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MODULAR DESCENT OF SIEGEL MODULAR FORMS

OF HALF INTEGRAL WEIGHT AND AN ANALOGY
OF THE MAASS RELATION

YOSHIO TANIGAWA

Introduction

In [8], H. Maass introduced the ‘Spezialschar’ which is now called the
Maass space. It is defined by the relation of the Fourier coefficients of
modular forms as follows. Let f be a Siegel modular form on Sp(2, Z) of
weight k, and let f(Z) = > a(T)e(tr TZ) be its Fourier expansion, where
e(z) = exp(27iz) for ze C. Then [ belongs to the Maass space if and

only if
n, L nm T
T2 d’ 2
(i) a = > d*'a
L dl(rz;gﬂ) r 1
2’ m 2d”’

In a series of papers [8]-[10], he studied the connection with Jacobi forms
of index 1 and the Dirichlet series of Andrianov type. In particular,
using the Hecke operators acting on Jacobi forms, he showed that there
is a lifting from the space of Jacobi forms of index 1 to the space of
Siegel modular forms on Sp(2, Z). (See also D. Zagier [13] and M. Eichler
and D. Zagier [2]).

On the other hand, Shimura’s theory of Hecke operators on modular
forms of half integral weight was generalized to Siegel modular forms by
S. Hayakawa, K. Tanaka, T. Hina, and T. Ibukiyama. In this paper, we
consider the forms of degree 2 and define an analogy of the Maass relation.

Let f be a Siegel modular form on I'®(N) of half integral weight k/2
and character X and let f(Z) = Y a(T)e(tr TZ) be its Fourier expansion.

We also write a(T) = a(n, r, m) for T = (;}2 7;{12) Then the analogy of the
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Maass relation can be written as

a(n, r, mp®) = a(np’, r, m)
10 (2) - () o 5
o3 o) . )

for any prime number p such that (p, N) =1. Here ¢, = 1if d = 1 (mod
4) and ¢, = i if d = 3 (mod 4). We consider two kinds of Dirichlet series,

namely
(>ii1) a(T[M])|det M|~*, where
Mexn
A = {Me M(Z)NGL(2, Q)|(det M, N) = 1}/GL(2, Z) ,
and
@iv) ST a(pP e for T#0 (mod p), d=0.
v=0

We will show that if f is a common eigenfunction of all the Hecke oper-
ators and f satisfies the Maass relation, the denominators of (iil) and (iv)
can be expressed by certain Dirichlet series of the form of integral weight
of one variable associated to f.

I would like to express my thanks to S. Hayakawa for the useful
discussion.

Notation and the definition of modular forms (G. Shimura [12], S.
Hayakawa [3]).

Let G™ be the symplectic group of degree n and let G™ be the
symplectic similitude group:

G™ = {a € GL(2n, R)|'ale = v(a)I, v(e)>0}

where ‘e 1s the transpose of « and I = (__(1) (1)">, 1, = the unit matrix
of order n. We denote the Siegel upper half plane by §™. The group
G™ acts on §™ by

«(Z) = (AZ + B)(CZ + D) for « =(21 g) cGm.
Furthermore we define the group g™ by
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g(n) = {S = (a” 90)

aeG™, ¢: non zero holomorphic function on §™
such that o(Z)* = tu(a) "*det(CZ + D) with teC, [t[zl}

with a law of multiplication as

(o, o(Z2))(B, ¥(Z)) = (B, o(B(ZI)NA(Z)) .

We denote the natural projection map by P: g™ — G™.
Let N be a positive integer divisible by 4. Put

T(N) = {(g g) e Sp(n, Z)|C = 0 (mod N)} ,

which is called the congruence subgroup of level N, degree n. We define
the theta series 6 by

02) = 3 o(1Z])

czZn

where e(2) = exp(2xiz). It is a holomorphic function on §™ and has the
following transformation formula;

0 2)) = J(e, 2)0(2)

J(e, Z) = (de_t 119> det(CZ + D)  for a — (g‘ g) e ().

J(a, Z) is called the theta-multiplier system. Let L be an imbedding of
I'{m(4) to g™ defined by
Lie) = (a, J(&, 2)).

We denote the image of I'{"(N) under L by A{"(N).

For any function f on )™ and any integer k, we define an action of
& = (a, ¢) by (fllE1)Z) = (Z) *f(«(Z)). It is easily seen that f|[§y]. =
(FIIE1D s

From now on, let 2 be an odd integer and X a Dirichlet character
modulo N.

DErFINITION. A holomorphic function f on §™ is called a Siegel mod-
ular form on I'{(N) of weight %/2 and character X if and only if

(1) fllél. = %(det D for any £ 4@, PO =(, p),
(ii) if n =1, f|[£], is bounded on {Ze§™|Im Z > ¢1,} for any

&£e P'(Sp(n, Z)) and any positive real number e.
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The space of all such forms is denoted by G, (I"{"(N), X). Furthermore
fe Gy(§*(N), x) is called a cusp form if

(i) o(f|[gly) = 0 for any & e P~'(Sp(n, 2)),

where @ is the Siegel operator. The space of all cusp forms is denoted
by SaI(N), 7).

