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Abstract

In this paper, a fourth moment bound for partial sums of functionals of strongly ergodic
Markov chains is established. This type of inequality plays an important role in the study
of the empirical process invariance principle. This inequality is specially adapted to the
technique of Dehling, Durieu, and Volny (2008). The same moment bound can be proved
for dynamical systems whose transfer operator has some spectral properties. Examples
of applications are given.
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1. Introduction

Fourth moment bounds for partial sums of stationary processes are a key tool in the study of
functional limit theorems. In particular, they play an important role in the investigation of the
empirical process invariance principle, which will be the main focus of this paper. Let (X;);>0
be a stationary process in R, and let F(¢) = P(Xo < ¢). The empirical process associated with
(Xi)i>o is defined by

n—1

T Y Moon(Xi) = F@),  teR. (1)
i=0

We say that (Y},),,>0 satisfies an invariance principle if it converges in distribution to a zero-mean
Gaussian process. In general, proofs of invariance principles consist of two parts: a multivariate
central limit theorem and tightness. Taking into account the work of Donsker [8] on independent
and identically distributed (i.i.d.) sequences, the work of Billingsley [2, Chapter 4] on some
weakly dependent processes, and the works which followed, the chaining technique seems to
be a suitable way of obtaining the tightness of the process (¥,),>0. Fourth moment inequalities
are a central point in this technique. In many cases (such as the i.i.d. case), if an inequality of
the type

Y, (1) =

n—1 4
E(Z (L5, (Xi) = (F(1) = F(s))]) <C@ —s)+n’(t —5)) 2)

i=0
for all s < ¢ is established then the tightness of the process follows. The difficulty is to deal

with the sequence of indicator variables (1(5 ,)(X;));>0. When the process (X;);>o has some
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mixing properties, such as strong, uniform, or beta mixing, (1¢,/1(X;));>0 inherits comparable
properties and fourth moment bounds can be established, assuming some regularity conditions
on X(’s distribution function (for an overview of this theory, see [6] and the references therein).
Collet et al. [4] proved a fourth moment inequality for expanding maps of the interval (see
also [5]). They used spectral properties of the transfer operator associated on the space of
bounded variation functions and the fact that the indicators belong to this space. In other cases,
such as some types of Markov chains and dynamical systems (see [10] and [11, Chapter X]),
we can have good properties of the Markov operator or the transfer operator on other spaces of
functions which do not contain the indicator functions. In Dehling et al. [7], a new technique
for proving the empirical process invariance principle was developed using approximations of
indicators by regular functions. The fourth moment bound of Corollary 1 is well adapted to this
situation. The main point to note is that the Banach norm appears only through its logarithm. In
Section 2 and Section 3, the fourth moment inequality is stated and proved for strongly ergodic
Markov chains. In Section 4 we state the same moment bound for a class of dynamical systems.
Section 5 is devoted to examples of applications.

2. Fourth moment inequality for Markov chains

Let (X,),>0 be a homogeneous Markov chain with a stationary measure v. Denote by P
the associated Markov operator, and denote by E the state space. Consider a Banach space
(B, || - ) of v-measurable functions from E to R, which contains the function 1 = 15. We
will assume that the chain is 8-geometrically ergodic.

Definition. The Markov chain (X,,),>¢ is B-geometrically ergodic or strongly ergodic (with
respect to B) if

(a) there exist k > 0and 0 < 0 < 1 such that, for all f € 8B,

I1P"f =TI < k0" f1, 3)
where I1f = E,(f)1;
(b) there exists p > 1 such that (B, || - ||) is continuously included in (IL”(v), || - || »), i.e.
there exists a C > 0 such that, for all f € 8B,
£, = CISIL “)

where || 11, = (/' 1f17 dv)'/7.

Furthermore, we assume that there exists a constant N > 0 such that, for all f € B and all
neN,

I£P"fIl < NISIIP"f1. )

In particular, this is the case if (B, || - ||) is a Banach algebra. In the sequel, with no loss of
generality, we assume that N = 1.

