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r-ORTHOGONALITY AND NONLINEAR FUNCTIONALS 
ON TOPOLOGICAL VECTOR SPACES 

K. SUNDARESAN AND O. P. KAPOOR 

In recent years the problem of concretely representing a class of nonlinear 
functionals on Banach spaces has received considerable attention. Suppose B is 
a Banach space equipped with an orthogonality relation _L C B X B. Denoting 
(Xj y) £ _L by x _L y, a real valued function F on B is said to be orthogonally 
additive if 

x _L y implies F(x + y) = F(x) + F(y). 

For example when B is a vector lattice, a natural orthogonality relation is the 
lattice theoretic one: x J_iy if |x| A \y\ = 0. The problem of representing 
orthogonally additive functions on normed vector lattices of measurable func­
tions has been dealt in Drewnowskii and Orlica [1], Mizel and Sundaresan [2], 
Friedman and Katz [4], Koshi [5], and several others. If B is the Hilbert space 
L2[0, 1] with the usual concept of orthogonality, i.e., x _L 2 y if the inner product 
(x, y) = 0, the problem of representing orthogonally additive functionals has 
been considered by Pinsker [3], If B is an arbitrary Banach space there are 
several orthogonality relations wrhich are generalisations of the usual concept of 
orthogonality when B is a Hilbert space. One such concept of considerable 
geometric and analytic interest is the following. Let (B, \ | 11) be a Banach space. 
If x, y £ B, x _L3 y if \\x + \y\\ ^ ||x|| for all real values of A. The problem of 
representing orthogonally additive functionals on B with respect to the 
relation J_3 has been dealt with in Sundaresan [7]. 

None of the preceding concepts of orthogonality extend to arbitrary topo­
logical vector spaces. We introduce here a useful orthogonality concept in an 
arbitrary topological vector space. Let E be a Hausdorff topological vector 
space and let T : E —» E*, where £* is the dual of £ , be a linear mapping. If 
x, y G £ , then x is T-orthogonal to y if Tx(y), denoted by (Tx, y) equals zero. In 
the present paper we deal with the problem of characterizing jT-orthogonally 
additive functionals on a topological vector space. 

In the next section we recall briefly the basic terminology and establish a few 
results useful in the subsequent discussion. In section 3 we discuss T-orthogo-
nally additive functionals when T-orthogonality is not symmetric. In section 4 
we consider the same problem when T-orthogonality is symmetric. 
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2. Throughou t the paper £ is a Hausdorff topological vector space on the 
real field R. £ * is the vector space of continuous linear functionals on E. T o 
avoid trivialities we always assume t h a t dim E ^ 2. If T : E —* £ * is a linear 
mapping and x, y £ E, then x is T-orthogonal to y or briefly x ± y, when T 
is understood, if (Tx, y) = 0. T-orthogonality is said to be symmetr ic , if 
(Tx, y) = 0 implies (Ty, x) = 0. A vector x is said to be T-isotropic or simply 
isotropic if (Tx,x) = 0. The operator T is said to be symmetr ic if (Tx, y) = (Ty,x) 
for all x,y £ E. If x, y, z, . . . are vectors in E, the span of x, y, z, . . . is denoted 
by [x, y, z, . . .] . 

W e conclude this section with a few useful lemmas. 

L E M M A 1. If T : E —» E* is a linear mapping such that T-orthogonality is 
symmetric and if there is a nonisotropic vector, then T is symmetric. 

Proof. Let y, z Ç E. Suppose (Ty, z) ^ (Tz, y). Since the relation J_ is sym­
metric (Ty, z) 7e 0 9^ (Tz, y). If y JL y it is verified t h a t there is a real number 
a 9^ 0, such t ha t y _L y + as . Hence y + az ± y. T h u s a ( 7 s , 3/) = — (Ty, y) = 
a(Ty, z). Hence (Ty, z) = (Tz, y). If z JL z it is verified similarly t ha t 
(Ty, z) = (Tz, y). Let now y J_ y and z J_ z. Let x be a vector such t h a t x JL x. 
T h e preceding observation shows t h a t (Tx, p) = (Tp, x) for all p G E. Fur the r 
since x JL x either x + y or x — y is not isotropic. Hence (T(x + 3O, 2) = 
( I X (x + 3O) or (T(x — y), z) = (Tz, (x — y)). T h u s (Ty, z) = (Tz, y) and T 
is a symmetr ic mapping. 

