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Abstract

We study the existence of the invariant region for the equations of nonisentropic
gas dynamics. We obtain the mean-integral of the conserved quantity after making
an intensive study of the Riemann problem. Using the extremum principle and
the Lagrangian multiplier method, we prove that the one-dimensional equations of
nonisentropic gas dynamics for an ideal gas possess a unique invariant region. However,
the invariant region is not bounded.
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1. Introduction
In this paper, we analyse the existence of the invariant region for the one-dimensional
equations of nonisentropic gas dynamics. These are characterized by

ρt + (ρu)x = 0
(ρu)t + (ρu2 + p)x = 0
(ρE)t + (ρuE + pu)x = 0

(1.1)

with the gas state
p = RρT, e = cvT, p(s, ρ) = es/cvργ, (1.2)

where ρ > 0; s and u are the density, entropy and velocity, respectively; E = u2/2 + e
is the energy; and e is the internal energy. Also, R, k, cv and γ are positive constants
with γ > 1.

The initial data for (1.1) is

(ρ,m, q)(x, t)|t=0 =

(ρl,ml, ql) x < 0
(ρr,mr, qr) x > 0,

(1.3)

where m = ρu, q = ρE and ρl,r, ml,r, ql,r are all given constants.
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The gas dynamics equation is one of the core subjects for a conservation law, for
which the most important problem is the existence of global weak solutions with large
initial data.

Compensated compactness [10] is one of the most effective methods for
investigating this problem. Using this method, the framework for the existence of
solutions to the equations of isentropic gas dynamics with Cauchy data is almost
complete. Diperna [2, 3] established the existence of the weak entropy solution for the
isentropic Euler equations with general L∞ initial data for γ = 1 + 2/(2n + 1), where
n ≥ 2 is an integer. Ding et al. [4, 5] also obtained the existence of the isentropic
solution by vanishing numerical viscosity for γ ∈ [1, 5/3]. Lions, Perthame, Tadmor
and Souganidis [1, 7, 8] obtained existence results for γ > 3, while Huang and Wang
[6] obtained existence results for γ = 1.

However, the compensated compactness theory encountered bottlenecks when
proving the existence of a solution for (1.1) and (1.2) with Cauchy data because of
the difficulty in obtaining a uniform bounded estimation.

The aim of the present paper is to find a method for obtaining an invariant region
for the conservation laws. Hence, we calculate the mean-integral of the Riemann
solution 

ρ =
ρl + ρr

2
+

k
2

(ml − mr)

m =
ml + mr

2
+

k
2

{3 − γ
2

(ml
2

ρl
−

mr
2

ρr

)
− (γ − 1)(ql − qr)

}
q =

ql + qr

2
+

k
2

{
γ

mlql

ρl
−
γ − 1

2
ml

3

ρl
2 − γ

mrqr

ρr
+
γ − 1

2
mr

3

ρr
2

}
and use the properties of the Riemann invariant region for (1.1). Finally, we find a
partial differential equation to calculate the bound equations, F = F(ρ,m, q), of the
invariant region for (1.1); here k = 4t/24x, ρ, m and q are the mean-integrals of ρ, m
and q, respectively.

Thus, we show that there does not exist any bounded invariant region for (1.1) with
an ideal gas state. This means that the equations for nonisentropic gas dynamics are
quite different from the isentropic case.

This paper is organized as follows. In Section 2, we study the Riemann solution of
system (1.1) and calculate the mean-integral of the conserved quantity. In Section 3,
we mainly discuss the properties of the Riemann invariant region for (1.1) and prove
the nonexistence of Riemann invariants for (1.1) with an ideal gas state. The paper
concludes with a discussion in Section 4.
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2. The mean-integral conserved quantity
The Riemann problem which consists of system (1.1) and the Riemann initial data

(1.3) was solved by Smoller [9]. For brevity, we state the solutions as

1-family



ρr

ρl
= e−x

sr − sl

cv
=


0 x ≥ 0

γx + log
1 − βex

ex − β
x ≤ 0

ur − ul

cl
=


2

γ − 1
(1 − e−τγx) x ≥ 0

(ex − 1)
√

1 − β
ex − β

x ≤ 0

2-family
ρr

ρl
= ex,

sr − sl

cv
= −γx, ur = ul

3-family



ρr

ρl
= ex

sr − sl

cv
=


0 x ≥ 0

−γx + log
ex − β

1 − βex x ≤ 0

ur − ul

cl
=


2

γ − 1
(eτγx − 1) x ≥ 0

(1 − e−x)
√

1 − β
e−x − β

x ≤ 0.

To investigate the mean-integral for the conserved quantity of (1.1) and (1.3), we
set m = ρu and q = ρE.