Strong ergodicity covers a large class of examples (see Section 5). It corresponds to the fact
that the Markov transition operator acting on 8B has 1 as a simple eigenvalue and the rest of the
spectrum is included in a closed ball of radius strictly smaller than 1.

For a function ¢ : E — R, we consider the partial sum

Su(@) = Y 9(X)).
i=1
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The aim is to obtain a fourth moment inequality for this partial sum when the function ¢
belongs to the space 8. Our main results are the following.

Theorem 1. If (X,)n>0 is a B-geometrically ergodic Markov chain with stationary measure
v then, for all ¢ € B such that E, (¢) = 0 and ¢ € L*(v) N3 (v),

Ev(Si(@)") < Knlle(Xo)*[l1log? (o]l + 1)
+n(le(X0) lly + ll9(X0)llg + le(Xo)llg + le(Xo)II7) log* (el + 1)
+n*(lo(Xo)? [l Tog(llell 4+ 1) + le(Xo) 1)1,
where 1/p + 1/q = 1 and K is a constant.

As a consequence, the following corollary gives a simpler inequality for the case in which
the function ¢ is bounded.

Corollary 1. If (X,)n>0 is a 8B-geometrically ergodic Markov chain with stationary measure
v then, for all ¢ € B such that E,(¢) = 0, ¢ is bounded, and M, = max{l1, sup, |¢(x)|},

Ey(Su(@)h) < KM, [nllp(X0)llq log’ (lell + 1) + n*lp(X0) 17 log* (lell + D].

Assume that we can prove a multivariate central limit theorem for functions in 8. Then, by
the technique of Dehling et al. [7], if the space 8B contains a class of functions approximating
the indicators, an empirical process invariance principle follows.

To be complete, we state the following result, which is a corollary of Gordin’s theorem [9],
from which we can deduce a multivariate central limit theorem.

Proposition 1. If (X,,),>0 is ergodic and 8B-geometrically ergodic with p > 2 in (4), then for
all p € 8, S, (¢ — E, (p))/+/n converges in distribution to a centred normal law.

See [11, Theorem IX.2] for sufficient conditions on B to have the property that strong
ergodicity implies ergodicity.

3. Proof of Theorem 1

Let us suppose that the assumptions of Theorem 1 hold. In the sequel, all the expectations
are considered with respect to the measure v and F; denotes the o -algebra generated by X;.

Let ¢ € 8B with E(¢) = 0. As the Markov chain is a stationary process, we have the
following bound:

ES@h <4n > E@X0)e(Xd)e(Xis ) (Xitj1i),
i,j,k>0:i+j+k<n
which can be decomposed into three sums:

n

E(Sy(9)*h) < 4!n(Z > E@(X0)e(X)e(Xit )o(Xitj 1)) 6)

i=1 jk<i

+ Y E@Xo)e(X)e(Xit)o(Xi+j4x)

Jj=1ik=j
+y. > E(qo(xo)so(Xi)w(XH,-)w(xi+,-+k)>). (7)
k=1 i,j<k
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To study the terms E(¢(X0) (X)) @(X;4 )9 (Xiyj1k)), we will consider three cases according
to the greatest integer between 7, j, and k. First, however, we note that in all cases, by Holder’s
inequality, we have

|E(@(X0)9(X)e(Xiy e Xitjr)l < lo(Xo)l§ < lo(Xo)* |1 (®)
Furthermore, let ng be a positive integer such that

log(llell + 1) log(llell + 1)
_—_ < no B S ———

1.
log 6 - log 6 +

Note that 8”0 |¢|| < 1.
Case I: i, j < k. Here we use the properties of the Markov operator P on the space 8B to
obtain another majoration. Successively applying Holder’s inequality, (3), and (4), we obtain

|E(p(X0)o (X))o (Xit ) (Xitj+i))]
= |E(@(X0)p (X))@ (Xi+)) Bl@(Xitji) | Fi)) — E@(Xitjri))]
< le(X0)e(X)eXit ) gl P (X0) — p(Xo)ll »
< le(Xo)I3,C 1 P*e — My
< lo(X0)*llgCx6¥lgll. ©9)