L E M M A 2. If T : E —> E* is a linear mapping and if the rank of T is an odd 
integer, then there is at least one non-isolropic vector. 

Proof. Suppose every vector is isotropic. T h e hypothesis of the lemma implies 
there exists a (2K + 1)-dimensional subspace E2K+1 of E, for some positive 
integer K, such t h a t T(E2K+1) is also (2K + 1)-dimensional. T h u s if 7 \ is the 
restriction of T to E2K+1, T\ might be considered as a linear isomorphism on 
E2K+l to E2K+1 such t ha t the inner-product (7 \x , x) = 0 for all x Ç E2K+l. T h u s 
there exists continuous nonvanishing tangential vector field on the sphere in 
E2K+1, contradict ing Poincare-Brouwer theorem [6]. 

L E M M A 3. If T : E —» E* is a l-dimensional linear mapping then the following 
two statements are equivalent. 

(1) T-orthogonality is symmetric. 
(2) There is a nonisotropic vector x such that x JL y implies Ty = 0. 

Proof. Let x JL x. Let y G r x _ 1 ( 0 ) . T h e n (1) implies y _L x. Since 2" is 
l-dimensional and Tx 9e 0, Ty ^ [Tx]. Le t T;y = \Tx. T h e n since 3> _L x it is 
verified t h a t either, X = 0 or (Tx, x) = 0. Since x JL x, X = 0. Hence T^ = 0. 
T h u s (1) implies (2). Conversely suppose (2) holds and x G E such t h a t x _]_ y 
implies Ty = 0. Since Tx is a non-zero member of E*, 7x _ 1(0) is a subspace of £ 
of codimension 1. T h u s each £ £ £ determines uniquely a real number X and a 
vector h, x A_ h, such t h a t J = Xx + /̂ . T h u s if %t = \tx + ht, i = 1, 2, then 
£1 _L £2 if and only if XiX2 = 0 since Tht = 0. Hence J_ is symmetr ic . 
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Remark 1. From the proof of the preceding lemma it is clear that (2) could as 
well be replaced by "for every nonisotropic vector x, x J_ y implies Ty = 0." 

3. Let T : E —» E* be a linear mapping such that _L is not symmetric. Let 
the rank of T = 1. Then from Lemma 2 it is inferred that there is a noniso-
tropic vector. Let x be one such vector. Let M = 7x_1(0). If y, z G M then 
since Tx 9e 0 and rank T = 1, Ty, Tz G [TV]. Since (Tx, z) = 0 it is verified 
that y JL z. In particular for all y £ M, y A_ y. Now if .F is a continuous 
2"-orthogonally additive functional on E then the preceding observation implies 
that F is homogeneous and additive on M. Thus F\M is a continuous linear 
functional on M. Since JL is not symmetric it follows from Lemma 3 that there 
is a vector y G M such that Ty 9* 0. Since M is a subspace and Ty G [7V| we 
can as well assume that Ty = Tx. Thus x — y ± x. Hence if FÇkx) = <p(A) 
then since A(x — y) J_ ixx for all pairs of real numbers X, /x it is verified from the 
orthogonal additivity of .Fand linearity of F on M that <p(\ + n) = <p(\) -{- <p(n). 
Since F is a continuous function, <p : R —>R is a continuous additive function. 
Thus (f is linear. Now if £ G £ and £ = Ax + y, y G M, then F(\x + y) = <p(\) 
+ F(y). Since <p is linear on R it follows that F £ E*. Since every linear func­
tional on E is orthogonally additive it is proved that under the above hypo­
thesis on T that a continuous function F : E—+R is 7"-orthogonally additive 
if and only if F G E*. 

