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1. Introduction. A semigroup endowed with a unary operation satisfying the
identities

x=xx~lx, x~l=x~1x, (x"1)""1 = x
is a completely regular semigroup. In several recent papers devoted to the study of the
lattice ^CtiSl) of subvarieties of the variety <#5? of completely regular semigroups,
various results have been obtained which decompose special intervals in S£{V$R) into
either direct products or subdirect products. Petrich [14], Hall and Jones [6] and Rasin
[20] have shown that certain intervals of the form [ST, "U v V], where 3~ is the trivial
variety and aU,Ye^{c€9i) are subdirect products of [3~, °U] and [ST, V]. Pastijn and
Trotter [13] show that certain intervals of the form [°U f~l V, °U v V] are direct products of
the intervals [% D V, % and [<& n °V, T]. The main objective of this paper is to develop
an appropriate lattice theoretic framework for these representations.

A key observation is the fact that i?(^S?) is modular. This was proved by Pastijn [11]
using PoMk's Theorem [18]. Since the derivation of Pol&k's Theorem is quite ardous, we
provide an alternative proof of this fact which requires only fairly elementary techniques
together with just one of the concepts used in Pol£k's Theorem but nothing like its full
strength. In doing so we establish results of independent interest concerning commuting
fully invariant congruences on the free unary semigroup.

The necessary background is introduced in Section 2. In the main result of Section 3,
it is established that the interval of congruences between the smallest completely regular
congruence and the smallest semilattice congruence on the free unary semigroup is a
lattice of commuting congruences.

In Section 4, taking advantage of the fact that the mapping y - » ( V n y , V v 5̂ ) is
an isomorphism of the lattice X{%9i) onto a subdirect product of the lattice l£(Sf) of
subvarieties of the variety y of semilattices and the interval [&, ̂ Sft], it is shown that
X{^9t) is modular.

Section 5 is devoted to the study of the mapping x-*(a AX, b AX) (X e L) where a
and b are fixed elements of a lattice L, and the conditions under which this mapping will
be a faithful representation of the ideal generated by a v b as a subdirect product of the
ideals generated by a and b, respectively. These results are then applied to obtain
descriptions of the lattices of subvarieties of orthodox cryptogroups and locally orthodox
cryptogroups from [14] and [6], [20], respectively.

The main result of Section 6 establishes that if K and r are disjoint congruences on a
lattice L and the elements a,beL are such that a K a A b r b/ then the mapping
x-* (JC A a, x A b) is an isomorphism of [a A b, a v b] onto [a A b, a] x [a A b, b]. Various
equivalent conditions on a and b are considered. In particular, if K and T are complete
congruences and aK, a1 are the maximum elements of aic and at, respectively, then a" and
az satisfy these conditions.

Glasgow Math. J. 32 (1990) 137-152.

https://doi.org/10.1017/S0017089500009162 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500009162
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In Section 7, the results of Section 6 are applied to £{%'3£) by taking advantage of
the kernel and trace relations K, T, T, and Tr. In this way decompositions of the intervals
[S; €<€% [MM, LO^V] and [$e<S, CLO<%<0\ from [14], [6] and [21], respectively, are
provided with simpler and more systematic derivations.

ACKNOWLEDGEMENT. The authors wish to acknowledge that the question of commut-
ing congruences on the free unary semigroup was not considered in the first verison of this
paper. However, this aspect was raised by F. Pastijn in conversation with the second
author at the International Conference on Algebra in Lisbon, June 1988. As a result,
Section 3 was revised, using the same techniques. The referee pointed out that a similar
analysis to that in Section 3 has been performed independently by F. Pastijn and an
analysis similar to that in Sections 5, 6 and 7 has been performed independently by
P. Trotter.

2. Preliminaries. We refer the reader to [8] for basic information, notation and
terminology for semigroups. For any semigroup 5, let E(S) denote the set of idempotents
of 5 and let 'S(S) denote the lattice of congruences on 5. Throughout the following, let X
denote a fixed countably infinite set and U denote the free unary semigroup on X (for
details, see [3]). The variety Votfl of completely regular semigroups is the subvariety of the
variety "U of unary semigroups defined by the identities

x=xx~1x, xx~1 = x~1x, x = ((x)~1)~l.

