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ON THE EXISTENCE OF POSITIVE DECAYING
ENTIRE SOLUTIONS FOR A CLASS OF SUBLINEAR
ELLIPTIC EQUATIONS

YASUHIRO FURUSHO AND TAKASI KUSANO

1. Introduction. In recent years there has been a growing interest in the
existence and asymptotic behavior of entire solutions for second order
nonlinear elliptic equations. By an entire solution we mean a solution of
the elliptic equation under consideration which is guaranteed to exist
in the whole Euclidean N-space RV, N = 2. For standard results on the
subject the reader is referred to the papers [2-7, 9-21].
~ The study of entire solutions, which at an early stage was restricted to
simple equations of the form Au + f(x, u) = 0, x € R", A being the
N-dimensional Laplacian, has now been extended and generalized to ellip-
tic equations of the type

(A)  Lu+ f(x,u, Du) =0, x € RY,
where
N N
L= ”2:1 a;(x)D; + ,§1 b,(x)D;,
D, = 8/9x, D; = */0x0x, 1 =i, j = N, and
D = (Dy,...,Dy).

Thus various existence theorems have been obtained which are applicable
to (A) in which f may depend genuinely on Du; see e.g. [3, 6, 7, 12, 13, 14,
17, 20]. Needless to say, however, not all such equations can be covered
by the existing theories of entire solutions. For example, it is not known if
the equation

(B) Au + c(x)IDuIS =0, x € RV,

6 > 0 being a constant, possesses an entire solution other than constant
functions which are obviously solutions of (B).

The objective of this paper is to develop existence theorems of noncon-
stant positive entire solutions for equation (A) subject to the condition

f(x,u,0) =0 for (x,u) € RV X R,.
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We start with equation (B) (Section 2) and show that (B) has a positive
decaying entire solution, that is, a positive entire solution tending uni-
formly to zero as |x| — oo, if 0 < § < 1 and if ¢(x) is a positive locally
Holder continuous function in RY which is “small” in some sense. Then,
in Section 3 we consider more general equations of the form

(©)  Lu+ f(x, Du) =0, x € RV,

with the same L as in (A) and f(x, 0) = 0 for x € R", and derive criteria
for (C) to have a positive decaying entire solution under the hypothesis
that f(x, Du) is “sublinear” with respect to Du. Finally, in Section 4 we
attempt to generalize the results of Section 3 to equation (A) in which f
depends on u as well and is sublinear with respect to u and Du. The main
theorems are proved by means of the supersolution-subsolution method,
or the method of barriers. The sublinearity and the smallness of the
functions in the structure hypotheses for (A) (or (B) or (C) ) are needed in
constructing suitable supersolutions and subsolutions which guarantee the
existence of the desired entire solution of the respective equation.

2. The equation (B). We begin by considering the simplest equation
(B)  Au + c(x)Dul® =0, x € RY,

where N = 3,0 < § < 1, and ¢(x) is positive and locally Holder con-
tinuous in RV (with exponent § € (0, 1)). Put

c*(r) = m'ax c(x), cu(r) = n}in c(x), r=0.

Suppose that

[e.e] r
2.1 /R r_(N_l)(/R sV D=9 x5y ds

for some (and hence any) R > 0, and define the functions y, z:[0, co) —

17(1-8)
) dr < oo

(0, 00) by
(e )
’y(r) _ (1 _ 8)]/(1—8) fr t—‘(N—l)
N 1/(1-8)
2.2) X (fR s(N_l)(l‘s)c*(s)ds) dt forr = R,
\v(r) = y(R) for 0 = r < R,

rz(r) — (= yVa-d f‘:o ~(N=1)

t 1/(1—8)
(23) X (/R s(N_l)(‘_s)c*(s)ds) dt forr = R,
\z(r) = z(R) for0 = r < R.
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Then, it is easy to verify that

y e CE0,00) and z € L0, c0)

for some 6’ € (0, 1) and that y(r) and z(r) satisfy the following differ-
ential equations for r > 0:

@Y+ Tl P =
2y + Tl P = 0.