We also use the following notation;
_ {1 if d =1 (mod 4)
U if d =3 (mod 4),
(—) = the Legendre symbol in the sense of G. Shimura [12],
vz =|z|"exp(}argz), with —r<argz<r,
Z"* = (v z) for any ke Z.

When n =1, we always omit the superscript (1). For matrices M and
L, M[L] = ‘LML.

§1. Jacobi forms of half integral weight

As above, let N be a positive integer divisible by 4, X a Dirichlet
character modulo N and % an odd positive integer. Let I'{?(IN) be a con-
gruence subgroup of level N, degree 2 and I'(IN) be an usual elliptic
congruence subgroup of level N. Let f be a Siegel modular form of degree
2 on I'®(IN) of weight k/2 and character X. f has a Fourier expansion

(L.1) f(2) = 3 a(T)e(tx TZ)

where T runs over the set 4, of half integral semi positive definite sym-

metric matrices. We also write a(T) = a(n, r, m) for T :( n 7 2) ed, If

ri2 m
Z = (; f,), then tr(TZ) = nt + rz + m7’. Therefore, rearranging the ex-
pansion (1.1) with respect to 7/, we get
12 F(2) = 3 b1z, 2)elm)
where
1.3) On.s(t, 2 = >, a(n,r, mle(nt + rz).
n=0

4mnzre

For any pair of rational integers 2, p, we put
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[1 0/0 4
A 1ljpg O
Ulw:‘_—*m'

Lo 1

This belongs to I'{?(IV), so we have
fU,L2)) = J(U,,., Z)'f(Z) = f(Z) .
This implies that

¢m,f(f’ 2z + 22‘ + #) = e(— m(/222' + 222))¢m,f(77 Z) .

On the other hand, for any 7 = (Z 3) e I'(N), we put
a 0/b O
0 10 0
M, =|————|,
c 0|d O
0 00 1

which also belongs to I'{?(IN). Then, by noting that

J(M,, Z) = (%)ed—wr 4,

we get

ar + b 2 >=7d<£> . ~Mk<mczzm>
¢m’f(cz'+d, C1_'+d "( ) d &g '\/CT'*‘de cf+d ¢m,f(z.92).

Now we set the following definition.

DEerFINITION 1. A holomorphic function ¢(z,2) on § X C is called a
Jacobi form on I'(N) of weight k/2, index m and character ¥ if it satisfies
the following conditions:

(i) ¢z, 2 + 2 + p) = e(— m(Xt + 242))4(z, 2) for any (4, p) € Z°,

P ar + b z _ (i _ mk( mcz? f
(ii) ¢<Cr+d’ c«:+d) x(d) d)Ed"«/Cf-i-de CT-|-d)¢(T’Z) or any

(¢ 3)eram,

(iii) for each o= (g g) e SL(2, Z), there is an integer d, such that the
function defined by
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. _ ar + b 2 ) ——g (_ mez* )
(5 2) ¢<cr+b’ cc+d Ver +d'e ct+d

has a Fourier expansion of the form

a’(n, r)e(nt + rz2).
n,re€ (l/tl;z)gZO,Mrl.n;T2
The space of all Jacobi forms is denoted by oy, .(I'(N),%). If ge
Jiem(L(N), X) satisfies the further condition:
@iv) a’(n,r) =0 if 4mn = r%,
it is called a (Jacobi’s) cusp form, and we denote the space of all cusp
forms by 3. (I(IV), X).

By the above argument we get the following proposition.

ProrosITION 1. Let f be a Siegel modular form on I'®(N) of weight
k/2 and character X. For each m=0, define a function ¢, ,(z,2) on HXC
by
B, (7, 2) = n§r a(n, r, m)e(nr + rz).

20,
dmnzre

Then ¢, [z, 2) is a Jacobi form on I'yN) of weight k/2, index m and
character X. Furthermore if f is a cusp form, then ¢, , is also a cusp form
for each m.

The condition (iii) or (iv) is clear by the definition of Siegel modular
forms.

§2. Transformation formula of c,(z)

We suppose that m is a positive integer. As is well known, a func-
tion satisfying (i) of the Definition 1, is a theta function. In fact, the
following theta functions

0,(z, 2) = 0, ((2mz, 2mz2)

@.1)
= S e(d + afme + 20 + @mz),  for ae L Zjz
iez 2m

form a basis of the space of such functions (cf. J. Igusa [6]). Therefore
we have

(2'2) ¢(7’ Z) = Z ca(T)@a(T9 Z)

ac€(1/2m)Z/Z

for any dJacobi form ¢(z, 2) € i n(I(IN), X). In particular, if ¢, ,(z, 2) is

https://doi.org/10.1017/50027763000000428 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000000428

SILGEL MODULAR FORMS 57

obtained from fe G, ([?(N), %) by Proposition 1, we have

2.3) O, (7, 2) = “e(wzm:)z/z ., (7)0,(z, 2)
with
(2.4) )= 3, alnr, m)e((n _ %)r)

4mn=r2
for & = r/2m.
We study the transformation formula of c,(r) under I'(N). It is also

well-known that there are constants u,:(¢) which do not depend on r and
z, and

@5 0. (ZE0 2 ) o TE e + A T un0)By(s )

cc+d cc+d +d
for any o= <? 3) e SL(2, Z). The matrix (u,,(s)) is unitary (cf. J. Igusa

6D).