We denote the usual antiisomorphism between the lattice of fully invariant
congruences on U and the lattice of unary varieties by it. Let £ be the fully invariant
congruence on U corresponding to %*3t under n. We identify the free completely regular
semigroup F = F^&i on X with t//£. The following varieties will be important.

?T—trivial semigroups,
^—groups,

—right groups,
—rectangular groups,

<€£?—completely simple semigroups,
if—semilattices,

normal bands,
regular bands,

58—bands,
ryptogroups (completely regular semigroups with %! a congruence),

—normal cryptogroups (completely regular semigroups with $? a normal band
congruence),

6%—orthogroups (completely regular semigroups 5 for which E(S) is a
subsemigroup).

For any variety V, we shall write i?(T) for the lattice of subvarieties of Y.
In general, we will write £ r for the fully invariant congruence on U corresponding to
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COMPLETELY REGULAR SEMIGROUPS 139

the subvariety Y of <<?3?. Let

u° = uu~l, for any u e U,
c(u) = the set of variables from X appearing in u e U,
#(u) = the cardinality of c(u),
h(u) = the first element of X to appear in u when read from left to right,
t{u) = the last element of X to appear in u when read from left to right,

|
e = identity relation,

Z+ = the free semigroup on the (non-empty) set Z,
A\B = the set of elements in A but not in B,

0 = the empty set,
0 = the relational product.

Let ue U and v be the largest initial segment of u when viewed as an element in
(XU {(,)~1})+ containing all but one of the elements of c(u). Then s(u) is the word
obtained from v by deleting all unmatched brackets (.

We will be concerned mainly with A and, for any p, a e A with pco will write

[p, o] = {T e A | p c r c a}.

For any Y e £($<&) we define the Mal'cev product of 38® and T by

gfcĉ o T = {5 e *#$ | there exists a congruence p on S with ep e 9?^,

for all e e £(5), and S / p e r } .
LEMMA 2.3. Lc/ T e i ? ^ ) .

(i) $«°re<£(<£&).
(ii) 5 e W8° Y if and only if there exists p e «(S) with pc®. and Sip 6 Y.

Proof, (i) See (Jones [10], Theorem 5.1).
(ii) This follows easily from the definition.

Two particular Mal'cev products are important for the discussion below. For any
property or class 9?, we will say that 5 e "<?£% is locally & if eSe has the property SP or is in
the class 9° for all e e £(S). Then we define

ff—the variety of right regular orthogroups,

= 3/t<S°£eJf®—the variety of locally right regular orthogroups.

In the remainder of this section we develop tests for ^-equivalence in U/p
(P 6 [£,&])•

LEMMA 2.4 (i) t y / t ^ o w S 3/1. (ii) S W C i . » « w c 9 J .

Proof. These observations follow easily from the definitions of S?S?C^ and
as Mal'cev products and Lemma 2.3(ii).

COROLLARY. 2.5. Let pe[£, t,y] and u,v eU.

(i) Iftastvs^P^ Zsr, then
up 3k u p O u ^ u <$c{u) = c(v).

(i«) If tLsmo<s^P £ £<KAT9I, '&<?«
= c(v) and h(u) = h{v).
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Proof, (i) Let up 91 vp. Then clearly u£y 9t u£y. But 0t = e in $f. Hence u £y v.
Conversely, let u £y v. Then (up)£a./p (up) so that, by Lemma 2.4(i), we have up 91 vp.
The second equivalence is well known.

Part (ii) follows similarly.

LEMMA 2.6. (i) i?(<g9?) is the disjoint union of the intervals [3~, <€&], [Sf,
LmMOtg] and [2®.®, <&<3L\

(ii) [£, £y] is the disjoint union of the intervals [t,gt9io<s, £*•], [£z.<a<ao«> Cawa] and

Proof, (i) This can be found in (Pastijn [11], Lemma 5).
(ii) This follows from (i) via the antiisomorphism n.

For any p e [£, £<e&®\, let ps denote the relation defined on U by

upsv«there exist w, teU with wpt, u=s(w) and v = s(t).

We also adopt the convention that 0 p*0.

LEMMA 2.7. Lef p e [£, £*»«]•
(i) ps is a fully invariant congruence.
(ii) The mapping p-+ ps is a complete endomorphism of [£, Cjegsge]-
(iii) Ler u, v e U. Then

up Sfc i)pOc(w) = c(v) and s(u) ps s(v).