Now, for sum (7), using (8) for the ny — 1 first terms and (9) for the others, we obtain

Y Y E@X0e(XD)¢Xit)e(Xitji))

k=1 i,j<k
no—1 n
< Y leXotih + Y KCrlleXo) 465l
k=1 k=ng

n
< (o — D> lp(X0)* Il + Crllp(Xo)lly > k265,

k=ng

There exists a constant C; which depends only on 6 such that

n
Y K0 <3k + g — 2)%05 2

k=ng k>2
<Y K042 —2) Y k0 P+ (ng—2)7 > 0Kk
k>2 k>2 k>2

< Ci(ng — 1)?,

because the three series converge. Thus, writing C; = —1/logf, we obtain ng — 1 <
Calog(|l@ll + 1) and

D ) Ble(X0)e(X)e(Xiy Ne(Xitj41))
k=1 i,j<k
< G3lle(Xo)* I log (el + 1) + C3ll9(X0) Il log?(llell + 1), (10)

where C3 = CkC,C3.
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Case 2: i,k < j. We can decompose the expectation as follows:
|E(@(X0)o(Xi)o(Xitj)e(Xitj+i))]
= |E(p(X0)@(Xi) (E(@p(Xi+ ) E(@(Xitj+1) | Fitj) | Fi) — E(@(X0)9(Xk))))|
+ [E(p(X0)p(X:)) E(p(X0)p(Xi))|- (11)
On the right-hand side, let us call I; ; x the first term and /I; x the second term.
Since E(p P (X0)) = E(¢(X0) E(p(Xx) | F0)) = E(@(X0)9(Xx)), we have
Ii jk < llo(X0)e(X) Il P7 (9 P*0) (Xo) — TL(p PX9)(X0)
< le(X0)113,CIIP/ (p P*p) — TI(9 P*o)|
< Cllo(X0)*llgk6/ o Po|
and, by assumption (5),
loP*oll < llollll P el < k6" l0].

Therefore, ' .
L jx < CPlo(X0) 1407 N0l < Ci?llp(X0)* 1467 el (12)

Now, thanks to decomposition (11) (also using inequality (8)), for large enough n,

n

Y 2 E@Xo)e(X)¢Xirj)e(Xit 1)

j=1 ik<j
2no—2
Z P leXo) I + Z > Ui+ 10)
Jj=2np—1 i,k<j
<8(no — 1’ llp(Xo)*ll1 + Z jzll-,j,k+2 > Mg,
j=2np—1 j=1 i,k<j

where ng has been defined previously.
Inequality (12) and 6™°||¢|| < 1 imply that

n n
Yo Pljes Y S0 leXo)lg6 el
j=2no—1 j=2np—1

n
< ClllpXo)lly Y jPOITm.
Jj=2no—1
As before, there exists a constant C4 depending on 0 such that

n
> 0T < Calng — D
Jj=2no—1

So,

n
Y FPhijk < CkPllp(X0)?llgCatng — 1Y%,
j=2np—1
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For the third term, we have

n

DY g < n<Z|E(g0(X0)§0(X,-))|) <Z|E(§0(XO)(P(XI<))|>~

j=1 i,k<j i=1 k=1

‘We can see that '
[E(p(X0)e (X)) < llo(Xo) 4| P'¢(Xo) — Mp(Xo)|

< Clle(Xo)l4IP'p — Tg|
< Crllp(X0) 140" lell

and, in the same way,
|E(@(X0)o(Xi)| < Cxllg(Xo) 46" lgll.