Therefore, the functions v(x) = y(|x|) and w(x) = z(|x|) are of class
2H’(RN ) and satisfy the differential inequalities

loc
0 = Mv(x) + el IXDIDV() P = Av(x) + e(@)IDv(x) P,
= Aw(x) + c*(Ix])IDw(x) I° = Aw(x) + c(x)|Dw(x) 13

in RV, Since v(x) = w(x) in RY, from a theorem of Ak6 and Kusano [1] it
follows that (B) has a positive entire solution u(x) such that v(x) =
u(x) = w(x) in RV, Since

lim w(x) = lim y(r) =0

Ix|—00
by (2.1), u(x) is a decaying entire solution of (B). Thus, (2.1) ensures the
existence of a positive decaying entire solution of (B).
If (2.1) is replaced by a stronger condition
(o)
2.4) ,/R r(N*l)(lfs)c*(r)dr < 00,
then (2.2) and (2.3) imply that

- SHII=d oo 1/(1-8)
lim 2y(r) = (—ﬁ——)_ (f sN=DA=d), (s)ds) s
r—o0

- §)17(1=8) 1 foo 1/(1-8)
lim rV 2z(r) = (—-—) ( sN=Da=9) *(s)ds) ,
so that the solution u(x) of (B) obtained above satisfies

2.5)  klxPTV = ux) = kIxPV, X =1,

for some positive constants k, and k,.

An entire solution of (B) satisfying (2.5) is called a minimal positive
entire solution, because any positive function satisfying Au = 0 in some
exterior domain in RV, N = 3, cannot decay faster than a constant
multiple of x>V as |x| = oo.

Suppose in particular that ¢(x) in (B) satisfies

alxl® = c(x) = olx|*%, x| =

for some constants «, ¢; > 0 and ¢, > 0. Then, (2.1) holds if and only if
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a < 8 — 2, while (2.4) holds if and only if « < (N — 1)6 — N. Noting that
(N — 1)d — N < 8 — 2, we conclude that: (i) (B) has a positive decaying
entire solution if « < § — 2; (ii) (B) has a minimal positive entire solution
ifa < (N — 1)d — N;and (ii)) if (N — 1) — N = a < 8§ — 2, then the
decaying entire solution obtained is not minimal, that is, the order of
its decay at infinity is lower than any constant multiple of |x|>~".

3. The equation (C). Let us now turn to the consideration of more
general elliptic equations of the form
(C©) Lu+ f(x, Duy=0, x € R"\, N =2,
where L is given by

N N
G0 L= 2 a;(x)D; + 2 b(x)D,
1 ’ i=1

ij=
We use the notation:

N

32 Ax) = > a,-j(x)x,.xj/lx|2,
ij=1

N
(33)  B(x) = |2 (b;(x)x; + ay(x)) — A(x) |/Ix], x # 0.
i=1
The conditions we assume for L and f are as follows:
(L)) a;(x) = a;(x) for allx e RV, 1 =, J = N, and there is a constant
ay > 0 such that

N

D a;(x)EE = aplé* for all (x, §) € RY x RY.
ij=1

(Ly) a; € Clot(RY), b, € €}, (RY), 1 =i, j = N, for some 6 € (0, 1),

loc
and there is a constant K > 0 such that

lagllpgey = K. lIbllggey = K forallx € RY, 1 =i, j = N,
where ||-|[0’9(X) denotes the norm in the space Ce(Q(x) ),
QUx) = {y € RY|y — x| = 1}.
(L5) there exists a function B, € CfOC(O, co) such that
B.(r) = lmin B(x)/A(x), r > 0,

x|=r

exp(— [ B(s)ds) is bounded on [R, co) and

/R exp(—fR B*(s)ds)dr < oo forany R > 0.
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(F) f(x, p) (p = (ﬁ" ..., py)) is locally Holder continuous (with ex-
ponent ) in RY X R",

(F,) (Nagumo’s condition) For any bounded domain & C R" there is a
constant p(2) > 0 such that

1fx, p) 1= @A + [pl»), (x, p) € @ X RV,

(F;) There exist a positive function ¢ € CfOC(RN) and a nonnegative
function ¢ € CfOC[O, co) such that

(B4) 0= f(x, p) = c(x)e(lpl), (x, p) € RY X RV,
Moreover, ¢(0) = 0, ¢(t) > 0 for ¢t > 0,

3.5) &% = idt/tp(t) exists for any ¢ > 0,
and

(3.6) @A) = A (MNg(t) forA >0andt =0,
for some A, € CfOC(O, 00).