Proof, (i) See (Polak [17], Theorem 3(4)).
(ii) See (Polak [18], Theorem 1.6(1)).
(iii) This is established in the proof of (Poldk [17], Theorem 3(1)).

3. Commutativity in [£, a>]. Recall that congruences A and p on an algebra are said
to commute if A°p = p°A. In this section, we consider which congruences A,p in [£, co]
commute. The main result is the following.

THEOREM 3.1. [£«y, <w] and [£, t>y\ are lattices of commuting congruences.

Proof. That [^y, a>] is a lattice of commuting congruences is a straightforward
consequence of the description in (Rasin [19]) of the lattice of fully invariant congruences
on the free completely simple semigroup F^S? /^ y . So we consider the interval [£, £y].

Let A,pe[£, fy]. Then any A°p-related or p°A-related elements must have the
same content. So, for n s 1, let

We will prove, by induction on n that

A°Pk = P°A|*,,. (1)

First, let u, v, w e Kx be such that

u A v p w. (2)

Since A,p c £y, it follows that c(«) = c(w) = {x}, say, so that w£, vt,, wt, e Hxl and
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we have

But Hxi is a group and so the restrictions of kit, and pit, to Hxi commute. Hence there
exists an element v* e Kx such that

whence u p v* A w so that M p°A w. Thus A ° p c p ° A o n # ! and the claim holds for n = 1
by symmetry.

Now suppose that (1) holds for n and consider the restrictions of A°p and p°X to
Kn+V Let M, u, w G #„+! be such that (2) holds. Our first goal is to establish the following
claim:

there exists be I) with up 91 bp and bk 91 wk. (3)

We consider five cases, all but one of which are straightforward.

Case 1. ^ g j ^ c A c fy. In this case c(u) = c(w) and, by Corollary 2.5(i), we have
up 9t up and uk 9t wk.

Case 2. Cgsao^s P £ £y- 1° this case c(w) = c(w) and, by Corollary 2.5(i), we have
up 9t wp and wk 9t wk.

Case 3. ZLgtmo<s^k^t'ejrm a n d P £ t-sva- Then /i(u) = /i(u) = /i(w) and c(«) =
c(w). Hence, by Corollary 2.5(ii), up 91 up and uk 91 wk.

Case 4. CLKKOS S P £ Ĉ jvgj and i c i ; ^ , . Then /I(M) = A(u) = /I(H') and c(u) =
c(u). Hence, by Corollary 2.5(ii), up 9t wp and wk 91 wk.

Case 5. A,p c ^mm. From (2), we have that

s{u) ks s{v) ps s(w).

From Lemma 2.7(ii), it follows that ks,ps e [£, ^se»m] and therefore that C(S(M)) =
c(5(u)) = C(J(W)). But #(s(u)) = nso that by the induction hypothesis, we can assert that
there exists an element a e Kn with

s(u) ps a ks s(w).

Let zeX be such that c(p)\c(s(p)) = {z}, for p e {u, v, w}, and let b = az. Then
a = s(b) and c(6) = c(u) = c(w). By Lemma 2.7(iii), up 91 bp and 6A 9t wk.

By Lemma 2.6(ii), the above cases cover all possibilities and so we can conclude that
(3) holds for #(u) = n + 1.

By duality, there exists an element d e U with c(d) = c(u) — c(w) and

upSedp and dAifwA. (4)
Hence

M V & V by (3)

pb°u°d0 by (4).
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Similarly, we have wokb°u°d0. Consequently, with e = u°, f = v°, g = w° and h
(bou°d°)0, we have e phlg.

Therefore
uS{ef)ouep(hf)°uhk(hf)°vh,
w t (gffwg A (hf)°wh p (hffvh.

Now the elements
p = (hffuhZ, q = (hf)°vhZ and r =

all lie in the #?-class / / ^ of F^S? and, by (5) and (6),

(5)

(6)

(7)

Since congruences on a group commute, the restrictions of A/£ and p/£ to Hh^ commute
so that there must be an element z e U, with s = z£eHhi such that

ppltskltr. (8)

From (5), (6), (7) and (8), we have

up(hf)°uhpz and wk{hffwhkz

so that u p°Xw. Thus X°p ̂ p°k on Kn+1 and, by symmetry, we must have A°p = p°A
on Kn+i. By induction, the proof of the theorem is now complete.

