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Nonparallel Flow: Instabilities of a Cylindrical Vortex

The cylindrical (or columnar) vortex is the simplest example of a non-parallel
shear flow, and is a useful model for tornados and other geophysical vortices. Here
we’ll examine two classes of vortex instabilities: (1) barotropic instabilities are
closely analogous to the instabilities of a parallel shear flow, while (2) axisymmet-
ric instabilities resemble convection, but with the centrifugal force playing the role
of gravity.

Consider a cylindrical coordinate system with radial, azimuthal, and axial coor-
dinates r , θ , and z (Figure 7.1) and corresponding velocities u = dr/dt , v =
r dθ/dt , and w = dz/dt . In geophysical applications, the axial direction usually
coincides with the vertical.

Assuming inviscid, homogeneous flow, the equations are

1

r

∂

∂r
ru + 1

r

∂v

∂θ
+ ∂w

∂z
= 0. (7.1)

Du

Dt
= v2

r
− ∂π

∂r
(7.2)

Dv

Dt
= −uv

r
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r

∂π

∂θ
(7.3)

Dw

Dt
= ∂π

∂z
, (7.4)

where the material derivative is

D

Dt
= ∂

∂t
+ u

∂

∂r
+ v

r

∂

∂θ
+ w

∂

∂z
, (7.5)

[e.g., Smyth (2017), appendix I; Kundu et al. (2016), appendix B.6].
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Figure 7.1 Axisymmetric (circular) vortex with cylindrical coordinates.

7.1 Cyclostrophic Equilibrium

We now seek an equilibrium state in which the flow is purely azimuthal: u =
0, w = 0, v = V (r). This flow geometry is nondivergent, i.e., (7.1) is satisfied
automatically. The momentum equations (7.2–7.4) become

V 2

r
= ∂�

∂r
∂�

∂θ
= 0

∂�

∂z
= 0.

The pressure field can vary only in r , and is related to the azimuthal velocity by

d

dr
�(r) = V (r)2

r
. (7.6)

This balance between the pressure gradient and the centrifugal force is called
cyclostrophic equilibrium.

It is also useful to define the angular velocity:

�(r) = V

r
,

the axial vorticity

Q(r) = 1

r

d

dr
(r V ),

and the streamfunction �(r) such that

V (r) = −d�

dr
.
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176 Nonparallel Flow: Instabilities of a Cylindrical Vortex

7.2 The Perturbation Equations

Now imagine a small perturbation to cyclostrophic equilibrium:

u = εu′ ; v = V (r)+ εv′ ; w = εw′ ; π = �(r)+ επ ′.

Substituting into (7.1–7.4) and linearizing, we obtain at O(ε):

1

r

∂

∂r
ru′ + 1

r

∂v′

∂θ
+ ∂w′

∂z
= 0. (7.7)[

∂

∂t
+�

∂

∂θ

]
u′ = 2�v′ − ∂π ′

∂r
(7.8)[

∂

∂t
+�

∂

∂θ

]
v′ = −Qu′ − 1

r

∂π ′

∂θ
(7.9)[

∂

∂t
+�

∂

∂θ

]
w′ = −∂π ′

∂z
. (7.10)

Exercise: Fill in the algebra.
Since the coefficients of the linearized equations depend on r , we seek a normal

mode solution with the r -dependence undetermined:

u′ = û(r)eσ t eι(�θ+mz),

where � is an integer and only the real part is physically relevant. Substituting into
the linearized equations (7.7–7.10) gives

1

r

d

dr
(r û) + ι�

r
v̂ + ιmŵ = 0. (7.11)

(σ + ι��) û = 2�v̂ − dπ̂

dr
(7.12)

(σ + ι��) v̂ = −Qû − ι�

r
π̂ (7.13)

(σ + ι��) ŵ = −ιmπ̂ . (7.14)

Two classes of perturbation are important and relatively easy to deal with.

● A barotropic perturbation has m = 0, i.e., no dependence on z. The first-mode
barotropic instability has � = 1 (Figure 7.2a), and shifts the entire vortex hor-
izontally. Higher-order barotropic modes (� = 2, 3, . . ., Figure 7.2b,c, Figure
7.3) leave the vortex in place but distort its circular shape in increasingly ornate
ways.

● The second important class of disturbances is the axisymmetric modes, also
called centrifugal instability. These have � = 0, and hence no dependence on θ ,
but m �= 0 (Figure 7.4a).
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7.3 Barotropic Modes (m = 0) 177

(a) = 1 (b) = 2 (c) = 3

Figure 7.2 Barotropic perturbations of a circular vortex, seen in plan view. In all
cases m = 0.