Next we proceed to the case when rank T > 1. First we deal with the case 
of dim E = 2 or 3. 

PROPOSITION 1. If dim £ = 2 or 3 awdif T : E~^E* is a linear mapping such 
that rank T > 1 and T-orthogonality is not symmetric, then every continuous 
orthogonally additive functional on E is linear. 

Proof. Let dim E = 2. Suppose that ei, e2 G E such that e± JL e2 but e2 i- e±. 
Thus ei, e2 are linearly independent. Since the rank T = 2, 7>i ^ 0. Hence 
(7>i, g2) = 0 implies that (Te\, ei) 9^ 0. Thus, there is a real number a 9e 0 
such that <20i + e2 _L £1. Hence if A, ju are two real numbers then X(aei + e2) 
J_ ixe\. Hence FÇkaex + \e2 + M^I) = F(\(aei + e2)) + F(fiei). Since <?i JL e2, 
F((Xa + n)e! + \e2) = F((Xa + M K ) + F(Xe2). Thus 

F((Xa + M K ) + ^(Ae2) = F(\(aei + *2)) + Ffaù 

= F(\aei) + F(Ae2) + Find). 

Hence F is additive on [ej. Since T7 is also continuous, F is homogeneous on [ej. 
Further noting that aei + e2 ±_ eu e\ JL ae\ + e2, arguing as in the preceding 
sentences with ei, e2 replaced respectively by ae\ + e2, and ei, it follows that F 
is additive and homogeneous on [ae\ + e2\. Since a^i + e 2 l 0i, the T-
orthogonal additivity of F at once implies that F is a linear functional on E. 

Next we proceed to the case when dim E = 3. Let the rank T = 2 and 
ei, £2 G E such that £i J_ e2 and £2 J_ £i. If (Tei, ei) ^ 0 or (Te2, e2) 9+ 0, then 
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as in the preceding case it is verified t h a t F is linear on [eu e2\. If (Teu e±) = 0, 
and (Te2, e2) = 0, then F is homogeneous on [e j , and [e2]. Since e\ _L e2, is 
linear on the subspace [ei, e2]. T h u s in either case F is linear on [eu e2\. Now if 
Tei, Te2 are linearly independent then since the r ank T = 2 there exists a 
vector e3 (? [ei, e2] such t h a t Te$ = 0. Since e3 _L <?3, F is homogeneous on [e3]. 
Fur the r since e3 _L [#i, e2] and T7 is linear on [ei, e2] it is verified t h a t F is a 
linear functional. If Teu Te2 are linearly dependent then either Te± = 0 or 
7>i = XTe2j X F^ 0. If (Te2, ez) = 0 then e2 JL ez. If (7>2 , £3) ^ 0, then there 
are real numbers a 9e 0 9^ b such t h a t (Te2, ae\ + be%) = 0, since (Te2, e\) 9e 0. 
T h u s there is x (? [eu e2], such t h a t e2 J_ x. T h u s if 7>i = 0, then e± _L x. If 
x JL e2 or x JL ei then as in the case of dim E = 2, it is verified t h a t F is 
homogeneous on [x\. Since [ei, e2] J_ x, -F is a linear functional. If x _L e2 and 
x J_ ^1, then, since e2 _l_ ei, x + e2 J_ ei. However since #i _L e2, £i _L x + e2. 
Once again F is verified to be homogeneous on [x + e2]. Since x 1_ e2 and F is 
homogeneous on [e2] it is verified t h a t Fis homogeneous on [x]. T h u s F is linear. 
Next suppose Te\ 9^ 0. Then since Te\ = \Te2 for some X 9e- 0, and e2 JL e\ 
there is a vector x (? [ei, e2] such t h a t [ei, e2] JL x. If x JL [^1, £2] then once 
again F is homogeneous on [x] and F is a linear functional. If x _L [eu e2], since 
the rank T = 2, (Tx, x) ^ 0. Fu r the r since 7>i 9e- 0, and ei J_ [x, e2] it follows 
t h a t (Teu ei) 9e 0. Since e\ _L x, x JL ei and (7>i, ^ ) ^ 0 ^ (Tx, x), it follows 
t h a t 

(*) there is a real number a 9e 0, such t h a t x + aei J_ x + ae± 

or x + ae-i J_ x — aei. 