The following example illustrates that the result in Theorem 3.1 cannot be extended
to cover the whole interval [£, «].

EXAMPLE 3.2. The congruences ^y and t,XJfm do not commute. Let x, y, p, q be
distinct elements of X. Then

Now suppose that there is an e lement ueU such that

(xpyf

Since ^ a e s C y . we must have t(u)e {x, p, y). But, for any elements a,beU, if
a £<gy 6, then necessarily t{a) = t(b). Hence,

q = t((xyq)°) = t(u)e{x,p,y}

which is a contradict ion. Therefore
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4. Modularity of i?C^S?). In this section we shall show how the modularity of
is a simple consequence of the results of Section 3. We will require the following

two lemmas.

LEMMA 4.1 (Birkhoff [1], page 86). Any lattice of commuting congruences on an
algebra is modular.

LEMMA 4.2 (Hall and Jones [6], Proposition 3.5). The mapping

is an isomorphism of^(<SS?) onto a subdirect product of £{&) and [Sf, %<3([.
This prepares the way for an alternative and simpler verification of the following

result of Pastijn's [11].
THEOREM 4.3. «£(«&) is modular.

Proof. By Lemma 4.1 and Theorem 3.1, it follows that the interval [£, £y] is
modular. But n induces an antiisomorphism of the interval [£, £y] onto the interval
[y, ^Sk] so that [Sf, <€&,] is also modular. On the other hand, %(y) is just a two element
chain consisting of y and J". Hence SEfJf) is certainly modular. Consequently, by Lemma
4.2, SB{^9f) is a subdirect product of two modular lattices and as such is necessarily
modular.

Concerning Theorem 4.3, it is interesting to note similar results concerning other
classes of algebras. It is well known that the lattice of varieties of lattices is distributive
and that the lattice of varieties of groups is modular. On the other hand, the lattice of
varieties of inverse semigroups is not modular ([15], Corollary XII.3.7) while the lattice of
varieties of commutative semigroups satisfies no lattice identity ([2], Theorem 2). In the
domain of completely regular semigroups, the modularity of !£(%y) was established in
(Rasin [19], Corollary 6) and the modularity of ^(^'S) in (Hall and Jones [6], Theorem
3.1).

In subsequent sections we shall be interested in decompositions of intervals in
££{Vo$i). It is of some interest to note here that modularity implies, without further
assumptions, that certain intervals are isomorphic.

COROLLARY 4.4. Let % Ye X{^^k). Then the mappings W^> Wv°U and W-*
WHY are mutually inverse isomorphisms between the intervals [°U (~\ Y, Y] and
[% <U v Y].

Proof. Straightforward.

5. Subdirect product representations. One approach used in the study of
has been to describe certain ideals of the form Se(°U v Y), for suitable °U, Y e i ? (^^) , as
particular subdirect products of 3?(°U) and i?(T). In this section we place this approach in
a lattice theoretic setting.

For any lattice L and any ae L, let

[a) = {xeL\a<x}, (a] = {x eL \ x <a}

and define the mappings

Ha:x—*x A a, va:x-*xva (x e L).
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The element a is said to be neutral in L if the mapping

cpa:x^>(x /\a, x v a) (x e L)

is an isomorphism of L onto a subdirect product of (a] and [a).
In a modular lattice, the test for neutrality can be simplified.

LEMMA 5.1 ([5]). Let L be a modular lattice and a e L. Then the following statements
are equivalent:

(i) a is neutral;
(ii) na is a homomorphism;
(iii) va is a homomorphism.

For any elements a, b in a lattice L, let

Pa,b = {(x, y)e(a]x(b]\xAb=y A a}.

Our first concern regarding Pab is to determine when it is a sublattice of (a] x (b].
The properties considered in the next observation will be helpful.

LEMMA 5.2. Let L be a lattice and a,beL. The restriction of / /O A 6 to (b] is a
homomorphism if and only if the restriction of \ia to (b] is a homomorphism.

Proof. Necessity. For any x, y e (b],

(x v y)na = (xvy)Aa = (xvy)A(bAa) = (xv y)naAb

= xna/,bv yna/,b = {x A a A b) v {y A a A b)

= (x A a) v (y A a)=xna vyfxa

and, since \ia clearly respects meets, the desired statement holds.
Sufficiency. For any x, y e (b],

(x vy)naAb = (xvy)AaAb = (xvy)Aa = (xvy)fia

= xfia vyna = (x A a) v (y A a)

= (x A a A b) v (.y A a A b) = (xiiaAb) v (yfiaAb)

and, since /XOA6 clearly respects meets, the statement holds.