Figure 7.3 (a) Secondary vortices in a tornado suggestive of barotropic instabil-
ity. Photo by W. Hubbard, WISH Indianapolis, from Snow (1978). (b) Instability
with � = 8 surrounding Jupiter’s north polar vortex (courtesy NASA). Structures
appear to be barotropic, extending as deep as 3000 km (Adriani et al., 2018; Kaspi
et al., 2018).

(a) = 0 (b) =1

2
m

Figure 7.4 (a) Axisymmetric perturbation of a circular vortex. The mode takes
the form of counter-rotating secondary vortices. (b) General, normal mode
perturbation. In this case � = 1.

In each of these special cases there is a (relatively) easy way to collapse (7.11–
7.14) into a single equation.

7.3 Barotropic Modes (m = 0)

For barotropic modes (Figures 7.2 and 7.3), the trick is to recognize that the pertur-
bation flow is two-dimensional and nondivergent, and can therefore be represented
by a streamfunction. We define ψ̂ such that
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178 Nonparallel Flow: Instabilities of a Cylindrical Vortex

û = ι�

r
ψ̂ ; v̂ = −dψ̂

dr
.

Note that, with m = 0, (7.11) is satisfied exactly, and (7.14) gives ŵ = 0.
Remaining are two equations for the two unknowns ψ̂ and π̂ . These combine to
form

(σ + ι��)

[
d

dr

(
r

dψ̂

dr

)
− �2

r
ψ̂

]
= ι�

d Q

dr
ψ̂. (7.15)

Exercise: Show this.
Exercise: Compare (7.15) with the Rayleigh equation (3.18). Identify and

interpret the differences in each term.

7.3.1 Boundary Conditions for Barotropic Modes

● An impermeable boundary can be placed at any radius, say r = r1. Imperme-
ability requires that the radial velocity be zero at that boundary, i.e., û = 0, and
assuming � �= 0,

ψ̂(r1) = 0.

● If the inner boundary is to be placed at r = 0, then we need an approximate
solution for (7.15) that becomes exact as r → 0. Suppose that ψ̂ is proportional
to rα . Substituting into (7.15) and multiplying through by r1−α , we get

(σ + ι��)(α2 − �2) = ι�r
d Q

dr
ψ̂. (7.16)

The background profiles �(r) and Q(r) are not yet specified, but as long as
d Q/dr is finite, the right-hand side goes to zero as r → 0, and therefore as long
as σ − ι�� �= 0, α2 − �2 = 0. We choose the solution that is bounded as r → 0
and end up with

ψ̂ ∝ r� , or ψ̂(0) = 0.

In numerical calculations it is not a problem to have the inner boundary at r = 0,
even though r appears in the denominator of (7.15). This is because r0 = 0 is a
ghost point, so nothing is ever actually evaluated there.

● If the outer boundary is at infinity, we can again assume that ψ̂ ∝ rα , resulting
again in (7.16). If we now assume that d Q/dr decays to zero faster than 1/r as
r → ∞, then the right-hand side goes to zero, and if σ − ι�� �= 0 we again have
α = ±�. The bounded solution is now ψ̂ ∝ r−�, and the boundary condition
becomes

lim
r→∞ ψ̂(r) = 0. (7.17)
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7.3 Barotropic Modes (m = 0) 179

● In numerical calculations, we cannot actually place the outer boundary at infin-
ity, so we place it at some large but finite radius (hopefully where d Q/dr has
decreased almost to zero) and apply the asymptotic condition

dψ̂

dr
= −�ψ̂.

The perturbation equation (7.15) can then be reduced to a generalized eigenvalue
problem using derivative matrices as in the case of parallel flows.

The matrix solution of (7.15) is analogous to the case of parallel shear flow. We
first replace the derivatives with derivative matrices incorporating the appropriate
boundary conditions. We then arrange the equation as an eigenvalue equation and
find the eigenvalues and eigenvectors numerically.

Admonition: It may be tempting to define a first-derivative matrix D(1), then
use it twice to form the second-derivative. Don’t do this – it effectively replaces
the grid spacing � by 2�, degrading the accuracy of the results. In (7.15), the first
term in the brackets should be computed in the expanded form

D(1) + r · D(2),

rather than the simpler but less accurate

D(1)r · D(1).