LeEmMA 1. The functions c,(z) in (2.2) satisfy the following transforma-
tion formula:

@8 HD(L)ater + Do) = Tuoe, (L)

for any ¢ = (g 2) e I'(N).

Proof. It is easily proved by (ii) of Definition 1, (2.2) and (2.5).

By changing the variable, (2.6) is equivalent to

2.7) o 22 2) = @) (= )etter + DO Do hee)
LEMMA 2. Let o = ((1) _(1)) Then
Ugs(w) = 7;:’71: exp (— %)e(— 2maf).

Proof. We recall the well-known theta formula:
Se( 5+ 2 + wix + 8) = (— i) e~ 3 (w— 927 + x )
éiez \2 ez 2

for weC, xeR, and Zeh. We put x =a, Z= — 2m/r, and w = 2mz/r.
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Then the left hand side is equal to 0,(— 1/z, 2/z). On the other hand,
the right hand side is equal to

(i) () B (2 5 ).

2im Tt /] &z 4m

Put y = —&/2m. Then the above sum becomes
> e(2mzy + mey® — 2man)
7

= 3T e(2mz(f + 1) + mz(8 + 1)’ — 2ma(f + 1))

BeEW/2m)Z/Z,lEZ

= > e(—2map)Byr, 2).

Be1/2m)Z/Z

This completes the proof.

Lemma 3. The following formulas hold for c(z).
(1) c_.(2) = U= Defo),
(i1) c,(r + ble(a’mb) = c,(z) for any be Z,
(i) (Ve + D %ey(e) = 2 S"»ﬂ%(ﬁ)
where &, , = 1 e(— N7'm)e(2mi(f — «a)).

2m req/im)z/z

Proof. These formulas are derived from (2.6) by the concrete values

of uaﬂ«é I{)), U(— 1,) and u,, (G\T 2)) In fact, it is easily seen from

(2.1) that
ol )= e st

for be Z, and

a1 ifa=-—8
Hal 12)_{0 if @ — B

We get (i) and (ii) from these. In order to compute the value u,,(0),
o= GV (1)>, we note the decomposition of ¢: ¢ = w<_é _1¥>w. If we put

o = w(r), w= — 2/r, we get

1 w
ol v~ e o)
Nz+1 Nrc+1 7 —N —N
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— e<-T mi"ZN ) (& = N 5 (@9’ — N, w)

Il

(- ?('N%ﬁ)(“ T oN) Duwe(= Nrme(~ L, £)

- M) 2y
X 2 e(— Nrm)u(o)u._, )0z, 2).

By noting that (— 1/z — N)"*¢'* = i(N¢ + 1), we have
Upo) =1 Z e(— Ni'm)u(o)u_, (o)

— L So(— Nrm)e@mi(p — ).
2m 7
§ 3. Modular descent of Jacobi forms of index 1
Throughout this section we will consider the case m = 1. A Jacobi
form ¢ € Jy (I(IN), X) is expressed as
¢(Ta 2) = ¢(r)0(z, 2) + C12(7)0,)5(z, 2) .
THEOREM 1. Let the notation be as above. Let 2, be a character
_1\&-D
modulo N defined by X,(m) = X(m) (7 71>(k 1 /2. Then c,(z) is an elliptic modular
m
form on I'(N) of weight (k — 1)/2 and character X,. Furthermore if ¢(z, 2)
is a cusp form, cyr) is also a cusp form.

Proof. First we deal with the case N=4. We have §,=1,£,,,=0
where &, ; is defined in Lemma 3. Therefore, by the same Lemma, we

have

efr +1) = cc) and ¢ (4?1?) — (e + 1)*Drg (7).

It is well known that I"(4) is generated by <(1) }) and (i 2) Hence c¢,(z)

is a modular form on I'(4) of weight (¢ — 1)/2 and trivial character X,

Before proving the general case, we note the following remark. There
exists a Jacobi form such that c¢y(z) and c,(zr) are not identically zero. In
fact, let M be an even unimodular quadratic lattice of dimension 8 (cf. O.T.
O’Meara [11]) and let L = M | {(2). Then the theta series
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(D =92D) = 3 eLu@iPID)
Peis.az) \ 2
is contained in G, (I"$(4), %) and the Jacobi form of index 1 obtained from
f(Z) gives such an example, i.e. ¢, ;(z) and ¢, ;(r) are not identically zero.
By (2.7) and the fact just proved above, we have two relations of ¢, , and

Cipp,zt

€0 @) = (=€ ) ealer + D) o076, + o™i ()
¢o,1(0(2)) = (cr 4 d)*~ Ve, () ,

for any ¢ = <Z 3) € I'(4). But the u,(c7") are the quantities relating only

to the theta series and do not depend on a Jacobi form. Therefore we
have

(3.1) (78 )estoota™ = 1

u1/2,o(¢7‘1) =0.

Now let N, & and % be general. We have, by (2.7) and (3.1),

a( 250 = e + D).