LEMMA 5.3. Let L be a lattice and a,b e L. Then Pab is a subdirect product of (a] and
(b] if and only if the restrictions of \ia to (/>] and of nb to (a] are both homomorphisms.

Proof. Let P = Pab.

Necessity. Let x,y e (/>]. Then (aAx)Ab=aAx=xAa so that (a A X, X) e P.
Likewise (a A y, y) e P. But P is a sublattice of (a] x (b] whence
((a A x) v (a A y), x v y) e P. Consequently, by the definition of P,

{{a A x) v (a A y)) A b = (x v y) A a

which implies that

a A (x v y) ̂  (a A X) V (a A y).

Since the reverse inequality is clearly valid, it follows that

a A (x v y) = (a A X) V (a A y)
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and, since /xfl clearly respects meets, we see that fia is a homomorphism on (b]. By
symmetry, the direct implication holds.

Sufficiency. Let (x, y), (u, v) e P. Clearly,

(x, y) A(u,v) = (xAu,yAv)eP
while

(x v «) A b = (x A b) v (u A b) = (y A a) v (v A a) = (y v u) A a

so that (x, _y) v («, v) = (* v u, y v u) e P and P is a sublattice of (a] x (b]. If Jt e (a], then
xAb = (xAb)Aa and (JC, x A b)s P. Similarly, for any y e (ft] we have (y A a, y) e P.
Thus P is a subdirect product of (a] and (fc].

The preceding lemma warns us that, in general, Pab need not be a sublattice despite
the simple formulation. This implies, in particular, that in the representation theorem to
follow, it is not sufficient to check that the mappings q> and xp are mutually inverse order
isomorphisms.

THEOREM 5.4. Let L be a modular lattice and a,b e L be neutral in the sublattice
(a v b\. Then Pabis a subdirect product of (a] and (b] and the mappings

<p:z-»(z A a, z Ab), rp:(x, y)^>x vy
are mutually inverse isomorphisms between (a v b] and Pab.

Proof. By Lemma 5.3, P = Pab is a sublattice of (a] X (b]. Since a and b are neutral
in (a v b], it is clear that <p is a homomorphism of (a v b] into P while if) clearly maps P
into (a v b]. Let z e (a v b]. Then

(a v (z A b)) A b = (a A b) v (z A b) = (a v z) A b,

(a v (2 A b)) vb = avb = (avb)vz = (avz)vb
so that, by the modularity of L, a v (2 A b) = a v z. Hence

((z A a) v (z A fe)) A a = (z A a) v (z A a A b) = z A a,

((z A a) v (z A fe)) v a = flv(zAfc) = a v z = z v a .

By modularity, it follows that z(pty = (z A a) v (z A 6) = z and <pi// is the identity mapping
on (a A b].

Now let (JC, y) e P. Then
(x v y) A a = (x A a) v (y A a) = x v (x A b) = x.

Similarly, (x vy) Ab =y whence

(x, y)rpcp = ((* v y) A a, (xvy)Ab) = (x, y)
so that V<P is the identity mapping on P and therefore, since both q> and t/; are order
preserving, (p and V are mutually inverse isomorphisms.

We now apply these lattice theoretical considerations to if^Sft). We shall want to
refer to some additional varieties:

C^—orthocryptogroups (orthodox cryptic completely regular semigroups),
/,0<gc0_iocally orthocryptogroups (all 5 e O such that eSe e CGW, for all

eeE(S)),
CLOD'S—{S e <#$| the subsemigroup of 5 generated by £(5) lies in
These varieties appear in some interesting relationships.
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LEMMA 5.5. (i) 38 v « = &€<§. (ii) 38 v ($<f=LC(G(8. (iii) 0<$ v <€!/> =

Proof, (i) See (Petrich [14], Lemma 1).
(ii) See (Hall and Jones [6], Corollary 5.4).

(iii) See (Hall and Jones [6], Theorem 5.3 and Reilly [20], Proposition 5.3).