7.3.2 Stability Theorem for Barotropic Modes

We rewrite (7.15) as

d

dr

(
r

dψ̂

dr

)
− �2

r
ψ̂ = ι�ψ̂

σ + ι��

d Q

dr
, (7.18)

then apply the operator
∫ r2

r1
ψ̂∗dr . The radii r1 and r2 are the boundaries of the

domain. The inner boundary radius may be r1 = 0, and the outer may be r2 = ∞.
The first term on the left gives∫ r2

r1

ψ̂∗ d

dr

(
r

dψ̂

dr

)
dr = ψ̂∗r

dψ̂

dr

∣∣∣∣r2

r1

−
∫ r2

r1

r

∣∣∣∣dψ̂dr

∣∣∣∣2 dr.

Using the boundary conditions derived in the previous subsection, the first term
vanishes, leaving ∫ r2

r1

ψ̂∗ d

dr

(
r

dψ̂

dr

)
dr = −

∫ r2

r1

r

∣∣∣∣dψ̂dr

∣∣∣∣2 dr.
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180 Nonparallel Flow: Instabilities of a Cylindrical Vortex

The second term on the left of (7.18) is just∫ r2

r1

�2

r
|ψ̂ |2dr.

Note that both of the above integrals are real. Applying the integral operator to the
right-hand side and taking the imaginary part, we have

0 = �
∫ r2

r1

ι� |ψ̂ |2
σ + ι��

d Q

dr
dr.

Multiplying and dividing the integrand by the complex conjugate σ ∗ − ι�� to
isolate the imaginary part gives

0 = �σr

∫ r2

r1

|ψ̂ |2
|σ + ι��|2

d Q

dr
dr.

For a growing (or decaying) mode, σr �= 0, and therefore the integral must vanish,
i.e., d Q/dr must change sign at least once in r1 < r < r2.

Theorem Given an inviscid, homogeneous, circular vortex, a necessary condition
for barotropic instability is that the vorticity gradient d Q/dr change sign somewhere
in the domain r1 < r < r2.

Note the similarity between this and the inflection point theorem for parallel
shear flows (section 3.11.1 or 3.15). As we will see later in this chapter, barotropic
vortex instabilities and parallel shear flow instabilities have many properties in
common. For these instabilities, it is not entirely wrong to think of the vortex as a
parallel shear flow bent to form a circle. However, the curvature also introduces an
important new effect: the centrifugal force. This effect is understood most simply
in the context of axisymmetric modes, which we investigate next.

Exercise: Derive a Fjørtoft-type condition for barotropic vortex instabilities.

7.4 Axisymmetric Modes (� = 0)

In the axisymmetric case � = 0, (7.11–7.14) can be combined into a single equation
for the radial velocity perturbation û:

σ 2

{
d

dr

[
1

r

d

dr
(r û)

]
− m2û

}
= �m2û, (7.19)

where

�(r) = 2�Q

is called the Rayleigh discriminant.
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7.4 Axisymmetric Modes (� = 0) 181

7.4.1 Boundary Conditions for Axisymmetric Modes

● If an impermeable boundary is placed at some r1, then the radial velocity must
vanish there, i.e., the boundary condition is just û(r1) = 0.

● Now suppose there is no inner boundary, so we need a virtual boundary condi-
tion at r = 0. Assume that, for r near zero, û is proportional to rα . Substituting
into (7.19) and multiplying through by r2−α , we obtain

σ 2{α2 − 1 − m2r2} = m2r2�.

Assuming that � remains finite, the right-hand side must vanish as r → 0.
Therefore, for nonzero σ , the quantity in braces must vanish as r → 0, hence
α = ±1. To keep the solution bounded, we choose α = 1, i.e., û ∝ r . The
boundary condition at r = 0 is therefore

û(0) = 0.

● If there is no outer boundary, we employ an asymptotic boundary condition. We
will assume that the vortex is isolated, meaning that if you go far enough away,
the vortex motion vanishes. More specifically, � → 0 as r → ∞. In that case,
for sufficiently large r , (7.19) becomes

d

dr

[
1

r

d

dr
(r û)

]
− m2û = 0

This is the modified Bessel equation (Spiegel, 1968), and its bounded solution is
the first-order modified Bessel function:

û = K1(mr).

As r → ∞, K1 can be approximated using Stirling’s formula

K1(mr) ≈ e−mr

√
2πmr

; for mr � 1.

Therefore, û → 0 in the limit r → ∞.
● An asymptotic condition is also available for use in numerical calculations where

the domain must be finite. Taking the logarithmic derivative of the Stirling
approximation to K1,

1

û

dû

dr
= d

dr
(ln û) = d

dr

[
−mr − 1

2
ln(2πmr)

]
= −m − 1

2r
.