In the case of the first a l ternat ive, F is homogeneous on [x + aei]. Then since 
x _l_ ei and F is homogeneous on [ei], it is verified t h a t F is homogeneous in [x]. 
T h u s F is linear. If x + ae± _L x — ae\ then if X, JJL are two real numbers 
F((\ + fx)x + Xaei — fiaei) = F(\(x + ae±)) + F(n(x — aei)) = F(Xx) + F(JJLX) 
+ F(\aei) — F(fj,aei), since X(x + aei) J_ n(x — aei). Since x _L <?i, F((X + v)x 
+ Xa^i — /xa^i) = F((\ + ju)x) + F(Xaei — paei). From the preceding equa­
tions it is verified t h a t 

F((X + M)x) = F(Xx) + F(Mx) 

after noting t h a t F is homogeneous on [e j . Since T7 is continuous, F is homo­
geneous on [x]. Hence F is a linear functional completing the proof in the case 
rank T = 2. 

Next suppose dim E = 3, and rank T = 3. Since 7"-orthogonality is not 
symmetr ic there exist linearly independent vectors eu e2 such t h a t e\ _L e2 and 
e2 JL eu T h u s as in the case of dim E = 2 it is verified t h a t F is linear on 
[eu e2]. Suppose there is a vector e% (? [#i, e2] such t ha t e3 J_ [eu e2\. If ei JL e3 

or e2 JL e3 then F is homogeneous on [e3] and F is a linear functional. Next let 
0i J. 03 and e2 J_ e3 or equivalently [eu e2] _1_ 03. Since ez _L [01, 02], ez ? [^i, g2] 
and rank T = 3, (Te3, e3) ^ 0. Similarly since e\ J_ 02, 01 _L 03 it is verified t h a t 
(Teu 01) ^ 0. T h u s since e\ J_ e3,03 _L e\ there is a nonzero real number a such t h a t 
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either ae\ + e3 _L ae\ + e3 or £3 + ae\ ± e% — ae\. Thus as in the case of (*) in the 
preceding paragraph it follows that F is homogeneous on [e3]. Hence F is a 
linear functional. Next suppose there is no vector e% (? \e\, e2] such that 
es J_ [ei, e2]. Since rank 2" = 3, there is a vector x 9e 0 such that x _L [#i, e2] 
and x (? [^i]. Since such a vector x (E [#i, £2] there are real numbers a, b, b ^ 0 
such that ae\ + &e2 J_ e2, and a#i + 5e2 J_ e\. Thus since #i J_ e2 and e2 i- £i 
it is verified that (Te2, e2) = 0 = (Tei, ei). Hence we are in the case e\ _L e\, 
e2 ± e2, ei _L e2 and e2 JL e\. Since e± J_ [01, e2], and 7>i, 7>2 are linearly 
independent there is a vector e3 $ [#i, £2] such that e2 J_ e3. Identifying linear 
functionals/ on E with points in £ by the mapping 

3 

it is verified that there are real numbers a3, 61, Ci, c2, and £3 such that J^i = a3c3, 
7>2 = 61^1, ^ 3 = Ei=i c<£*. Since the rank T — 3, a3, 61, c3, £2 are nonzero real 
numbers. Thus e% JL e2 while e2 J_ e3. Hence T7 is homogeneous on [e3]. Further 
it is verified that e3 _L c2ez — cze2 and c2ez — cze2 JL ez. Hence F is linear on 
[ez, c2ez — cze2\. Now since e2 _L [ez, c2ez — cze2] and F is homogeneous on [e2] 
it follows that F is linear on E. 

Next we proceed to the main theorem of this section. 

THEOREM 1. Let E be a real Hausdorff topological vector space and T : E —» E* 
be a linear mapping such that the T-orthogonality is not symmetric. Then every 
continuous orthogonally additive junctional on E is linear. 