Since (2.5) holds for any ¢ = (z 3

far + b 2 )———_k (_ cz? )
¢(cf+d’ cra/ve T\ -

) € SL(2, Z), we have

-7 cﬂ( ar + fi’\)(cf + ) U (06, 2).

ct +

Hence

2ia'(n, rje(ne +12) = 31(2] Ues(0)(C| [e)(2)O4(z, 2),

where (c,|[e])(z) = ca<ar ::__ 2) (ct 4+ d)~*-b2  Comparing the both sides of
cr

the above formula, we have
a’(n, r) =0 ifrez

and
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S uloe oD@ = 2 atn, me((n = 5 )e)

n>r2
for p=r/2. If we put (u,,(0))"' = (u.x(a)), then we get
1 2
oD@ = 33 Tuido)an ne((n—"1)e).,

dn—7r2z20

thus we obtain our assertion.
Next we consider the function c,.(z). Let I'(IV, M) be the subgroup

of I'(NN) defined by

I'(N, M) = {(‘c’ 2) e SL(2, Z)¢ = 0 (mod N), b = 0 (mod M)} .

LEmMma 4. Put 3 = <(1) i> and o, :(}1 (1)> Let p be an element of I'y(4)
and let

0 = niagts - pitayt, LymeZ

be its expression as the products of 3, and a,. Then p belongs to I'y(4,4)
if and only if

i’[i = 0 (mod 4).
i=1

The proof of this lemma is easy and we omit it here.

THEOREM 2. Let the notation and the assumptions be as in Theorem
1. Then c,(z) is an elliptic modular form on I'(N,4) of weight (k — 1)/2
and character X,.

This theorem is proved by the same way as Theorem 1.

20 [ e
ExampLE. Let £ = 3 and let A =( f 2b d) be an even ternary
e d 2

quadratic form. We also write A = [q, b, ¢, d, ¢, f] for simplicity. The
theta series corresponding to A is defined by

HZ;A)= 3 e<—;-tr(A[P]Z)> )

PEMs,2(2)

By Theorem 1, the descended form cy(z; A) belongs to G,(I'y(IV), (Z%dité»,

N = the level of A, and has a Fourier expansion
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o 4) = S 4{Pe Ma,z(Z)% A1 = (2 9)leno).

Let y(z) be the Dedekind eta function. Then we have
77(7)77(237) = % CO(T; [1’ 1, 69 07 - 1’ O]) - %CO(T; [1, 49 249 - 4, 0: 0])
1 . 1
+ —2" co(f, [1, 8’ 129 - 4a 0’ O]) - Z CO(T; [17 3, 185 - 2; 09 O])
- % efr; [1,2, 12, — 2, 0, 0]) ¢S, (r0(22.23), (:EE)) ,
72n(22) = a3 11,1, 11, 0,0, 0] - 1l2 ez [1,1,4,0,1, 1))
¢S, (ro(22.11), (:L)) ,
7](37)77(217) = % co(f; [17 17 16’ 0, - 1; 0]) - % CO(T; [19 4’ 43 - 1; 09 0])
1 . 1 R
+ ’4‘“ CO(T, [1, 4’ 16’ - 2’ 09 O]) - 'Z CO(Ty [19 49 64’ - 4’ O’ 0])
2 2 - 7
e 8, (r,,(z L8 7), (_))
7457(200) = - aiz: [1,1,20,0,0,0)] - —}1— ez; 11, 4, 5,0, 0, 0])
" — 5
e 5,(ry2"5), (=),
77(57)7](197:) = % CO(T; [1’ 13 249 0’ - 15 0]) - %‘ CO(T; [1, 41 6’ - 11 O: 0])
— + a5 [1,1,95,0,0,0) s, (519, (=2)),
7(62)7(187) = % ez [1, 1, 27,0, 0, 0]) — »}1- ez [1, 2,4, — 1,0, —1])

¢S, (ro(zz. 39), (;3)) ,

W(T2)7(17e) = % ez; (1,1, 30,0, — 1, 0]) — 71;: ez [1, 4,8, —3,0,0])

_ _}8_ co(z; [1, 1, 119, 0, 0, 0]) e, ( r(2.7.17), (— 119 )) ,
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2(82)7(162) = .é_c{,(f; 1,1, 32,0,0,0]) — _31_ ez [1, 4, 9, 4, 0, 0])
cs(ram, (-2).
290 n(157) = .}4. ees [L, 1, 34,0, — 1, 0]) — _}4— ee: 1L, 4,9, — 3, 0,0)
- _213_ efe: [1, 1, 135, 0, 0, 0]) e, (1“0(22-33-5), (:‘in)) ,
7(102)7(147) = _}8_ eiz; [1, 1, 35,0, 0, 0]) — _i_c(,(f; [1,3,4,31,1])
¢S, (r0(22.5.7), (:§_5—))

77(117)77(137) = _i‘ Co(f; [13 1’ 36: 03 - 1’ O]) - _}1_ CO(T; [13 4) 9’ - 19 0: 0])

_ % cfe; [1,1,143,0,0,0) €8, (1“0(22. 11.13), (— 143 )) ,
7(122)7(127) = % ez; 11, 1, 36,0, 0, 0]) — _i_ ele: [ 4,9, 0,0,0])

es, (r(,(zt %), 1) .
The above expressions are not unique.