So if the computation domain ends at r = R, the asymptotic boundary
condition is

dû

dr
= −

(
m + 1

2R

)
û.
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182 Nonparallel Flow: Instabilities of a Cylindrical Vortex

7.4.2 Stability Theorem for Axisymmetric Modes

We now apply the integral operator
∫ r2

r1
r û∗dr to (7.19). Here, r1 and r2 are the

boundaries of the domain. The inner boundary radius may be r1 = 0, and the outer
may be r2 = ∞. We’ll apply this operator individually to the two terms on the
left-hand side and the single term on the right. The first term on the left, omitting
the factor σ 2 for now, gives∫ r2

r1

r û∗ d

dr

[
1

r

d

dr
(r û)

]
dr = û∗ d

dr
(r û)

∣∣∣∣r2

r1

−
∫ r2

r1

d

dr
(r û∗)

1

r

d

dr
(r û)dr

= −
∫ r2

r1

1

r

∣∣∣∣ d

dr
(r û)

∣∣∣∣2dr.

Here, the boundary conditions derived in the previous subsection have been used.
The second term (setting aside the factor −σ 2m2) is∫ r2

r1

r û∗ûdr =
∫ r2

r1

r
∣∣û∣∣2dr.

Finally, the right-hand side (omitting m2) is∫ r2

r1

r �
∣∣û∣∣2dr.

Combining these results and restoring the various constants, we have

σ 2

{∫ r2

r1

1

r

∣∣∣∣ d

dr
(r û)

∣∣∣∣2dr + m2
∫ r2

r1

r
∣∣û∣∣2dr

}
= −m2

∫ r2

r1

r �
∣∣û∣∣2dr

or, with some rearranging

σ 2
∫ r2

r1

1

r

∣∣∣∣ d

dr
(r û)

∣∣∣∣2dr = −m2
∫ r2

r1

r
∣∣û∣∣2(σ 2 +�) dr. (7.20)

For σ 2 > 0 the integral on the right must be negative, and therefore σ 2 + � must
be negative for some r . Therefore the minimum value of �(r) must be less than
−σ 2, or

σ <
√− min

z
(�). (7.21)

Instability is possible provided that minz(�) < 0. This class of unstable modes is
called centrifugal instability.

Theorem Given an inviscid, homogeneous, circular vortex, a necessary condition
for centrifugal instability is that the Rayleigh discriminant �(r) = 2�(r)Q(r) be
negative for some r. Moreover, (7.21) gives an upper bound on the growth rate.
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7.5 Analytical Example: the Rankine Vortex 183

Centrifugal instability is closely analogous to convection. To see this, note the
similarity between (7.19) and (2.29), the equation for convective instability in an
inviscid, nondiffusive fluid with arbitrary stratification Bz(z). The Rayleigh dis-
criminant �(r) is the analog of stratification. In the convective case, if Bz < 0,
the fluid possesses gravitational potential energy that can be converted to kinetic
energy. Here, a variant of potential energy due to the centrifugal force is avail-
able for conversion to kinetic energy wherever � < 0. Also compare the growth
rate bound (7.21) for centrifugal instability with the upper bound on the convective
growth rate, (2.34). This analogy is discussed in greater detail later in section 7.8.

7.5 Analytical Example: the Rankine Vortex

The Rankine vortex has uniform vorticity 2�0 inside a radius R and zero vorticity
outside (Figure 7.5, black curves). It is a useful model for localized vortices such
as tornadoes. The vorticity gradient is given by

d Q

dr
= −2�0δ(r − R) (7.22)

There is no radius at which the vorticity gradient changes sign, so there is no pos-
sibility of barotropic instability. How about centrifugal instability? The azimuthal
velocity profile is

V (r) =
⎧⎨⎩ �0r , for r ≤ R

�0
R2

r
, for r ≥ R

⇒ �(r) =
{

4�2
0 , for r ≤ R

0 , for r ≥ R
.

(7.23)
With no negative values of �, there can be no centrifugal instability.