(F,) There exist a constant § € (0, 1) and an open set §; C R" contain-
ing the origin such that

lim inf f(x, p)/Ipl’| > 0.

p—0

inf
XEQ,

To state our main results we need the following functions defined for
r>0:

B.(r) as in (L), B*(r) = max B(x)/A(x),

|x|=r

6D ) = e [} o). ) = ol [ Beoras)

me(r) = /jo ds/ps(s), a*(r) = fjo ds/p*(s).

TueoreM 3.1. Suppose that (L))-(L;) and (F))-(F,) are satisfied.
(1) Suppose that

®(c0) = glim D(¢) = oo,
where ®(§) is defined by (3.5), and
(3.8) /‘:p%(r)q)"l(/; Pe()A(1/py(s) )c*(s)ds)dr < oo
for some R > 0, where

c*(r) = max c(x)/A(x)

X|=r
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and ® ' is the inverse function of ®. Then, equation (C) has a positive decay-
ing entire solution.
(i1) Suppose that

(3.9 /;o Px(P)A (1/py(r) )e*(r)dr < oo

for some R > 0, then, regardless of the value of ®(c0), equation (C) has a
positive decaying entire solution u(x) such that

(.10) Kym*(Ix]) = u(x) S kym(Ix]), x| Z 1,
Jor some positive constants k, and k,.

Proof. We adopt the supersolution-subsolution method due to Ako and
Kusano [1] (see also [16]): If there exist bounded functions v,
w e CLURY), 0 € (0, 1), such that v(x) = w(x), x € RV,

(3.11) Lv(x) + f(x, Dv(x)) =0, x € RY,
and
(3.12) Lw(x) + f(x, Dw(x)) =0, x € R",

then (C) has an entire solution u(x) satisfying v(x) = u(x) = w(x),
x € RV (Such functions v(x) and w(x) are called a subsolution and a
supersolution of (C), respectively.)

We begin with the construction of a subsolution v(x) of (C). In view
of (F,) there exist positive constants Py, R, and a nonnegative function
¢y € CPRN) such that

supp ¢, = {x:Ix| = 2Ry} C £, and
(3.12) f(x, p) Z cx)lp® for x € RY, |p| = P,

Define
5 [ 1
yr) =1 - v f —
T opr)
(.13) t 1/(1-9)
X ( f X [p*(s)]“‘sco*(s)ds) dr forr Z Ry,
0

y(r) = y(Ry) for 0 = r < R,,

where

cox(r) = min cy(x)/A(x).
|x|=r
Then, we see that y € cﬁ;"'[o, oo) for some 6’ € (0, 1), y'(r) < O for

r € (Ry, 00), y(r) = 0 as r — oo, and

(B.14)  (p*)y'(r)) + pNeouMy') P =0, r>0.
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Note that (3.14) is equivalent to
(3.15) y(r) + BXr)Y'(r) + cou(r)ly'(r) * = 0.

Furthermore, since 1/p*(r) is bounded on [R,, c0) by (L3) and cy«(r) = 0
for r = 2R, (3.13) implies that y’(r) is bounded on [0, o), and so there is
a constant u such that

(3.16) 0 <pu<1 and ply(r)| = P, forr € [R,, o0).

