contradicts the fact that M > m?/9 > 1322500.
If m < 3450, then inequality (4.2) gives

649.8
2M <

< g3y log(m® + 1) log(8m* — 1).

This implies m < 693. Hence all x,y and z are also bounded. It is not hard to
verify by Magma [BC] that there is no (m, x, y, z) under consideration satisfying (4.1).
We conclude z < 3. In this case, one can easily show that (x,y,z) =(1,1,2). This
completes the proof of Corollary 1.2. O

5. Concluding remarks

In Theorem 1.1, when 1 + ¢ = a? with a odd, we considered the equation
(m* + 1* + (cm? = 1) = (am)°.

The proof is based on the properties that m> + 1 =2 (mod 8) with m odd and cm? —
1=-1 (mod 8).

On the other hand, we cannot apply our method used in the proof of Theorem 1.1
to the equation

(cm? + D + (m? = 1) = (am)’, (5.1)
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since cm?>+1=1 (mod 8) and m*> — 1 =0 (mod 8) with m odd. But it would be
interesting to make the remark that (5.1) has (at least) two solutions (x, y, z) = (1, 1, 2)
and (2, 3, 4) for m and a satisfying

m?>—=24d> =1.

We can easily verify this. There are infinitely many m, a, since m, a are solutions of
the Pell equation > — 2u? = 1. Similarly, when 2 + ¢ = a?, the equation

(cm® + 1) + 2m? = 1) = (am)* (5.2)
also has (at least) two solutions (x, y, z) = (1, 1, 2) and (2, 3, 4) for m and a satisfying
a®-2m? =—1.

There are infinitely many m, a, since m, a are solutions of the Pell equation
> —2u?> = —1. Note that gcd(cm?® + 1, m*> — 1) = gcd(cm? + 1, 2m* — 1) =a*> (>1)
in (5.1) and (5.2). These give new (nontrivial) ‘counterexamples’ to the generalised
JesSmanowicz’ conjecture (Terai’s conjecture), which states that if a, b, ¢, p, g, r
are fixed positive integers satisfying a” + b? = ¢ with min{a, b, ¢, p, g, v} =2 and
gcd(a, b) = 1, then the Diophantine equation

a'+b =cf

has only the positive integer solution (x, y, z) = (p, g, r), except for (a, b, c) = (2,7, 3)
and (a,b,¢)=(2, 2¥—1, 2+ 1), where k is a positive integer with k > 2. (See [M1,
M2, T1, T2].) So far, the known ‘counterexamples’ with gcd(a, b) # 1 have been the
following:

2" 42" =21 (withn> 1),
3+6=3% 3°+6°=3%
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