For

E =
1
2

u2 +
1

γ − 1
p
ρ
,

we obtain

p = (γ − 1)
(
q −

1
2

m2

ρ

)
. (2.1)

Substituting (2.1) into system (1.1), the system (1.1) reduces to
ρt + mx = 0

mt +

[3 − γ
2

m2

ρ
+ (γ − 1)q

]
x

= 0

qt +

[
γ

mq
ρ
−
γ − 1

2
m3

ρ2

]
x

= 0.

Defining the mean-integral of U as

U(x, t) =
1
2l

∫ l

−l
U(x, h) dx = (ρ(x, t),m(x, t), q(x, t)),

we have the following theorem.
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Theorem 2.1. 
ρ = 1

2 (ρl + ρr) + k(ml − mr)
m = 1

2 (ml + mr) + k(pl − pr) + k(ρlul
2 − ρrur

2)
q = 1

2 (ql + qr) + k(qlul − qrur) + k(plul − prur),
(2.2)

where k = h/2l.

Proof. We suppose that S i, Ri and J2 are the ith shock waves, the rarefaction waves
and the contact discontinuity, respectively. Ui are the ith middle state, where i = 1, 2.

(1) If the Riemann solutions are

Ul
S 1
−−→ U1

J2
−→ U2

S 3
−−→ Ur,

then

ρ̄=
1
2l

∫ l

−l
ρ(x, h) dx

=
1
2l

(∫ σ1h

−l
ρl dx +

∫ umh

σ1h
ρ1 dx +

∫ σ2h

umh
ρ2 dx +

∫ l

σ2h
ρr dx

)
=

1
2

(ρl + ρr) + k(ρlul − ρrur),

m̄ =
1
2l

∫ l

−l
m(x, h) dx

=
1
2l

(∫ σ1h

−l
ml dx +

∫ umh

σ1h
m1 dx +

∫ σ2h

umh
m2 dx +

∫ l

σ2h
mr dx

)
=

1
2

(ml + mr) + k(pl − pr) + k(mlul − mrur),

q̄ =
1
2l

∫ l

−l
n(x, h) dx

=
1
2l

(∫ σ1h

−l
ql dx +

∫ umh

σ1h
q1 dx +

∫ σ2h

umh
q2 dx +

∫ l

σ2h
qr dx

)
=

1
2

(ql + qr) + k(plul − prur) + k(qlul − qrur).

(2) If the Riemann solutions are

Ul
R1
−−→ U1

J2
−→ U2

S 3
−−→ Ur,

then

ρ̄=
1
2l

∫ l

−l
ρ(x, h) dx

=
1
2l

(∫ (ul−cl)h

−l
ρl dx +

∫ (um−c1)h

(ul−cl)h
ρ(x) dx +

∫ umh

(um−c1)h
ρm,1 dx +

∫ σh

umh
ρ2 dx +

∫ l

σh
ρr dx

)
=

1
2

(ρl + ρr) + k[(ul − cl)ρl + ρ1c1] +
1
2l

I − kρrur,

https://doi.org/10.1017/S144618111600033X Published online by Cambridge University Press

https://doi.org/10.1017/S144618111600033X


432 W. F. Jiang and Z. Wang [5]

where x/h = u − c, c2 = c2
l e−2τy, I =

∫ um−cm,1

ul−cl
ρ(x, h) dx. Since

x
h

= ul +
2

γ − 1
cl − βcle−τy,

we obtain

1
2l

I =
1
2l

∫ (um−c1)h

(ul−cl)h
ρ
( x
h

)
dx

=
1
2l

∫ (1/τ) log(cl/c1)

0
ρle−y/γh(−βcl)e−τy(−τ) dy

= k
∫ log(cl/c1)

0
βρlcle−βs ds (with y = s/τ)

= k(ρlcl − ρ1c1).

Thus

ρ̄= 1
2 (ρl + ρr) + k[(ul − cl)ρl + ρ1c1] + kρl(cl − c1) − kρrur

= 1
2 (ρl + ρr) + k(ρlul − ρrur),

which completes the proof of the theorem. �

3. The invariant region for the equation of gas dynamics

We suppose that the weak solutions of (1.1) exist in a bounded invariant region Σ

and that U = (ρ, m, q) ∈ Σ is a point which belongs to the neighbourhood of Ul: that
is,

F(ρ,m, q) ≤ C.

Depending on the convexity of Σ, F(ρ̄, m̄, q̄) reaches a maximum value at (ρl,ml, ql).
From (1.2) and (2.2),

ρ =
ρl + ρ

2
+

k
2

(ml − m)

m =
ml + m

2
+

k
2

{3 − γ
2

ml
2

ρl
+ (γ − 1)ql −

3 − γ
2

m2

ρ
− (γ − 1)q

}
q =

ql + q
2

+
k
2

{
γ

mlql

ρl
−
γ − 1

2
ml

3

ρl
2 − γ

mq
ρ

+
γ − 1

2
m3

ρ2

}
.