If we define v(x) = w(|x|), x € RY, then using (3.12), (3.15), (3.16) and
noting that y’(r) < 0 for r > R, we obtain

Lv(x) + f(x, Dv(x))
= Lv(x) + co(x)IDv(x) °
= WAE)Y"(r) + B)Y'(r) + ¥ eox)ly'(r) )
= WAX)(Y"(r) + BX(r)y'(r))
+ (B(x) — B*r))Y'(r) + co()ly'(r) ]
u(—A(X)cou(r) + )Y (r) P Z 0 forr = |x| = R,,

and Lv(x) + f(x, Dv(x)) = 0 for |x| < R,. This shows that v(x) =
wy(|x|) is a subsolution of (C) if (3.16) is satisfied. (Condition (3.8) or
(3.9) is not needed here.)

To construct a supersolution w(x) of (C) assume that ®(co) = co and
(3.8) holds. We put

%

61 2 = o[ oAU ), 7= R,

where R; > 0 is a fixed constant, and define z(r) by

(o]
z(r) = _/r zo(t)/p«(t)dt for r = R,
z(r) = z(R)) for0 = r < R,.
It is easy to see that z € C2+0,[0, o) for some ¢ € (0, 1). Using (3.17),

loc

(3.18), (3.5) and (3.6), we obtain
(Pe(r)z'(r)) = —pu(r)c*(r) A (1/ps(r) Jo(zo(r) )
= —p(r)e*(N)e(zo(r)/p«(r) )
—p(r)c*(e(—2z'(r)), r = Ry,
which, in view of (3.7) and z/(r) < 0, r = R,, reduces to
(3.19) z"(r) + By(r)Z'(r) + c*(n)e(12’(r)|) =0, r = R,.

From (3.4) and (3.19) it follows that the function w(x) = z( |x|), x € R",
satisfies

(3.18)
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Lw(x) + f(x, Dw(x))
= Lw(x) + c(x)e(|1Dw(x) )
= A(x)z"(r) + B(x)z'(r) + c(x)e(|2'(r)|)
= AX)Z"(r) + Bu(r)z'(r))
T (B(x) — A(X)By(r))z'(r) + c(x)e( 2'(r) )
= (—AX)*(r) + c(x))e(|27(r)|) = 0 for r = |x| = R,.
Since Lw(x) + f(x, Dw(x)) = 0 for |x| < Rj, w(x) = z(Ix|) is a
supersolution of (C).
From (3.13), (3.18) and (3.7) we see that

o -8
(320) lim y(r)/vr*(r) _ (1 _ 8)]/(1‘8)(-/R [p*(s) ]I—SCO*(S)dS)]/(l )

>

(e e}
(321) lim z(r)/m(r) = <I>“( f X p*(s)Aq,(l/p*(s))c*(s)ds).

r—co 1
The limit (3.20) is finite, while the limit (3.21) is finite or infinite, and so
noting that =, (r) = #*(r) for r = 1, we conclude that py(r) = z(r) for
r Z 0 provided p > 0 is chosen small enough. With this choice of p, we
have v(x) = w(x) for all x € R". Therefore, there exists a positive entire
solution u(x) of equation (C) satisfying v(x) = u(x) = w(x) in RY. That
u(x) is a decaying solution follows from the fact that

lim w(x) = lim z(r) = 0 by (3.18).
|x|—00 r—00
If (3.9) holds, then the limit (3.21) is finite, and hence the solution u(x)

satisfies (3.10). If (3.9) holds but ®(co) << oo, then it suffices to choose
R, > 0 so that

_/‘R1 Px()A[(1/ps(5) )c*(s)ds < ®(c0)

and repeat the same argument as above. This completes the proof of
Theorem 3.1.

Example. 3.1. Consider the equation

c(x)|Dulf

(3.22) Au +
1 + [Dul®

[log(1 + [Dul)]Y = 0,x € RV, N = 3,

where a, B, vy are positive constants and ¢(x) is a nonnegative function of
class C (R"), 8 € (0, 1), such that ¢(0) > 0.

The operator L = A satisfies (L;)-(L3), and the functions in (3.7) for this
operator become
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B*(r) = Bu(r) = (N = )/r, p*(r) = pu(r) = r""" and
7*(r) = m(r) = r* N/(N = 2).