§4. Review of Hecke operators

Let n be a positive integer. Let 4™ = A{(N) and 4™ the commen-
surator of 4™ in g®. We define two semigroups of 4™ by

S = {s = (&, 0) € I

o= (‘g g) e G™ N M,u(2),
C =0 (mod N), (), N) = 1}

S® = {& = (a, ¢) € 8{"|u(@) is square of some integer.}

Let k be an integer and £ eg™. Suppose we are given an operation
[€]. on a space of functions on §™ XC™ such that

f'[&’?]k = (fl[&]k)l[’?]k
fllA, o)l = ¢7*f .
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Let % be a Dirichlet character modulo N and let H, be a certain set of
functions on §™ xC™ such that

fllgl, = x(det D)f  for any &e 4™, P(g) = ( D)

For £eS{™ and fe H,, we set
4.1 flld™&4™],,, = (det P(£)*-+m72 57y (det A)f|[E]x

where {£,} is a set of representatives of 4™\4™EA™:
A *

AMEA™ = Ud™E,, P(E) = ( » )
* *

(4.1) is independent on the choice of the representatives &,.
We fix & = (o, ¢) € S{. There exists a homomorphism ¢, of I'{"(IN)N
a 'I'™(N)a into T = {z € C||z| = 1} such that

L(ara) = EL(NE'(1, (7)) -
Then, by S. Hayakawa [3], the following assertions hold.
(i) If ¢ is non-trivial on I'{"(N)Na ' ['{(N)e, then f|[4™E4™],,, = O for
any fe H,.
(ii) The Hecke algebra D(4™, S™) with respect to the Hecke pair
(4™, 8™) is commutative and D(4™, S™) = ®,,y D(4™, §%) where

g,(,") ={&=(a,0)eS®|2) =p™, m=0,12,--.}.

Furthermore if we put

(L, )
pl,.,
p’L;
pln—l
D(4™, 8™) is generated by T,, (0<i<n) and (1,,, 4™, (te T).
(iii) Let n = 2 and & an odd positive integer. We define an operation
[€]. on a space of functions on §™ by

(FIIE1NZ) = o(Z) *f((2)) .
and put H, = G,(I'®(N), X). For fe H,, we let
f(Z) = 3 a(T)e(tx TZ)

4.2) T3 = d™(ap 4, PP 4™ with «,, =

and
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(1T, XZ) = 22 a,,(T)e(tr TZ) .
Then @, (T) are given by
4.3) a,(T)

R 7[5 2)]) + 3 a(7|(®9)])+r@ptrrmac
- X(p)zp"*(a(T[%((l) 2)]) + Se;pza(T[%«)) ;)]))
where
%(p) = XUp)ei!
and
WT) — (—;—) if T is equivalent to <§) ?)) with ¢ € (Z/pZ)* over Z,|pZ,

0 otherwise .

(44) a,«T) = a(p’T)

e e (g @a(r|(g )]+ 2,8 (r]E )])=(71E )

+ XU p)p* 3G (det TYa(T)

+1eyp{ > “(T[% & ;)]) + se;/pez"(T[% )
Fa(rl50 )

+ x(p)%(p)p“’""“”Z{g(f')a(T[% ((1) 2)]) +&7(T) 2., a(T[?ly‘@ i)])}

+ X(p)'p*‘a (%2:— T)
t t t t t t
eiy)=E) e =2
t, & p g t, & p

G _[p—1 if t =0 (mod p)
S {—1 if t = 0 (mod p).

where

and

§5. Definition of the Maass relation

As before let & be an odd positive integer and m a positive integer.
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Let g = g™ and & = (a, ¢) an element of g with a = (g g) We put ¢ =

det &£ = det . We define an action [£],,, on a function ¢ on )X C by

o= (S L= 25%)

It can be easily checked that

el = @I[Ele)[7]eim

and
Sl Ol = @)% .

We put H, = Ji . (I'(N), %) this time. Note that ¢ e, .(I(N), X) satis-
fies

for any £e 4(N). As in (4.1), we define a function ¢|[4((IN)E4y(IN)], by

¢ [4(N)E4(N)], = (det §)*/ Z Ua)g|[6.]x,m
for a double coset 4(N)e4(N) = U4(N)E,, P(&) = (ay :)
By (1.4) of G. Shimura [12], we have

$I[4(N)§4(N)]o = 0

if det& is not a square, i.e. £€S, — S. Finally we define the Hecke
operator on o, .(I"(N), X) by

B A(N)EL(N)(z, 2) = (BIANELDN]N(Es v £ 2)

PrOPOSITION 2. Let & be an element of S and £ = det&. Then the
Hecke operator [4(IN)é4(N)] is a linear mapping from J, . (C(N), X) to
Sesa,mlLo(N), X).

It is easy to prove this by direct calculations.

Let fe G, (I"®(N), X) be a Siegel modular form and ¢, ,(z, 2) the Jacobi
form of index m obtained from f by Proposition 1. We set the following
definition.

DEerFINITION 2. Let p be a prime number such that (p, N) = 1. Put

2= (6 2
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v )

A Siegel modular form f is said to satisfy the Maass relation for p if and

and

only if
Buras = B [1AOIEAM] = &7 (T2) 2 LAY, ()]
(5.1) p
- p2¢m/p2,fl [AO(N)%AO(N)P
for any m.