LEMMA 5.6. (i) The varieties <S and ^y are neutral in
(ii) The variety 28 is neutral in

Proof. It is proved in (Jones [9], Theorems 3.1 and 3.3) that n<g and \i<$<f are
homomorphisms on i?(^S^) and it follows easily from (Hall and Jones [6], Proposition
3.4) that the restriction to &('$'&) of fim is also a homomorphism. The claims then follow
from Theorem 4.3 and Lemma 5.1.

COROLLARY 5.7. (i) (Petrich [14], Theorem) The mappings

are mutually inverse isomorphisms between g(6c€cg) and ££($) X
(ii) (Hall and Jones [6], Corollary 5.5, Rasin [20], Proposition 1) The mappings

are mutually inverse isomorphisms between 3?(L€<€<&) and P^^y.

Proof, (i) By Lemma 5.6 and Theorem 5.4, the mappings in (i) are mutually inverse
isomorphisms between i?(S8 v "§) and Pm/3. But, by Lemma 5.5, 39 v <S= C^'S and, since
m D ® = 2T, we have P^ = i?(38) x £(<§).

(ii) By Lemma 5.6 and Theorem 5.4, the mappings in (ii) are mutually inverse
isomorphisms between %{% v ^SP) and P® xy,. In addition, by Lemma 5.5, S3 v

A further result of the genre being considered in this section appears in ([21],
Theorem 4.9) where it is shown that ^ ( C ^ v ^50 is isomorphic to Po^^y. A
consequence of this result is that C& is neutral in i?((?^ v %&). However, no direct
simple verification of the neutrality of CS in £6(6^ v ^if) is available so that the
approach given here does not lead, as yet, to any economy of effort in the derivation of
the result.

6. Representing intervals in lattices. In this section we will study certain cir-
cumstances under which an interval of the form [a A b, a v b] in a lattice may be
isomorphic to the product [a A b, a] x [a A b, b] with a view to applying this to the lattice
i f C ^ ) . The relationships explored in the first lemma are central to these deliberations.

For any complete congruence A on a complete lattice L and any a e L, the class ak is
an interval. We define aA and ax by ak = [aA, ax].

LEMMA 6.1. Let K and x be congruences on a lattice L and a,b e L. The following
statements are equivalent.

(i) OK a Ab x b. (ii) a x aw b Kb.
Suppose further that L is a complete lattice and that K and x are complete congruences.
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Then (i) and (ii) are equivalent to each of the following statements.
(Hi) aK<b<a\ (iv) aK <b,bx<a.
(v) a<bK,b^ar. (vi) bT<a<bK.

Proof. If (i) holds, then
a = a v {a f\ b) x a v b, b = (a/\b)vbicavb

which gives (ii). The argument to show that (ii) implies (i) is similar. Now let L be a
complete lattice and K and x be complete congruences.

If (ii) holds, then
aK < (a v b)K = bK < b <a v b < (a v b)r = ax

which yields (iii). If (iii) holds, then bx < (aT)r = aT < a and (iv) holds. If (iv) holds, then

a<aK = (aK)K<bK and b <bz = (bz

so that (v) holds. If (v) holds, then bT :£ (aT)T = aT^a whence (vi) holds. Finally assume
that (vi) holds. Then

aK<(bK)K = bK<b.

But we also have aK ̂  a. Hence aK < a A b ̂  a which implies that a K a A b. From br<a
we deduce that 6r ^ a A 6 < 6 so that b x a t\b and (i) follows.

If L, a, 6, K and r satisfy (i) and (ii) in Lemma 6.1, then we will say that a and b are
Kx-neighbours.

Congruences K and x on a lattice L are said to be disjoint if JC D T = e.
It is important to note that the property of being neighbours is invariant under

dualization. For any lattice L, its dual L* is the lattice obtained from L by interchanging
the operations v and A .

COROLLARY 6.2. Let K,X be (disjoint) congruences on a lattice L. Then K,X are
(disjoint) congruences on L*. If a,b e L are Kx-neighbours in L, then they are
XK-neighbours in L*.

LEMMA 6.3. Let K and x be disjoint complete congruences on a complete lattice L and
let a e L. Then

a = aK v at = a A a .
Proof. Since K and x are congruences, we have

aK v ax K a v aT = a and aK v aT x aK v a = a

so that aK v aT (KC\ X) a. But *: and x are disjoint. Therefore a = aK v av. The second
equality follows by duality.