Suppose that « << 8 + y < 1. Then, the function
f(x. p) = c)lpFlog(1 + [p) /(1 + |pl*)

satisfies (F)-(F,); in particular, (F;) holds with the choice ¢(1) = AR
for which

AN = MO and @@ =T FT(L+a - B — ),

and (F,) holds with § = B + y and &; = {x:c(x) > ¢(0)/2}. From
Theorem 3.1 it follows that if

S r 1/(1+a—B-Y)
/R rA(N_])(fR s(Nfl)(H“AB_Y)c*(s)ds dr < co

for some R > 0, then (3.22) has a positive decaying entire solution, and
that a stronger condition

/;O rN DA+ =B k(1 )dr < o0

guarantees the existence of a decaying entire solution u(x) such that
kilx PV = ux) = kxP7, x| = 1,

for some positive constants k; and k,.

Example 3.2. There is a class of elliptic equations having positive entire
solutions which decay exponentially as |x| — oco. Consider the equation

N
(323) Au + X b(x)Du + c¢(x)|Dul> =0, x € RV, N = 2,
i=1
where c(x) is as in Example 3.1 and b,(x), 1 = i = N, satisfy
Ibillgguy = K. x € RY,
for some constant K > 0 and
N
B = lim inf | X b,(x)x,/]x| | > 0.
[x|=o0 li=1

If0< 8§ <1and

o s
fR el )yrc*(r)dr < o0

for some y < B and R > 0, then (3.23) possesses an entire solution u(x)
such that

0 <ux) = ke ™ xeRY,
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for some constant k > 0. This follows from (ii) of Theorem 3.1 combined
with the observation that, since in this case

N
B(x)/A(x) = X b(x)x/|x] + (N — 1)/|x| >y for |x| > R,
i=1

provided R, > 0 is large enough, a continuous function on (0, co) which
equals y on [2R, c0) can be chosen as B,(r), so that (L;) holds for

N
L=A+ X b(x)D,
i=1
and p.(r) and m,(r) can be taken to be
p«(r) = mpe”, @ (r) = mye ¥, r Z 2R,,
for some positive constants »,; and m,.
4. The equation (A). We are now in a position to deal with general
elliptic equations of the form
(A)  Lu+ f(x,u, Du)y =0, x € R¥, N =2,

where L is as in (C) and f depends on both u and Du. With regard to (A)
we assume in addition to (L;)-(L;) that:

(FH flx, u, )g) is locally Holder continuous (with exponent ) in
RY X R, X RV,

(F¥) (Nagumo’s condition) For any bounded domain £ C R" and any
constant J > 0 there is a constant p(2, J) > 0 such that

|, u, p) | = o, )1 + |pP)
forxeﬂ,O<u§JandpeRN;

(Ff) There exist nonnegative functions ¢ € Clgoc(RN X R,) and
e C fOC[O, oo) such that

(41) 0= f(x,u,p) = clx, we(lpl), (x,u, p) € RY X R, X RY,
where ¢ is exactly as in (F;) and c satisfies
(42)  c(x, \u) = Y(Ne(x, u) for X > 0, (x, u) € RY X R,
for some positive function ¢ € C fOC(O, 00);
(F}) There exist an open set §, C R" containing the origin and

constants y,  such that 0 < § < 1,y + § < 1 and

inf | liminf f(x, u, p)/u’|pl’| > 0.
x€8y L(u,p)—(0,0)
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The main results of this section are as follows. The functions defined by
(3.5)-(3.7) are also used therein.

THEOREM 4.1. In addition to (L))-(L;) and (F{)-(Ef) assume that c(x, u)
is nondecreasing in u for each fixed x,y Z 0 in (F}), and

(4.3) )\lim ATVA,N) = 0.
(1) Suppose that ®(co) = oo and

[ee] l _ r
@4 f R ® '( f « P(OA(1/py(s) )e*(s, Dds|dr < oo

for some R > 0, where

c*(r, 1) = max c(x, 1)/A4(x).

|x|=r
Then, equation (A) has a positive decaying entire solution.
(i) If
[e.e]
(4.5) ,[R P*(r)Aq,(l/P*(r) Ye*(r, mi(r) )dr < oo
Sfor some R > 0, where

c*(r, m(r)) = max c(x, m(|x|))/A4(x),

X|=r

then, regardless of the value of ®(c0), equation (A) has a positive decaying
entire solution u(x) such that

(4.6)  km*(Ix|) = u(x) = kym(lx]), x| =1,
for some positive constants k| and k,.