We regard that if m is not an integer, ¢, (z, 2) is identically zero.

For later use, we rewrite (5.1) by the Fourier coefficients of f. As is
well known, a complete set of representatives of A(N)\Ay(N)E,4y(N) is
given by

af = ((1 22>’ p’”) 0=b<p?,

t=((5 1) o(3))  o<rep,
0 p p

(cf. G. Shimura [12]). By Proposition 1, ¢, (z, 2) has a Fourier expansion

b, (7, 2) = ZOJ a(n, r,me(ne + rz).

720,
nmzr2

Therefore, by the definition of Hecke operators, we obtain
(¢m,f] [AO(N)SpAO(N)])(Ti Z)
_ pk/Z—Z{p-—k/ZZ ¢m,f(T ; Q,,’ Z) + x(p) Z¢m"f(f + ﬁ,pz> (_Zl,>
g p R p p

+ XUP)P* P, s (PPz, pZZ)} .

By an elementary calculation and the classical knowledge on the Gauss

2005 =)
<p \ p D D

sum:

we have
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(fn, [N, 4(N))(z, 2)
= > a(np’, r, mle(nc + rz)

n,7
dnpm=7r2

+ 1) 3 (2 )atn, r, mhe(nz + 1p2)
n p

s
dnmz=7r?

+ Up)’p** 25 aln, r, me(np’c + rp°z) .

n,T
dnmzr2

On the other hand, we can easily see that

(@, AN ANz, 2) = p**~1(p) 25 aln, r, mie(nz + 1p2) .

)
mm=1re

Hence the Maass relation (5.1) is equivalent to

a(n, r, mp?) = a(np’, r, m) + X(p)e’;”p""'"”z«ﬁ) - (in—»a(n L, m)
P P p

+ X(p)zp’“‘z(a(—n;, ., m) —~ a<n, S ﬂz))
2 P’ p

In particular, if p divides n and m, then

(5.2)

a(n, r, mp?) — X(p)zp““za(iz, L, m)
P’ p
(5.3)

= a(np®, v, m) — %(p)zpk'2a<n, I, —”i>

And if p does not divide m, then

a(n, r, mp*) = a(np®, r, m) + X(p)e;‘,“p("‘”/?((_g_) — <.’.n_>)a<n, r m)

(5.4) P

+ XUp)p**a (% I m)

2’p2

It can be shown by using the formula of local densities of quadratic
forms that the Eisenstein series satisfies the above Maass relation (Y.

Kitaoka [7]).
§ 6. Dirichlet series

In this section we consider two kinds of Dirichlet series as stated in

the introduction. We always assume that p is a prime number such that
(p,N) =1
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THEOREM 3. Let f be a Siegel modular form on I'{)(N) of weight k/2
and character X, and let

$1,5(z, 2) = o, ()02, 2) + Cipo, ;(2)Oyi(x, 2)
be the Jacobi form of index 1 obtained from f. Put

Co, /(1) = g{‘)?’(n)e(nr) .

Suppose that [ is an eigenform of T,, with an eigenvalue A(p) and satis-
fies the Maass relation for p. Then we have

(6.1)  w(P)(n) = 1(p?) + AUD)eL"pE " (h(n) — 1)(n) + X(p)ﬁo“r(_@

where
X(p)~'p*

(6.2 = M8 A

) o(p) i) (p)
and

0 ifpin
6.3 h =
(6:3) () {1 if pin.
Proof. By assumption, f|T,, = 4,(p)f. If we put T = (3 (1)> in (4.3),

we have

Ap)~'p* ¥4 (p)a(n, 0, 1)
(6.4) =a(n,0,p") + > a(np’, 2nps, ns* + 1) + AUp)ek~'p*~"h,(n)a(n, 0, 1)
SEZ/pZ

2
+1op (a2, 0,1) + 5 afn, 208, 1 EL)),
p s€Z/pZ D p

We note that a(n, 2ns/p, (ns* + 1)/p*) = 0 for all se€ Z/pZ. Let us consider
the second term of the right hand side. When n is prime to p, we have,
by (5.4),

a(np?, 2nps, ns* + 1) = a(ns* + 1, 2nps, np?)
= a((ns* + 1)p*, 2nps, n)

(6.5) + X(p)ef,‘lp"“a)”«w) — (ﬁi»a(ns2 + 1, 2ns, n)
p p
+ Up)p*-a ({nsz j— 1, 2ns , n)
D

= a(n, 0,p%) + X(p)eﬁ"p(’”'”“((ﬁfi;f}) - (%))a(n’ 0,1).
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On the other hand, when p divides n, we regard ns* + 1 as m in (5.4) to
obtain

a(np?, 2nps, ns* + 1)
= a(n, 2nps, (ns* + 1)p?)

— X(P)Eﬁ'lp(k"')’z((l) — (ns2 + 1>)a(n, 2ns, ns® + 1)
P P

(6.6) — Uprpta( T, 21, nst 4 1)
b b

o 0,59 + 106w ((2) — ()0,

— X(p)’p*ta <—Z’;, 0, 1) .
But the expression (6.5) is the same as (6.6), since a(n/p? 0,1) = 0, when
n is prime to p. We again use (5.4) for a(n, 0, p*) and get
a(n, 0, p)

= anp’, 0, 1) + 1p)5p (%) = L)an, 0,1+ 2yp a2, 0,1).
p

By an elementary calculation, we have

se;:pz<n82 + 1) - p(n) _ -t 1)<%) if pin

P i p if p|n.