Alternatively, by Holder’s inequality,

|E(e(X0)p(X))| < llp(X0)*Ii  and | E(p(X0o)o(X))| < llo(X0)?|l1.
Thus, by (13), (14), and (15),

n no—1 n
Y IE@Xo)p(X)l < Y lle(Xo)Ih + Y, Crllp(Xo)llg0' ol
i=1 i=1 i=ng

< (o — Dl9(Xo)* Il + Crllp(Xo)llg Y_ 6"

i=ng
< (no — Dlle(X0)* 1 + Cslle(Xo)lg.

where Cs = Ck ), 60" < oo and

Z |E(@(X0)p(X)| < (1o — Dllp(X0)*[l1 + Csllp(Xo)lg-
k=1

Finally,

n

Y E@(X0)e(X)e(Xit )¢(Xitj41))
j=1 ik<j

< 8C3lle(X0)* 1 log* (lell + 1) + Csllo(X0)?llq log(llell + 1)
+n(C2lle(X0)*[11 log(llell + 1) + Cslle(Xo)llg)*,
where Cg = Ck>C4C3.
Case 3: j, k <i. Three uses of the operator properties give
|E(@(X0)0(X)@(Xiy )o(Xisj4i))|
= |E(@(X0) B(p(X)) E@(Xi1)) B(p(Xisj+x) | Fiv)) | Fi) | Fo))l
= | E(@(X0)[E(p(X) E(p(Xi+ ) BE(@(Xitjri) | Fix)) | F) | Fo)
— E(@(X)¢(Xit e Xisj+:)D]
< le(X0)llg | P* (¢ P/ (9 P*0))(Xo) — TI(¢ P’ (9 PX0)) (X0
< le(X0)llgCk8'llo P/ (9 Pr o) ||
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and
le P/ (0P @)l < llgll P/ (9P o)

< el 1P/ (P ) — Tlp PXoll + | E(p(X0)e (X))
< llpll (k67 |o P*ll + | E(p(X0)p(Xi))])
< 207 )ol? + Crllp(Xo) 46" 11, (18)
where we used inequality (14) in the last line.
From (17) and (18), we derive
|E(@(X0)o (X))o (Xi+ ) (Xitj+i))l
< CAlle(Xo) 46" Nol? + Clp(Xo)lI56" ™ el
< C10' lp(X)llg e l* (el + lle(Xo)llg).
where C7 = max{C«3, C2«?2}.

With this last inequality and (8), the sum in (6) can be bounded in the same way as before.
We use the integer ng to obtain

n

Y Y E@Xo)e(X)¢(Xit)e(Xitjix)

i=1 jk<i
3n9—3 n
< Y CleXotlhi+Cr Y 0 leXo)lglelPdlel + le(Xo)lg)
i=1 i=3n9—2

n
< 27(n0 = D*le(X0)*Ih + Cr(llg(Xo)lly + le(Xo)llp) D 26",

i=3np—2
The sum is bounded by the corresponding series, which is finite (majoration by Cg (1o — 1),
where Cg depends only on #). So, we can conclude the study of case 3 with

n

Yo D E@X0)e(X)e(Xit e (Xitj+i))

i=1 jk<i

< 27C3lle(X0)* 1 log* (loll + 1) + C7CsC3 (lo(Xo)llg + llp(X0)[12) log* ([l + 1).
(19)

To conclude, let K be the maximum of all the constants appearing in (10), (16), and (19),
E(S, ()%
<41 Knllp(Xo)*ll1 log* (el + 1)
+n(le(X0) lly + ll9(X0)llg + lp(Xo)llg + le(Xo)II7) log> (el + 1)
+n?(llp(X0)* 11 log(llell + 1) + lle(Xo)ll)*1-

4. Fourth moment inequality for dynamical systems

In Section 2 we dealt with homogeneous Markov chains through their operators. As usual,
the techniques can be applied to dynamical systems, using the transfer operator. Here we state
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the result for dynamical systems, but the proof (which is essentially the same as in Section 3)
is left to the reader.