THEOREM 4.2. In addition to (L,)-(L;) and (F})-(F}) assume that c(x, u)
is nonincreasing in u for each fixed x, y = 0 in (F}) and (4.3) holds. If

4.7 ./R Px(r)A(1/ps(r) )e*(r, m*(r) )dr < oo
for some R > 0, where

c*(r, w*(r) ) = max c(x, 7*(|x|) )/ A(x),
X|=r
then equation (A) has a positive decaying entire solution u(x) which satisfies
(4.6) for some contants k; > 0 and k, > 0.

In the proofs of these theorems given below extensive use is made of a
function hy € C lzoto(RN ) with the properties:

(i) Lhy(x) = 0 and hy(x) > 0 in RY;

(ii;\, For any positive function & € Cz(RN) satisfying Lh(x) = 0
in R"Y,
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(4.8)  hy(x) = O(h(x)) as|x| — oo.

It can be shown that under hypotheses (L,)-(L;) such a function Ay(x)
exists and enjoys the following properties:

(D) lim hy(x) = 0;

|x|—o00
(D 7*(lx|) = O(hy(x)) as |x| = oo;

m Ifg e Claoc(RN) has compact support and g(x) = 0, %0 in R",
then the equation

(49) Lu= —g(x), x € RY,

has a unique solution u € CIZO‘CLG(RN ) which tends uniformly to 0 as
|x| — oo. Furthermore, u(x) satisfies

(4.10)  kihy(x) = u(x) = khy(x), x € RY,

for some positive constants k; and k.

The existence of hy(x) is proved in [8, Theorem 2.1]. For the proof of (I)
and (III), see [6, Theorem 3.3] and [8, Theorem 2.2]. Property (II) follows
from the maximum principle applied to Mhy(x) — 7*( |x|) for sufficiently
large M > 0.

Proof of Theorem 4.1. As in the proof of Theorem 3.1 it suffices to
construct a function V(x) (a subsolution of (A) ) satisfying

LV(x) + f(x, V(x), DV(x)) Z 0, x € R",
and a function W(x) (a supersolution of (A) ) satisfying
LW(x) + f(x, W(x), DW(x)) =0, x € R",

so that the inequality ¥(x) = W(x) holds throughout R".
Part (i). Let w(x) be a positive decaying entire solution of the
equation

@.11) Lw + c(x, De(|Dw|) = 0, x € R,

where ¢ and ¢ are as in (F§). The existence of w(x) follows from (4.4) and
(i) of Theorem 3.1 applied to (4.11). Put

M, = sup w(x),

x€R
and choose A > 0 so that
(412) XA MM, = 1,

which is possible because of (4.3). Define W(x) = Aw(x), x € R". Then,
using (F¥), (4.11) and (4.12), we see that

LW(x) + f(x, W(x), DW(x))
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S LW(x) + c(x, W(x))e(IDW(x) )

= NLw(x) + A~ e(x, Aw(x) Jo(ADw(x) | ) ]

= NLw(x) + AWM )AMNe(x, Dol [Dw(x) [)]

= MLw(x) + c(x, Dg(|Dw(x)|)] = 0, x € RY,
implying that W(x) is a supersolution of (A). Note that since

LW(x) = —f(x, W(x), DW(x)) =0, x € R",
from (4.8) with h(x) = W(x) there is a constant M, > 0 such that
(4.13) Myhy(x) = W(x), x € R".

To obtain a subsolution of (A), we first observe that hypothesis (F})
implies the existence of positive constants Py, R,, U, and a nonnegative
function ¢, € CJ(RY) such that

supp ¢, = {x:|x] = Ry} € @, and
(4.14) f(x, u, p) = cy(x)uIpl®
forx e R 0 <u = U, and |p| = P,. Consider the equation
(4.15) Ly + co(x)hy(x) PIDVI® = 0, x € RY.