COROLLARY 6.4. Let K and x be disjoint complete congruences on a complete lattice L
and let a eL. Then aK, aT are Kx-neighbours and aK, ax are XK-neighbours.

aKAaT
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Proof. By Lemma 6.3, we have

a" Aav = aicaK and a*Aax = axax

from which we deduce the first claim. The second claim follows similarly using Lemmas
6.3and6.1(ii).

LEMMA 6.5. Let K,X be disjoint congruences on a lattice L and a,b e L, be
Kx-neighbours. Then the mappings

cp:z->(z AO,Z Ab), xp: (JC, y)->x vy

are mutually inverse mappings between (a v b] and Pab.

Proof. Clearly q> maps (a v b] into Pab and \p maps Pab into (a v b]. Since a and b
are /cr-neighbours we have

a K a A b and ax a v b Kb.

For (x, y) e Po6, we get

(x v y) A a = (x v (y A b)) Aax(xv(yAaA b)) A (a v b)

= x v (x A b A b) = x,

(x v y) A a = ((JC A a) v y) A a K ((X A a A b) v y) A a

= ((y A a A a) v y) A a = y A a = x A b

KX A (a v b) = x.

Thus (x v y) A O(K n x) x so that (x A y) A a = x. Similarly (JC V y) A b = y whence %}>q> is
the identity mapping on Pab.

For z e (a v b], we have

(z A a) v (z A b) x (z A (a v b)) v (z A a A 6)

= z v (z A a A b) = z,

(z A a) v (z A b)K (z A a A b) v (z A (a v 6))

= (z A a A 6) v z = z.

Therefore (z A a) v (z A fe) (JC n T) Z SO that (z A a) v (z A 6) = z and <pi/; is the identity
on (a v b].

We are now ready for the main theorem of this section. One of the striking features
of this result is the fact that neither modularity nor neutrality appear in the hypotheses.

THEOREM 6.6. Let K,X be disjoint congruences on a lattice L and a,b e L be
Kx-neighbours. Then the mappings

(p:z->(z A a, z Ab), xp: {x, y)-*x vy

are mutually inverse isomorphisms between [a A b, a v b] and [a A b, a] x [a A b, b\.

Proof. Clearly <p maps A = [a Ab,a v b] into B = [a A b, a] x [a A b, b] and xp maps
B into A. Since (x, y)eB implies that x Ab = a Ab=y AO, it follows that B c Pab.
Hence, by Lemma 6.5, q> and xjf are mutually inverse bijections. To complete the proof, it
suffices to show that cp is a homomorphism since %p, as the inverse mapping, will then
automatically be a homomorphism. To show that <p is a homomorphism it suffices, by
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symmetry, to show that fia is a homomorphism on A. So let x, y eA. Then

(x A a) v (y A a) K (X A (a A b)) v (y A (a A 6))

= a A 6

= (* v y) A (a A b)

K(xvy)Aa, (9)
and

(x A a) v (y A a) T (X A (a v ft)) v (_y A (a v 6))

= * v_y

= (JC v y) A (a v b)

i ( x v y ) A o . (10)
Since *r n x = e, we conclude from (9) and (10) that

(x A a) v (y A a) = (x v y) A a.

Thus /ia respects joins. Clearly ;ua respects meets so that /xo is a homomorphism on J4, as
required.

7. Local decompositions of ^(^S?). For any equivalence relation 6 on a com-
pletely regular semigroup S, let 6° denote the largest congruence on 5 contained in 6. For
any congruence p on S, we define the kernel, trace, left race and right trace of p to be

ker p = {a eS\a pa0}, t r p = p | £ ( S ) ,

ltr p = tr(p v i?)°, rtr p = tr(p v 3Cf,

respectively. Define the relations K, T, T, and Tr on #(S) as follows: for X, p e ^(S),

XKp O kerA = kerp, A T p O t r A = trp,

AT,p O ltr A = ltr p, ATrp O rtr A = rtr p.

In what follows, let F denote the lattice of fully invariant congruences on F, the free
completely regular semigroup on X. Clearly T= {£W£ | "V e ^(^&l)} and we will write

t
LEMMA 7.1. (i) The relations K, T, T, and Tr are complete congruences on F.
(ii) KnT = e.
(Hi) T,nTr = T.