0 1 2 3 4 5
0

0.5

1
(a)

Rankine
continuous

0 1 2 3 4 5
–1

0

1

2

3

4
(b)

Figure 7.5 Profiles of velocity (a) and vorticity (b) for the Rankine vortex (7.23)
with �0 = R = 1 and the continuous vortex (7.29).
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184 Nonparallel Flow: Instabilities of a Cylindrical Vortex

Barotropic Waves on a Rankine Vortex

Although the Rankine vortex is stable, its barotropic wave modes are of interest.
(Finding the wave modes of the axisymmetric case is left as an exercise.) We will
find it convenient to define the complex angular velocity of the perturbation,

ω = ισ

�
,

and rewrite (7.15) as

d

dr

(
r

dψ̂

dr

)
− �2

r
ψ̂ = d Q/dr

�− ω
ψ̂. (7.24)

Except at r = R, the right-hand side of (7.24) is zero. As was noted in section
7.3.1, solutions then have the form ψ̂(r) ∝ r±�. Applying the boundary conditions
ψ̂ → 0 as r → 0 and ∞ and requiring continuity across r = R leads to

ψ̂(r) = A

{
(r/R)� , r < R
(r/R)−� , r > R

(7.25)

with A an arbitrary constant.
The dispersion relation is obtained as in the analysis of both convection at an

interface (section 2.2.4) and the instability of a piecewise-linear shear layer (section
3.3). A jump condition is found by integrating (7.24) across the delta function in
(7.22):

lim
ε→0

∫ R+ε

R−ε
d

dr

(
r

dψ̂

dr

)
dr − lim

ε→0

∫ R+ε

R−ε
�2

r
ψ̂dr = lim

ε→0

∫ R+ε

R−ε
−2�0δ(r − R)

�− ω
ψ̂dr.

(7.26)
The first integral is trivial, and the second goes to zero as its range of integration
vanishes because its integrand is finite. The right-hand side simplifies by using
properties of the delta function (Figure 2.5), leaving us with the jump condition:[[

r
dψ̂

dr

]]
R

= −2�0

�0 − ω
ψ̂(R). (7.27)

After substituting
[[

r dψ̂/dr
]]

R
= −2A� and ψ̂(R) = A from (7.25), we arrive at

the dispersion relation

ω = �0 + �Q0

2�
= �0

(
1 − 1

�

)
. (7.28)

This describes a vorticity wave being advected around the core of the vortex with
angular velocity �0 while propagating with an intrinsic phase speed −�Q0/2� =
�0/�. Note the similarity to the dispersion relation of the vorticity waves from sec-
tion 3.13.1. The wave propagates upstream relative to the vortex. The fundamental
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7.6 Numerical Example: a Continuous Vortex 185

mode � = 1, with intrinsic phase speed −�0, is stationary. Modes with higher
wavenumbers (� > 1) are unable to keep up with the advective speed and therefore
precess in the same sense as the vortex.

More complex profiles can support multiple wave modes. Like instability in an
inviscid shear layer, barotropic instability of a circular vortex can result from the
resonant interaction of these waves, as is described below in section 7.7.

7.6 Numerical Example: a Continuous Vortex

We now consider a vortex with a continuous azimuthal velocity profile, nondimen-
sionalized so that both the maximum flow and the radius of maximum flow are
unity (Figure 7.5, blue curves):

V = r e− 1
2 (r

2−1) ; Q = (2 − r2) e− 1
2 (r

2−1). (7.29)

7.6.1 Barotropic Modes

Because the vorticity gradient changes sign at r = 2, barotropic instability is possi-
ble (section 7.3.2). In fact, the barotropic mode with � = 2 is unstable as shown in
Figure 7.6a. The streamfunction eigenfunction has maximum amplitude just inside
r = 2, the inflectional radius, and the phase shifts rapidly near this radius. The
sign of the phase shift is such that phase lines of the radial velocity tilt against
the vorticity. This is the circular analog of the instability of a parallel shear flow
(Chapter 3).

1 2 3 4
0

0.01

0.02

0.03

0.04
(a)

1 2 3 4
0

0.1

0.2

0.3
(b)

0 2 4
0

0.5

1
(c)

0 2 4
1.3

1.35

1.4

1.45
(d)

Figure 7.6 Growth rate (a) and frequency (b) versus azimuthal wavenumber for
barotropic modes of (7.29). Amplitude (c) and phase (d) profiles for the fastest-
growing barotropic mode. Vertical line shows the radius of minimum vorticity (cf.
Figure 7.5).
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Figure 7.7 Streamfunction for the fastest-growing barotropic mode of (7.29).
Circles are streamlines of the background flow.

10–1 100 101 102 103
0

0.1

0.2

0.3

0.4

0.5

Figure 7.8 Growth rate versus axial wavenumber for axisymmetric modes.
Dashed line shows Rayleigh’s upper bound

√−�min .

The velocity perturbation causes the vortex to bulge inward and outward as
in Figure 7.2b. The mode is not stationary; it precesses around the vortex with
azimuthal velocity about one-fifth that of the maximum flow speed (Figure 7.6b).