Let (2, +, u) be a probability space, and let 7' be a measurable measure preserving transfor-
mation (i.e. forall A € 4, u(T~'A) = u(A)). Let us consider the Perron—Frobenius operator
(or the transfer operator) of 7', P: L'(x) — L'(w) defined by

/QPf(X)g(X)dM(X) =/Qf(X)go T(x)dp(x)

forall f € L'(u) and g € L>®(u).

As in the Markov case, we assume that there exists a Banach space (B, | - ||) of
p-measurable functions from €2 to R which contains 1 and satisfies (5), and that P verifies
the same assumptions, i.e.

(i) there exist k > 0 and 0 < 6 < 1 such that, for all f € B,

IP"f —TfIl < k8" £,
where I1f =E,(f)1;
(ii) there exists p > 1 such that (B, || - ||) is continuously included in (IL” (w), || - | »).

Again, assertion (i) follows from some quasicompactness of the Perron—Frobenius operator;
see [1, Chapter 1] and [11, Chapter II].
Under these assumptions, we have the same fourth moment bound, stated as follows.

Theorem 2. For all f € B such that E,(f) = 0, f is bounded, and My = max{l,
sup, | f (01},

n 4
Eﬂ<<2fo T") ) < KM3n| flglo@ (IfI+ 1) + 2| £17 og* (I £1l + DI,
i=1

where 1/p+1/q = 1.

5. Applications

In this section we give some examples where the fourth moment inequality applies and then
leads to some empirical process invariance principles.

5.1. Uniform ergodicity

Let (X,)n>0 be a Markov chain on the state space E. Denote by (B>, || - ||«) the space of
bounded measurable functions from E to R provided with the uniform norm. We say that the
Markov chain (X},),>0 is uniformly ergodic if it is B°°-geometrically ergodic. This condition
is equivalent to the fact that the process satisfies the so-called Doeblin’s condition (see [12,
Chapter 16]).

In this situation, if X has a distribution function which is regular enough, our fourth moment
bound (Corollary 1) implies inequality (2). Then tightness follows and the empirical process
invariance principle will follow from the multivariate central limit theorem. Note that this result
has already been proved in [2].

Many examples of uniformly ergodic Markov chains are given in [12, Chapter 16], such
as T-chains on compact spaces. Another example is given by the Knudsen gas model (see,
e.g. [14]).
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5.2. Expanding maps

For a large class of expanding maps, empirical process invariance principles have already
been established in [4] and [5]. Expanding maps are an example of dynamical systems
on an interval. Such transformations are studied in [3], as continuous fraction expansions,
B-transformations, and Gauss maps. In many cases, we can show that the Perron—Frobenius
operator admits a spectral gap on the space of bounded variation (BV) functions. Since the
indicator functions belong to BV functions, Theorem 2 with a condition on the initial distribution
proves inequality (2).

Gouézel [10] gave an example of an expanding map of the interval which has a spectral
gap on the space of Lipschitz functions but not on the space of BV functions. For Gouézel’s
example, Theorem 2 holds on the space of Lipschitz functions.

5.3. Subshifts
Let E be a finite set, and let & = EN. The metric d defined on & is

d(x,y) = o—inf{k>0: xeFEye)
Let A = (a(i, j))i, jer be a matrix with coefficients in {0, 1}, and let
Q={x€é&:alxg,xxyr1) = 1forall k > 0}.

Write T for the shift operator on €2, i.e. (Tx)x = xx41 for all k > 0. Denote by 8B the space of
complex-valued functions on €2, which are Lipschitz continuous with respect to the metric d.

Thenormon Bis || - || = || - [lec + m(-), where
m(f):sup{'f(x)_f(yN,x;éy}. 20)
d(x,y)

Note that, since (€2, d) is compact, B C L°°. The Ruelle-Perron—Frobenius theorem shows
that the transfer operator P has some quasicompact properties on B. See [11, Theorem XII.6]
or [13]. If 1 is the only eigenvalue of modulus 1 and if it is simple, then conditions (i) and
(i1) hold and Theorem 2 is satisfied. If f is a Lipschitz continuous function on €2 then, by [7],
an empirical process invariance principle is satisfied for the process (f o T');>o.