By Theorem 3.1 there exists a positive decaying entire solution v(x) of
(4.15). From the property (IIT) of hy(x) (with

g(x) = co(x)[h(x) "Dy (x) [°
in (4.9)) it follows that
(4.16) Mjhy(x) = v(x) = Myhy(x), x € RY,

for some constants M; > 0 and M, > 0. Using (4.16) and the fact that
Lv(x) = 0 for |x| > R, and applying a standard argument based on the
W4 estimates of solutions and the Sobolev imbedding theorem (see e.g.
[16, Theorem 2] ), we conclude that |Dv(x) | is bounded in RV. We now
define V(x) = wv(x), x € RY, where p > 0 is chosen small enough so that
0<p<1,uw" M =1, and

w(x) = W(x), wx)= U, wDv(x)| =P, xR

such a choice of p is possible because of (4.13), (4.16) and the boundedness
of |[Dv(x) |. We then see that V(x) is a subsolution of (A), since in view of
(4.14)-(4.16),

LV(x) + f(x, V(x), DV(x))
= pulv(x) + f(x, pv(x), plDv(x)])
= pLy(x) + co(x)[pv(x) sl Dv(x) | P
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= p{Lv(x) + w07 MYeq(x)o(x) T'IDv(x) °}

= u{Lv(x) + co(x)hy(x) I"IDV(x) I’} = 0, x € R,
Since V(x) = W(x), x € R", there exists a positive entire solution u(x) of
(A) such that V(x) = u(x) = W(x) in RV, It is obvious that

lim wu(x) = 0.
[x|—oc0

Part (ii). Define 7,(r) by
Te(r) = me(r) forr Z 1, o(r) = m(1) for 0 = r < 1,
and consider the equation
(4.17) Lw + c(x, m(1x]))e(|IDw(x)|) = 0, x € RV

Applying (ii) of Theorem 3.1 to (4.17) and arguing as in part (i), we obtain
a positive decaying entire solution w(x) of (4.17) satisfying

(4.18) Mshy(x) = w(x) = M¢m(Ix]), x € RV,

where My and M, are positive constants, and we can show that the
function W(x) = Aw(x), x € RY, is a supersolution of (A) provided
A > 0 is sufficiently large. Exactly as in part (i) we can find a subsolution
V(x) of (A) satisfying V(x) = W(x), x € R". Therefore, equation (A) has
an entire solution u(x) such that ¥(x) = u(x) = W(x) in R". Combining
(4.18) with inequalities of type (4.16) satisfied by V'(x), we have

(4.19)  Mohy(x) = u(x) = Mgy(Ix]), x € RV,

for some constants M; > 0 and Mg > 0.

On the other hand, from the property (II) of hy(x) there is a constant
My > 0 such that Mgn*( |x|) = hy(x) for [x| = 1, which together with
(4.19) implies the desired asymptotic behavior (4.6) of the solution u(x).
This completes the proof of Theorem 4.1.

Proof of Theorem 4.2. Consider the equation
(4.20) Lw + c(x, hy(x))e(IDw]) = 0, x € R".
The nonincreasing nature of c¢(x, u) with respect to u implies that
c(x, hy(x)) = c(x, Mgm*(Ix|)) for |x| = 1,

and so (ii) of Theorem 3.1 shows that (4.20) has a positive decaying entire
solution w(x) such that

Miohy(x) = w(x) = M 7(|x]), x € RY,

for some constants M;, > 0 and M,, > 0, where m.(r) is as above.
Define the function W(x) = Aw(x), x € R", where A > 0 is chosen so
large that
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AT ALMUM ) = 1.
Then, noting that
c(x, w(x)) = c(x, Mghy(x)),

we see that W (x) is a supersolution of (A). A subsolution V(x) of (A) such
that V(x) = W(x), x € RY, can be constructed in essentially the same
manner as in the proof of the preceding theorem, and hence there exists
an entire solution u(x) of (A) lying between V(x) and W(x) for every
x € RY. The details are left to the reader.