7.6.2 Axisymmetric Modes

The Rayleigh discriminant 2�Q is negative for r >
√

2 (where Q < 0, Fig-
ure 7.5b). We therefore suspect axisymmetric instability, and that suspicion is
confirmed in the numerical results (Figure 7.8). There is no preferred axial scale:
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7.7 Wave Interactions in Barotropic Vortices 187

the growth rate increases monotonically with increasing axial wavenumber. This is
broadband instability, as we found previously for convective instability of an invis-
cid fluid (section 2.2). As m → ∞, the growth rate approaches the maximum value√−�min .

The radial velocity is greatest near r = √
3, where � is most negative. As m is

increased, the eigenfunction becomes more tightly concentrated near that radius.
The result is a stack of counter-rotating vortices surrounding the background
vortex, as sketched in Figure 7.4a.

Exercise: Derive a perturbation kinetic energy budget analogous to (3.56) based
on (7.7–7.10).

7.7 Wave Interactions in Barotropic Vortices

Recall from Chapter 3 that instabilities of a parallel shear flow may be interpreted
as resonant wave interactions. Here we develop an equivalent view for barotropic
modes of a circular vortex. Consider a background profile V (r) that has a concen-
tric, piecewise-uniform vorticity distribution. The vorticity gradient is composed
of a series of delta functions:

d Q

dr
=
∑

i

�Qiδ(r − Ri ), (7.30)

0 1 2 3 4 5
–0.5

0

0.5

1
(a)

0 1 2 3 4 5
0

0.5

1
(b)

Figure 7.9 (a) Profile of the Rayleigh discriminant � = 2�Q of (7.29), scaled
using the tanh function to make the minimum visible. The vertical line indicates
r = √

3, where � is a minimum. (b) Eigenfunction of the radial velocity for
various m.
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188 Nonparallel Flow: Instabilities of a Cylindrical Vortex

where �Qi is the jump in vorticity across each vorticity interface, located at
r = Ri . The advantage of choosing this type of profile (equivalent to the
piecewise-linear representation of a parallel shear flow) is that it replaces the
governing equation with the simpler form

d

dr

(
r

dψ̂

dr

)
− �2

r
ψ̂ = 0. (7.31)

This form applies between the interfaces, and has a solution that was already found
in our look at the Rankine vortex in section 7.5. Writing the solution (7.25) in a
slightly more general form, for a single interface at r = Ri we have

ψ̂(r) = Ai G(r, Ri ) where G(r, Ri ) =
{

(r/Ri )
� , r < Ri

(r/Ri )
−� , r > Ri

. (7.32)

The function G(r, Ri ) can be thought of as an “influence function”1 describing the
decay of the interfacial disturbance from its peak at r = Ri (Figure 7.10). Note
that, as in the case of the shear layer, the amplitude of G decays more rapidly
with increased wavenumber (�, in this case), so that longer waves are “felt” over a
greater distance. The solution for N interfaces is

ψ̂(r) =
N∑

i=1

Ai G(r, Ri ). (7.33)

The remaining step is to connect this solution, which applies between the
interfaces, with jump conditions that apply at the interfaces. The required jump
condition is given above in (7.27). Substituting (7.33), we have

Figure 7.10 Structure of the influence function, G(r, Ri ), in a barotropic vortex
arising from a vorticity interface located at r = Ri (dashed line).

1 More precisely, this is the Green’s function for the linear differential operator in (7.31). The use of Green’s
functions is a more general approach to solving this type of problem.
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7.7 Wave Interactions in Barotropic Vortices 189

− 2�Ai = �Qi

2�(�i − ω)

N∑
j=1

A j G(Ri , R j ). (7.34)

With a little rearranging, we can write this as

ωAi =
N∑

j=1

{
�i Ii j + �Qi

2�
Gi j

}
A j , (7.35)

where I is the N × N identity matrix and G is the influence matrix, defined
by Gi j = G(Ri , R j ). The quantity enclosed in braces is an N × N matrix,
each of whose N eigenvalues is the angular velocity ω for one of the N eigen-
modes. If ω has a positive imaginary part, the mode is unstable. The corresponding
eigenvector contains the coefficients Ai that define the radial dependence of the
amplitude.

Example: a General Two-Interface Vortex

We now look at a general example of a barotropic vortex that consists of two vor-
ticity interfaces, located at r = R1 and r = R2 and having magnitudes �Q1 and
�Q2. The influence matrix is [

0 δ�

δ� 0

]
where δ = R1/R2.