Hence
X(p)~'p* "2 (p)a(n, 0, 1)
= (v + D{a(np’, 0, 1) + Up)~ ' >"(hy(n) — Da(n, 0, 1)

+ Xp)p*'a (iz 0, 1)} .
p

This concludes the proof, because 7(n) = a(n, 0, 1).

CoROLLARY 1. Let the notation and the assumptions be as in Theorem
3. Let T(n) be a Hecke operator acting on G._y,(['(N), X,). Then the form
o s(t) is an eigenform of T(p®) with an eigenvalue w(p) + X (p)p®* >~

Proof. In general, let g(z) be an elliptic modular form on I'(M) of
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integral weight m and character +. If we put g(z) = 3 a(n)e(nz) and
& T(pH)z) = > a’(n)e(ng), it is well known that

@(n) = a(np’) + W(p)p"*hy(n)a(n) + «lf(p)zp“’"'”a<%2>

for p such that (p, M) = 1. Hence we get our assersion from (6.1).

We get the following proposition by the same method as in G. Shimura
[12].

ProrosiTiON 3. Let the notation be as in Theorem 3. Suppose that
the assumptions of the theorem are valid for all p such that (p, N) = 1.

Let t be a positive integer which has no square factor and is prime to N.
Then

Ny 1+ @1 — hO0(p)p* 0"
€D <n,N>=1T(m n T(t)ﬂv 1— (P~ + Upyp >

Let g(z) be an elliptic modular form on I"(M) of the (integral) weight
m and character \v. We assume that g(r) is a common eigenform of all
the Hecke operators T'(p®) for p such that (p, M) = 1, with the eigenvalue

(p?). Then the formal Dirichlet series >, - (n*)n"* has the following
Euler product:

68 3 umInt = 2 (L~ (up) — p"HEIP + P B
In fact, this follows from the relation of the Hecke operators:
(T(p*) — pT(p, P)T(P*) = T(P***") + p*T(p, py'T(p**™").
Let us define the Dirichlet series Lys, g) by the left hand side of (6.8):
Lfs,g) = 2. wnin=’.

(n,M)=1

Remark. We also get a similar results for ¢, (). Put 7' = (1’72 142)
in (4.83). Then we get this time

opa(n, 1,1 = o ZELZ D HL 1 9)

69) + 1(p) ek p- ((p) 1+ ( Jestm Jatn, 1, 1)
+ 2p)p*a (i@m = 12/” *111)
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where w(p) is the same as in Theorem 3 and «,(n) is defined by

k(n) = {—— 1 if pjn, pydn — 1
i 0 otherwise.

Let ¢y, ,(r) = > 7(n)e((n/4)z) be its Fourier expansion. Then Fourier co-
efficients are given by

a<n+1,1,1) if n =3 (mod 4)
rl(n)= 4

0 otherwise .

Hence (6.9) is equivalent to

w(p)rl(n)

= 1) + g pe (D) g (D) (2 L)) )

+ ey (L),
But it is easily seen that

R R

0 otherwise
for all n such that n = 3 (mod 4). Therefore, we have

-5 1+ 1 — k@) X(Pp*"*
7,(tn’ =Tt »
w45 (tnHn i )pl;][v 1 — o(p)p~* + Wp)yp* >

where ¢ is a square free integer such that (¢, N) =1 and ¢t = 3 (mod 4).

THEOREM 4. Let f be a common eigenform of T,, and T,, for all p.
Suppose further that f satisfies the Maass relations for all p. Let # =
{Me M(Z)NGL(2, Q)|(det M, N) = 1}/GL(2, Z). Then

(6.10) %}a a(T[M])|det M|~ = Lys, ¢, )Ls(s + 1, cO,f)pl;I[V P(p~; T)
where P,(p~*; T) is a polynomial of p~* of degree at most 3.

Proof. We quote a result of T. Ibukiyama [5]. He showed that, if
f is a common eigenform of T,, and T,, with eigenvalues 2,(p) and 2,(p)
respectively, then the Dirichlet series >, a(T[M])| det M|~* equals to

Pp(p_s; T)

py @ (p™°)
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where P,(p~*; T) and @,(p~*) are polynomials of p~* and

deg P(x; T) < 3,
Qp(x) =1-— X(p)’lpa-k/zl‘(p)x + (p]z(p) + X(p)2pk~4(1 + pz))xz
— WPP* (P)x* + U(p)'p*ixt

Now we suppose further that f satisfies the Maass relation. Then it is
easily seen that

2(p) = o(p)’ + 1(p)’p**(p* + D(p — 1).
Therefore @,(x) decomposes into
1 — o(p)x + Up)p**x") (1 — w(p)px + X(P)'P*'x%) .
Hence we get our assertion.

Next we consider another type of Dirichlet series. In [4], T. Hina
showed that >~ ,a(p>T)x* is a rational function of x, and its denominator
and numerator have degree 4 and at most 3 respectively. We show that,
for a Maass form, the above Dirichlet series has the denominator of

degree 3.