Proof. In view of the introductory comments in this section we may assume 
that rank T ^ 2. Since the range of T is of dimension at least 2, and ortho­
gonality is not symmetric we claim that there exist two vectors e±, e2 Ç E such 
that d J_ e2, e2 JL e\ and Te\, Te2 are linearly independent. For let x, y be two 
vectors such that x _L y, and y J_ x. If Tx, Ty are linearly dependent let 
p G E be such that Tp, Ty are linearly independent. If y JL p then since 
y JL x there exists a real number a such that y ± p + ax. U p + ax ± y then 
since x ± y,p ± y. Thus y JL p and £ _L 3> and 7̂ >, T;y are linearly independent. 
Next, if p + ax JL y, then p + ax, y are vectors of the required type. If y _L p, 
then if £ JL y, p, y have the desired properties. H p ± y then p + x ± y and 
£ + x, y have the desired properties. Thus there exist vectors eu e as claimed. 
Let now x f £ ^ [eu e2\. Consider the linear mapping T\[x, e\, e2] = T\. Then 
applying Proposition 1 to T± and the function .Fit follows F\[x, ei, e2] is linear. 
This also implies in particular that F is linear on [x] for all x £ E. Next, let x, y 
be two linearly independent vectors, x, y Ç? [e±, e2\. If x JL 3>(:y J_ x) T7 is 
verified to be linear on [x, y] from the preceding observation. Next if x JL y 
and y JL x, then if (Tx, x) ^ 0 or (Ty, y) ^ 0 it is possible to find a real number 
a such that x J_ x + ay or y A_ y + ax. Then in either case as before F is 
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linear on the span of [x, y\. If (Tx, x) = 0 = (Ty, y), then since (Tx, y) ^ 0 ^ 
(Ty, x) it is verified t h a t there is a real number a such t h a t x = ay JL y + x, 
once again verifying i7 is linear on [x, y]. T h u s in any case F is linear on [x, 7]. 
Hence F is a linear functional. 

4 . We discuss here the case when the L-orthogonali ty is symmetr ic . We note 
t h a t if F:E —> R is orthogonally addi t ive then the even and odd par t s F\, F2 of 
F are also orthogonally addit ive. This is verified from the equat ions Fi(x) = 
±[F(x) + F(-x)] and F2(x) = ±[F(x) - F(-x)]. 

As in the preceding sections we assume t h a t dim E ^ 2. Fu r the r we note 
t h a t if dim T = 1 then as observed in Lemma 2 there is a x £ £ such t h a t 
(Tx, x) ^ 0. Now as in the case when 7"-orthogonality is not symmetr ic , 
dim T = 1 (see first paragraph in section 3) it is verified t h a t if F is a or tho­
gonally addit ive functional on E and M = Tx~x(0) then F\M is linear. Since 
E = M 0 [x] it is verified t h a t F determines a unique cont inuous function 
<p:R->R, <p(0) = Osuch t h a t F(Xx + y) = <p(\) + l(y) iîy £ M and F\M = l. 
Conversely if Z G JE* and <p:R-^R is a cont inuous function, <p(0) = 0, then 
the function F:E-^R defined by F(g) = <p(\) + l(y), if £ = Xx + y, y £ M", 
determines a cont inuous orthogonally addi t ive function. T h e preceding fact is 
verified by noting t h a t for y, z Ç M, Xx + y _L ixx + z if and only if X/x = 0 
since or thogonal i ty is symmetr ic and y 1_ z. 

We proceed to discuss the case when rank T ^ 2. 

P R O P O S I T I O N 2. Le/ dim E = 2. If T:E -+ E* is a linear mapping, r ank 7̂  = 2, 
awd if T-orthogonality is symmetric, then a continuous function F:E —> R is even 
and orthogonally additive if and only if F(x) = c(Tx, x) for some real number c 

Proof. If (Tx, x) = 0 for all x £ E, then since Fis even orthogonally addi t ive 
functional it follows t h a t F(x) = F( — x), and F(x) + F( — x) = F(0) = 0. 
T h u s F(x) = 0 for all x £ £ . 