According to (7.35), the phase velocities are given by the eigenvalue equation⎡⎢⎣ �1 + �Q1

2�

�Q1

2�
δ�

�Q2

2�
δ� �2 + �Q2

2�

⎤⎥⎦[ A1

A2

]
= ω

[
A1

A2

]
. (7.36)

In the special case of a single interface at r = R1, with vorticity change �Q1 =
−2�1, we set δ = �2 = �Q2 = 0. Our eigenvalue problem (7.36) then simplifies
to

ω1 = �1 + �Q1

2�
(7.37)

which is equivalent to (7.28). Alternatively, the single interface could be located at
R2, in which case

ω2 = �2 + �Q2

2�
. (7.38)

In terms of those frequencies, the eigenvalues of (7.36) are

ω = ω1 + ω2

2
±
[(ω1 − ω2

2

)2 +�Q1�Q2
δ2�

4�2

]1/2
. (7.39)
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190 Nonparallel Flow: Instabilities of a Cylindrical Vortex

In order to have instability the vorticity jumps must have opposite sign:
�Q1�Q2 < 0. Compare this result with the theorem proven in section 7.3.2.

Note also that we recover the undisturbed phase speeds if the strength of the
interaction between the two waves, described by the factor δ2�, goes to zero. This
is equivalent to increasing the distance between the two interfaces indefinitely so
that the velocity perturbations decay to zero and the waves become uncoupled.

7.8 Mechanisms of Centrifugal and Convective Instabilities

As we noted in section (7.4.2), the stability equations (7.19) for centrifugal insta-
bility and (2.29) for convection are very similar. In fact, the only differences are due
to the cylindrical geometry of the former. Here we will describe the mechanisms
of the two instabilities in terms that will highlight the parallels between the two.

In the convectively unstable background state sketched in Figure 7.11, dense
fluid overlies light fluid.

(i) If a downward floww′ is initiated at some point (thick blue arrow), the density
at that point will increase in time.

(ii) The resulting change in the buoyancy force, F ′, is directed downward (thin
blue arrow), and hence accelerates the downward flow.

(iii) Consistent with mass conservation, this downward motion is accompanied by
upward motion at some other location. There, the reverse process happens:
the buoyancy force is perturbed so as to accelerate the upward motion (red
arrows).

In the case of centrifugal instability, the background azimuthal velocity at some
radius decreases with distance from the vortex center. On the right-hand side of the
vortex sketched in Figure 7.12, the background flow is directed into the page.

(i) A radially outward flow is initiated at some point (thick red arrow). It carries
with it a positive perturbation in azimuthal velocity, and thus an increase in
the centrifugal force (thin red arrow).

w '

F '

w

DENSE

'

F ' LIGHT 

Figure 7.11 Perturbations involved in the convective instability of a statically
unstable buoyancy distribution.
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V(r)

u'F '

F 'u' v'

v'

Figure 7.12 Perturbations involved in the centrifugal instability of a circular vor-
tex. The radial motion u advects the background azimuthal velocity to create a
perturbation, F , in the centrifugal force.

(ii) The disturbance in the force is directed outward, and hence accelerates the
outward flow.

(iii) The outward motion is accompanied by inward motion at some other loca-
tion. There, the reverse process happens (blue arrows): the centrifugal force
is perturbed so as to accelerate the inward motion.

Exercise: Examine the perturbations equations for each of these instabilities and
identify the terms that correspond to the three-part processes described above.

7.8.1 Universality of the Fastest-Growing Mode

When inspecting Figure 7.8, you may have noticed that the growth rate actually
reaches the upper bound

√− minr (�) in the limit m → ∞. There is nothing spe-
cial about the profile (7.29); in fact, it appears that this is a general property of
both centrifugal and convective instabilities in an inviscid fluid. Specifically, the
upper bound we have derived for the growth rate is actually reached in the limit of
large wavenumber (k̃ for convection, m for centrifugal instability), regardless of the
details of the profile Bz (or �), provided only that it includes at least one negative
local minimum as required by the stability theorem. An example for convective
instability is found in homework problem 16 (Appendix A).

To see why this may be so, consider the convective example illustrated in Figure
(7.13), which shows a negative local minimum of Bz . If we zoom in to a small
enough scale, the variability of Bz becomes negligible, and the solution of the per-
turbation equation (2.29) should be similar to the solution for constant Bz (section
2.2.2). In the limit of large wavenumber, the motions are locally vertical, and the
growth rate is equal to the upper bound,

√−Bz . Therefore, the fastest-growing
mode has growth rate

√− minz(Bz) regardless of the detailed shape of B(z). In
project B.7, you will have the opportunity to examine this result rigorously.
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Bz

z

Figure 7.13 Convective instability near a negative local minimum in a generic
stratification profile Bz(z).