CoroLLARY 4.1. In addition to (L)), (L,) and (F})-(Ff) assume that
c(x, u) is nondecreasing in u for each fixed x and (4.3) holds. Suppose more-
over that there is a constant v > 1 such that B(x)/A(x) Z v/|x| for all
sufficiently large |x|.

(1) Suppose that ®(c0) = oo and

[ee] r
4.21) f < f”@*‘( f o SAGks ™) (s, l)ds)dr < oo
for any k > 0 and some R > 0, where
c*(r, 1) = max c(x, 1)/4(x).

x|=r
Then, there exists a decaying positive entire solution of (A).
(i) If
[e0)
(4.22) f o TGk, 'Y < oo

for any k > 0 and some R > 0, then there exists a decaying positive entire
solution u(x) of (A) such that

(4.23) kiho(x) = u(x) = ky(1 + x])'7Y x € RY,
Jor some positive constants k, and k,.

Proof. In view of the assumption B(x)/A(x) = v/|x| with v > 1 we
can take B,(r) = v/r for large r, so that (L;) holds for L and the corres-
ponding functions p4(r) and m,(r) can be taken to be p,(r) = m;r" and
me(r) = mor' Y for some constants m; and m,. The conclusions of
Corollary 4.1 now follow from Theorem 4.1.

Example 4.1. Consider the equation
(4.24) Au + c(x)"|Dul> =0, x € RY, N = 3,

where y and § are constants such that 0 < § < 1,y + 8 < l,and ¢(x)isa
nonnegative locally Holder continuous function in RV with ¢(0) > 0.
Clearly, (L,)-(L;) and (F{-(F§) hold for (4.24); in particular (F§) holds
with ¢(x, u) = c(x)u’ and ¢(¢t) = {°, so that
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®@¢) =¢7%1 - 8) and

)
AN = A4 =\
Noting that in this case p*(r) = pu(r) = rV !, a*(r) = m(r) = Ny
(N — 2), we conclude from (i) of Theorem 4.1 that if y = 0 and

(o) r 1/(1-9)
fR r~(N_1)(fR s(N”])“—s)c*(s)ds) dr < oo

for some R > 0, then (4.24) has a decaying positive entire solution,
and from (ii) of Theorem 4.1 and Theorem 4.2 that if either y = 0 or
y < 0 and

(]
fR FN=DA=D=(N=D¥ex(r)dr < 00
for some R > 0, then (4.24) has a positive entire solution which decays
like a constant multiple of x>~V as |x| — oo.

Example 4.2. Our final example concerns the equation

N
(425) Au+ X x;Du + c(x)u"|Dul’ =0, x € RY, N = 2,

i=

where c(x) is as in Example 4.1 and vy, § are nonnegative constants with
0 <y + & < 1. Hypotheses (L,)-(L;) and (F})-(F}) are satisfied by (4.25).
In particular, since for

L=A+ %l x.D,,

B(x)/A(x) = |x| + (N — 1)/|x| = oo as |x| = oo,
(L) holds with the choice

B.(r) = B¥(r) =r + (N — 1)/r,
to which there correspond

pe(r) = p*(r) = o 1/2,N=1,%2

and

172 [ =N 52
Te(r) = 7*(r) = e /r s et ds.
Noting that

R 2
lim rNer /2 172

r—00

m(r) = e

and applying (ii) of Theorem 4.1, we conclude that the condition
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[e)
(4.26) fR r(N~l)(l_8)77Ne“_8_7)’2/2c*(r)dr < oo for some R > 0

guarantees the existence of a positive entire solution u(x) satisfying

L —ixf? w1
klx| Ne=Ixl72 < u(x) = kylx| Ne lxl/z, x| = 1,

for some positive constants k; and k,. Condition (4.26) is satisfied
if, for example,

10.

11

12.

13.

14.

15.

16.

17.

18.

. K.

= £ =

Z

T.

T.

w.

o2
0 <c(x) =ce *F, x € RY, for some constant c > 0.
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