LEmMMA 5. Let f be an eigenform of T,, which satisfies the Maass
relation for p. Let T = (;72 %2 ) be an element of A, such that m %0 (mod
D). Then

> a(p*n, p'r, m)x
(6.11) =

_ a(n,r,m) + (a(p°n, pr, m) — o(p)a(n, r, m)x
1 — o(p)x + Up)p*'x*

where w(p) is defined by (6.2).

Proof. We have already known the expression (6.11) for T = ((r)z (1))

n r/2

by Proposition 3. Let T = <r 12 m

) with m % 0 (mod p). We put

(6.12) H(x; T) = 2 a(p®n, p'r, m)x" .

Then the coefficient of x* for v = 2 in

(1 — o(p)x + Xp)yp*~*x)H(x; T)
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is
(6.13) a(p*n, p'r, m) — o(p)a(p*®~"n, p*~'r, m) + X(p)p**a(p** >n, p*~*r, m).

Therefore it suffices to show that (6.13) is identically zero. Put

v—=1
- r
p2(v l)n’ p

T= -1
p r” m

2

in (4.3). Since m %= 0 (mod p), we have

K(p)~'p* 2 (p)a(p* O, p7'r, m)
—_ a(pZ(y—-l)n, p"r, m) + Z a(pzyn’ 2p2y—lsn + pur, p2(u—1)szn + py—lsr + m)

S€Z/pZ

+ X(p)ezc,_lp(k—3)/2(;—7)1—)(1(]?2("_1)77, pu—lr’ m) + X(p)Zpk—Iia(p'Zu—ain, pv—2r, m) .

But
a(pzyn, 2p2u-lsn + p'r, pZ(u—l)SZn + pv—lsr + m)
= a(p™~’n, p'r, p'm) + AUp)eyp* V" (1”—>a(p2"-2n, p*ir, m)
D
— Up)’p**a(p™*n, p*~*r, m) .
Therefore

o(p)a(p**~"n, p*~'r, m)
= a(pn, P p'm) -+ 1p)e (2 Jalpn, i, m)
— Ap)yp*~(p — Da(p™ *n, p~'r, m)
= a(p”n, p’r, m) + Up)’p**a(p” 'n, p*’r, m).
This is what we wanted.
THEOREM 5. Let f(Z) be an eigenform of T, ,, which satisfies the Maass

relation for p. Let T be an element of A, such that T %= 0 (mod p) and
let d be a non-negative integer. Then

< 2 +2d v R (x;d, T)
,,Z;)a(p 71)30 (1 — X(p)zpk—2x)(1 _ (w(p)2 _ 2x(p)2pk—a)x + X(p)Apz(k—a)x2)

where R (x;d, T) is a polynomial of x such that deg(R,(x; d, T))<2.
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Proof. We may assume that m = 0 (mod p), because ao(T) = «(T[U])
for any Ue GL(2, Z). We put

K(x; d, T) = (1 — 2(p)'p* %) X 3, a(p™***T)x
v=0
By using (5.3) (5.4) successively, we get

K(x; d, T) = a(p“T) + 3. (a(p®~**'%n, p»**r, p'm)
v=1
— X(p)‘lpk—za(p4y—4+4dn, p2y—2+2dr’ m))xu

= a(pT) + 3 (@(p™"*'n, p*"*r, m)
— ) p (2 Jalp o, e, me
Put
K((x;T) = K(x;n,r,m) = ga(p“n, p¥r, m)x .
By Lemma 5, we have
K5 T) = L (H(x; 1) + H(— 2 T)

— a(n,r,m) + [a(n, r, m)X(p)’P*~* + o(p)a(p’n, pr, m) — w(p)a(n, r, m)]x*
1 — (w(p)* — 2Upyp*~)a* + X(p)'p¢ It

Since
K(x;d, T) = a(p*n, p*’r, p*m) — a(p*‘n, p*'r, m) + K,(x; p*'n, p*'r, m)

- X(p)s’;“p<"“">’2<—';1>Kl(x; p**n, p*tir, mx,

its denominator is equal to
1 — (a(p) — 2Up)P* )% + Up) P04t .

By comparing the Hina’s result, there is one cancellation of a linear
factor, so we get the theorem.

§7. Remark

We can ask the following questions.
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1. What is the Maass relation for p = 27

2. What is the relation between the Jacobi forms of index 1 and p ?
Eisenstein series is a typical example. 1 is not yet solved. For 2, let
E(z,8) = X a(T)e(tr TZ). If n and m are integers prime to p, then

(7 ) =e(8 )@ (5) - ()T )

— X(p)el’f,"(—’z—)p”“s’/za(an 0) if £ is even,
p 0 m

(3 ) =e(5 ) 05 ((57) = ()7 )

~ X(p)e;‘:’(Zf)p““”ﬂa@gm ,2) if £ is odd,

(cf. Y. Kitaoka [7]). It is natural that we also call these ones the Maass
relations.

Recently I was informed by T. Ibukiyama and S. Hayakawa that V.
G. Juravlev obtained similar results on Siegel modular forms of half
integral weight.
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