W(r)

V(r)

r

Figure 7.14 Cylindrical vortex with axial flow.

Note that:
● The result holds only in the inviscid limit. In a viscous fluid, motions on suffi-

ciently small scales are damped. As a result, there is a preferred wavenumber
having growth rate smaller than the inviscid upper bound.

● This class of instabilities (convective, centrifugal, and others that we’ll encounter
in Chapter 8) bypasses the usual turbulent energy cascade. Rather than begin-
ning a sequential process in which motions excite successively smaller motions
until viscous dissipation takes over, the instability transfers energy directly to
the smallest-scale motions allowed by viscosity.

7.9 Swirling Flows

Vortical flows in nature are frequently accompanied by flow in the axial (typically
vertical) direction. Tornadoes and hurricanes, for example, are powered largely by
rising air in their centers. Conversely, deep convection in both atmosphere and
ocean usually involves some degree of rotation. Figure 7.14 shows a simple model
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7.9 Swirling Flows 193

in which nothing varies in the axial or azimuthal directions, but the radially varying
azimuthal background flow V (r) is accompanied by an axial component W (r).

To keep the math simple we will assume that the disturbance, like the back-
ground flow, is axisymmetric:

u′ = εu′(r, z, t), v = V (r)+ εv′(r, z, t), w = W (r)+ εw′(r, z, t),

π = �(r)+ επ ′(r, z, t). (7.40)

Substituting into (7.1–7.5), we find that the cyclostrophic equilibrium condition
(7.6) is unchanged. The equations for axisymmetric perturbations can be simplified
using the normal mode solution

u′(r, z, t) = û(r)eιm(z−ct),

where only the real part is retained and similar forms apply for v′, w′, and π ′.
The linearized continuity equation is

1

r

d

dr
(r û)+ ιmŵ = 0. (7.41)

We can therefore write the radial and axial perturbations in terms of a streamfunc-
tion:

û = −ιm ψ̂(r) ; ŵ = −1

r

d

dr
rψ̂(r).

Note that we do not assume that the flow is two-dimensional. The radial and axial
velocities can be described by a streamfunction because the azimuthal perturbation,
while nonzero, is independent of θ , and therefore does not enter into (7.41).

After the usual manipulations, which the student is encouraged to check, we
arrive at

d

dr

[
1

r

d

dr

(
r

dψ̂

dr

)]
+
[

�

(W − c)2
− Z

W − c
+ m2

]
ψ̂ = 0, (7.42)

where

Z = 1

r

d

dr
r

dW

dr
.

Now, here is something amazing. Ready?
Take a close look at (4.18), the Taylor-Goldstein equation for stratified shear

flow, and compare it term by term with (7.42). The two are practically isomorphic,
the only difference being that the form of the r -derivatives is modified due to the
cylindrical geometry. In place of Bz we have the Rayleigh discriminant �, showing
again that � represents a gradient in the centrifugal force having the same effect
as the buoyancy gradient. The place of Uzz is taken by Z , the radial gradient of the
vorticity due to the axial parallel shear flow W (r), and the axial wavenumber m
takes the place of k.
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Basically everything we learned about inviscid parallel shear flows in Chapters
3 and 4 can be turned on its side, bent around into a circle, and applied to swirling
flows.

● If the axial flow contains an inflection point, it can produce shear instability just
as U (z) does, the only difference being that the resulting vortices are circular.
Smoke rings are an example.

● If � > 0, the centrifugal force tends to oppose the instability just as gravity does
with Kelvin-Helmholtz instability when Bz > 0. In this case there is an analog to
the Miles-Howard theorem:�/(dW/dr)2, the analog of the gradient Richardson
number, must be < 1/4 at some r for instability to be possible (Howard and
Gupta, 1962).

● The axial phase velocity c must lie within a semicircle bounded by the maximum
and minimum of W (cf. Howard’s semicircle theorem).

7.10 Summary

A circular vortex exhibits two relatively simple instability types corresponding to
barotropic (m = 0) and axisymmetric (� = 0) disturbances. The instabilities are
related to shear and convective instabilities, respectively. Both the mechanisms of
the instabilities and the general theorems that govern them follow precisely as in
the previous discussions (Chapters 2 and 3).

7.11 Further Reading

See Terwey and Montgomery (2002) for a more detailed analysis of barotropic
instabilities of the concentric, piecewise-uniform vorticity distribution. The origi-
nal theory of swirling flow instabilities is in Howard and Gupta (1962).
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