5.4. Linear processes

Let (A, ]l - |la) be a separable Banach space. Let (a;);>0 be a sequence of linear form
on A such that Zizo lai| < oo, where |a| = sup{la(x)], ||x]|la < 1}. Let (§)icz be an i.i.d.
sequence of bounded B-valued random variables, where B is a compact subset of A. We define
the R-valued linear process

X =) ai(E).
i>0
If A is a finite set, linear processes can be viewed as functionals of subshifts. Here, in the
general case, we use a slightly different metric. Assume that there exist p < 1 and C > 0 such
that |a;| < Cp’ for all i > 0. We defined on BY the metric

d(x,y) =Y _p'lxi = yilla,

i>0

where x = (x;)i>0 and y = (y;);>0. Denote by Yy = (..., &_1, &). Then (Yi)i>0 is a Markov
chain on BY, and we can show that (¥;) k>0 satisfies (3) on the space 8B of Lipschitz continuous
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functions from BN to R. Indeed, if f € B,

[E(f(Yi) | Yo=1y) —E(f(Y) | Yo =x)|
:|E(f(""y07$17-"?§k)_f("-ﬂxO’Sl"-"Ek))'
< Colly = xla,

and then (3) holds. Hence, (Yi)rez is strongly ergodic with respect to the space of Lipschitz
functions on BN and Theorem 1 holds. It is clear that f(x) = > i=0ai(x;) is a Lipschitz
function (on BY), and so a fourth moment bound holds for (X) k>0 on the space of Lipschitz
functions (on R).

5.5. Random iterative Lipschitz models

Let G be a semigroup of Lipschitz transformations of a metric space (E, d), and let § be a
o-algebra on G. We assume that the action of G on E is measurable.

Let (g4)n>1 be an i.i.d. sequence of G-valued random variables with distribution 7. Let
X0 be an E-valued random variable independent of (g,),>1. We consider the Markov chain
(X»)n>0 defined by

Xn = gn(Xn-1)

with transition operator P defined by

Pf(x) Z/Gf(g(X))dn(g)-

We say that 1 is contracting if

1/n
limsup{/ Mdn*"(g):x,ye&x#y} <1,
n ¢ dx,y)

where n*" denotes the distribution of g, o --- o g.

Assume that (E, d) is compact. Let By be the space of C-valued Lipschitz continuous
functions on E provided with the norm || - |lo = || - |lco + m(+), where m is defined as in (20).
It is shown in [11, Theorem X.3] that if 1 is contracting then there exists a unique P-invariant
measure on E and (X,),>0 is Bo-geometrically ergodic with respect to this measure. Then a
fourth moment bound holds and, thanks to Dehling et al. [7], an empirical invariance principle
follows. One example of application is given by products of invertible random matrices (see [11,
Section X.4]).

In the case where (E, d) is not compact but every closed ball in E is compact, we can have a
similar result but with another Banach space (see [11, Theorem X.4]). Here, the Banach space
is the space B of locally Lipschitz functions with weight. These are the C-valued functions
f such that

ml(f)zsup{ Lf @) = fOI .x#y}<oo’

dx,y)p(x)p(y)’
where p(x) = 1 + d(x, xg) for a fixed xo € E. The norm is

[f ()]
px)?’

As an example, we mention a large class of autoregressive models.

||f||1=SHP{ XGE}+m1(f)-
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5.6. Autoregressive models

The process (X,)n>0 C R is called autoregressive with initial value X € R if it satisfies,
foralln > 1,
Xn = AXy—1+ Ya,

where A € M(R?) and (Y, Wn>1 C R? is ani.id. sequence of random variables, independent of
Xo. See [11, Theorem X.16] for conditions under which (X},),cn is B1-geometrically ergodic.
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