Proof, (i) The claim regarding K was established in (Pastijn [11], Theorem 11), that
for T, and Tr was established in (Pastijn and Petrich [12], Corollary 4.9) and that for T
follows from the preceding observations and part (iii).

For (ii), see (Feigenbaum [4], Theorem 4.1).
For (iii), see (Pastijn and Petrich [12], Corollary 4.8).

THEOREM 7.2. (Pastijn and Trotter [13], Theorems 5.1 and 5.2) Let p e F.
(i) The mappings

e-*(enpK,dnP
T), ( | , i j ) -> iv f j

are mutually inverse isomorphisms between [p, pK v pT] and [p, pK] x [p, pT\.
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(ii) The mappings

0 ^ ( 0 v p K , 0vpT) , (§,

are mutually inverse isomorphisms between [pK D pT, p] and [pK, p] x [pr, p].

Proof, (i) From Lemma 7.1, we know that K and T are disjoint complete
congruences on F. It follows from Corollary 6.4 that pK and pT are XT-neighbours and
the claim follows by Theorem 6.6.

(ii) This follows from (i) by duality.

THEOREM 7.3. Let p e F. Then the mappings

0^(0 vpr,, dvpTr), (§,??)-> | n»j

are mutually inverse isomorphisms between [pTl fl pTr, p] fl pK and
([pT,,p]nPK)x([pTr,p]nPK).

Proof. By Lemma 7.1(ii) and (iii), the restrictions of T, and Tr to pK are disjoint
complete congruences and so an argument similar to that for Theorem 7.2(ii) will
establish the claim.

We now wish to provide some specific illustrations of the preceding discussions but in
terms of varieties rather than fully invariant congruences.

By means of the standard antiisomorphism between F and i?( *#!%), the congruences
K and T on F determine disjoint complete congruences, which we will also denote by K
and T, on <£C%9l) as follows:

(% Y
(% Y e

For any p e F, let [p] denote the subvariety of %% defined by p = p[pl. Then, for any
Y e $£(<€&) and writing p = pr, we have

YK = [pK] and YK = [pK].

LEMMA 7.4. (i) VK = 98, & = MeV* = 0%
(ii) VT = % 9t%T = Metf = <6&.

Proof, (i) See (Polak [17], Theorem 2).
(ii) See (Petrich and Reilly [16], Section 9).

THEOREM 7.5. (i) (Petrich [14], Theorem) The mappings

are mutually inverse isomorphisms between i?(©<g10) and i?(S8) x
(ii) (Hall and Jones [6], Corollary 5.5 and Rasin [20], Proposition 1) The mappings

are mutually inverse isomorphisms between [S?38, O^'S] and
(iii) (Reilly [21], Theorem 4.9) The mappings

are mutually inverse isomorphisms between [9te% CLO^ and [9?e^, C'S] x [gte<S, %<f\.

https://doi.org/10.1017/S0017089500009162 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500009162


COMPLETELY REGULAR SEMIGROUPS 151

Proof, (i) This same result was obtained in Corollary 5.7(i) using the subdirect
product representation technique of Theorem 5.4. We provide an alternative proof here
based on Theorem 6.6 which will serve as a model for the proofs of parts (ii) and (iii).
Since 38 D <8= 2T while JK = ® and STT = % by Lemma 7.4, it follows that 53 and « are
XT-neighbours. By Lemma 5.5(i), 38 v <§= O^'S. The result then follows from Theorem
6.6.

The proofs of (ii) and (iii) follow the same pattern using the appropriate parts of
Lemmas 7.4 and 5.5.

Clearly, if % Ys 2{$9l) are both neutral in i?(<& v Y), then °U and Y are neutral
in [% D Y, °Uv Y\. When aUC\Y= 9~, these two concepts coincide and it is natural to
wonder if they coincide throughout ^(^S?). To see that this is not the case, let °U, Y,
W e <£(<§) be such that % n (Y v W) * {<U D Y) v (% n W) (since £{<§) is not distribu-
tive, there must exist such varieties; see [7]). Then we have

so that % and <& are XT-neighbours. However, by the choice of °U, we know that /i% is
not a homomorphism on SH^S) so that °U is not neutral in 3?((S). Thus Theorem 6.6 is
applicable (in a trivial sort of a way) but Theorem 5.4 is not.
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