(3.1)

According to the extremum principle and the Lagrangian multiplier method, there
exists λ ∈ R such that 

∂F(ρ,m, q)
∂ρ

∣∣∣∣∣
Ul=U

−λ
∂F(ρ,m, q)

∂ρ
= 0

∂F(ρ,m, q)
∂m

∣∣∣∣∣
Ul=U

−λ
∂F(ρ,m, q)

∂m
= 0

∂F(ρ,m, q)
∂q

∣∣∣∣∣
Ul=U

−λ
∂F(ρ,m, q)

∂q
= 0.
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Eliminating λ yields{
Fq(Fρρρ + Fmmρ + Fqqρ) = Fρ(Fqρq + Fqmq + Fqqq)
Fq(Fρρm + Fmmm + Fqqm) = Fm(Fρρq + Fmmq + Fqqq). (3.2)

Substituting (3.1) into (3.2), and with an arbitrary value of k,
[
γ

mq
ρ2 − (γ − 1)

m3

ρ3

]
Fq

2 +
3 − γ

2
m2

ρ2 FmFq + γ
m
ρ

FρFq + (γ − 1)FρFm = 0[3
2

(γ − 1)
m2

ρ2 − γ
q
ρ

]
Fq

2 + (2γ − 3)
m
ρ

FmFq − FρFq + (γ − 1)Fm
2 = 0.

(3.3)

Then

γ − 1
2

[m3

ρ3 Fq
2 + 3

m2

ρ2 FmFq + 2
m
ρ

FρFq + 2FρFm + 2
m
ρ

Fm
2
]

= 0.

For γ > 1, set t = m/ρ to yield t3Fq
2 + 3t2FmFq + 2tFρFq + 2FρFm + 2tFm

2 = 0, that
is,

(tFq + Fm)(t2Fq + 2tFm + 2Fρ) = 0. (3.4)

We solve equation (3.4) for the following two cases.
(I) If tFq + Fm = 0, substituting into (3.3) gives

Fρ =

[
γ + 1

2
m2

ρ2 − γ
q
ρ

]
Fq,

and we conclude that 
Fm =

m
ρ

Fq

Fρ =

[
γ + 1

2
m2

ρ2 − γ
q
ρ

]
Fq.

(3.5)

Depending on the first equation of (3.5) and taking ρ as a constant,

F(ρ,m, q) = G
(
ρ, q −

m2

2ρ

)
. (3.6)

Substituting (3.6) into the second equation of (3.5) yields

F(ρ,m, q) = f
(
ρ−γ

(
q −

m2

2ρ

))
.

(II) If t2Fq + 2tFm + 2Fρ = 0, substituting into equation (3.3) yields
Fm =

[
−

m
ρ
±

√
γ

γ − 1

(q
ρ
−

m2

2ρ2

)]
Fq

Fρ =

[1
2

m2

ρ2 ∓

√
γ

γ − 1

(q
ρ
−

m2

2ρ2

)m
ρ

]
Fq.

(3.7)
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Depending on the first equation of (3.7) and taking ρ as a constant,

F(ρ,m, q) = G
(
ρ, 2
√

y ±
√

γ

γ − 1
m
ρ

)
, (3.8)

where y = q − m2/2ρ. By setting

z = 2
√

y ∓
√

γ

γ − 1
m
ρ

and substituting (3.8) into the second equation of (3.7),

Gρ =

[
∓

√
γ

γ − 1
mρ−3/2 ∓

√
γ

γ − 1
m
ρ2

]
Gz.

Then [
∓

√
γ

γ − 1
mρ−3/2 ∓

√
γ

γ − 1
m
ρ2

]
cannot be presented as a function of ρ and z, because z is a function of q. Thus, if
the nonisentropic gas dynamic system (1.1) has a bounded invariant region, then the
boundary equation must be

F(ρ,m, q) = f (ρ−γy) ≡ C,

where C is a constant. In other words, q = (2ρ)−1m2 + Cργ.
The function q = q(ρ,m) is convex in the (ρ,m, q)-space, which means that, for

the convex invariant region of (1.1), q ≥ (2ρ)−1m2 + Cργ. It is obvious that such an
invariant region is not bounded for ρ, m and q, which leads to the following main
theorem of our paper.

Theorem 3.1. A bounded invariant region does not exist for the equations of
nonisentropic gas dynamics with an ideal gas.

Without a bounded invariant region, we cannot obtain the uniform bounded
estimation, which is the first step of the compensated compactness method. The result
indicates that there is a big gap between the nonisentropic case and the isentropic case.

4. Conclusion

We have shown that a bounded invariant region does not exist for one-dimensional
equations of nonisentropic gas dynamics with an ideal gas. This indicates that the
compensated compactness theory encounters bottlenecks when solving equations of
nonisentropic gas dynamics. In a future work, we will investigate the equations of
nonisentropic gas dynamics with a nonideal gas. We will propose a necessary and
sufficient condition about the gas state p(ρ, s), to prove that, for a special gas state, a
bounded invariant region for equations of nonisentropic gas dynamics does exist.
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