Next if for some x (Lx, x) ^ 0, then from L e m m a 1 it follows t h a t T is a 
symmetr ic mapping. Let e± be a vector such t h a t e\ JL e\. T h e n there is a vector 
e2, ^2 ? [01] such t h a t e± _L 02. Since T is of r ank 2, Le2 ^ 0. T h u s e2 _L £i 
implies e2 JL e2. Hence we can assume t h a t there are real numbers a ^ 0 9^ b, 
such t ha t Te± = ae± and Te2 = fre2. We can assume wi thout loss of general i ty 
t h a t a > 0. I t is verified t h a t Xi#i + x2e2 _L 3^1 + y2e2 if and only if axiyi + 
bx2y2 = 0. Now if b > 0 then there are vectors x, y, x £ M , y £ [02] such t h a t 
(Tx, x) = 1 = (73/, y). If & < 0 then there are vectors x, y, as above such t h a t 
(Lx, x) = 1 = —(Ty,y). For such a pair x, y, for all real numbers K, 
K(x + 3O _L K(x — y) or K(x + 3O _L i£(x + y) according as b > 0 or b < 0. 
Since T7 is even and Kx J_ X^ , it is verified from the orthogonal addi t iv i ty of F 
t h a t F(Kx) = F(Ky) or F(Kx) = —F(Ky). Now it follows t h a t there is a real 
number c such t h a t for all K, F(Kz) = c(TKz, Kz) where z = x or z = y, 
noting t h a t F(Kx) = F(Ky) and F(Kx) = —F(Ky) according as (Tx, x) = 
(Ty, y) or (Tx, x) = —(Ty, y). Now let £ be an a rb i t ra ry vector inE. Let $ = 
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Xx + /ry. Then from the orthogonal additivity of F it follows that 

F(\x + fiy) = F(\x) + F(fiy) = c(T\x, fxx) + c(Tny, ixy) 

= c(T(\x + ny), Xx + ny). 

Hence F(Q = c(T£, £). 

THEOREM 2. Let dim E ^ 2 awd T:E—>E* 6e a linear mapping such that 
rank T *z 2. If T-orthogonality is symmetric, then a continuous real valued 
function F on E is even and orthogonally additive only if there is a real number c 
such that for all £ £ E, 

Proof. If (Tx, x) = 0 for all x 6 E, then since x J_ x for all x, 7*1 is linear on 
[x]. Since T7 is also even F(x) = 0 for all x 6 £ and it follows that T^x) = 
c(Tx, x) for all x, where c is an arbitrary real number. 

Next let x be a vector such that (Tx, x) ^ 0. Let F be a continuous ortho­
gonally additive function, and let M = Txr1^). There exists a. y £ M such 
that (Ty, y) 9e 0. For, let every vector in M be isotropic. Since the rank T ^ 2 
there is a vector p £ M such that 7̂ > (? [Tx]. Thus there exists a, z £ M such 
that 7? X s. Now H 2 É I . Since 7? + z J_ 7? + z, (7>, 2) + ( Is , />) = 0, 
since every vector in M is isotropic. Since the mapping T is symmetric the 
preceding equation implies p A. z contradicting the choice of z. Thus there is a 
vector y £ M with (Ty, y) 9^ 0. Let 7\ = T|[x, 3/]. Since (Ty, y) j£ 0 and 
(ty» 30 = 0, 7\;y, T\x are linearly independent and the rank Tx = 2. Noting 
that T-orthogonality coincides with TVorthogonality on the plane [x, y] it 
follows from the preceding proposition that F(£) = c(T£, £) for all £ £ [x, y] 
where c is independent of £. In particular F(Kx) =K2F(x) for all K 9^ 0. 
Now let z £ E, and write 2 = Xx + rj where x _L 77 and X is a real number. Then 

F(z) = F(\x + v)= F(Xx) + F(r)) = \2F(x) + F(r{). 

If (Trj,r]) = 0 then F(rj) = 0. If (Trj, 77) 7± 0, from the preceding it follows that 
F(y) = c(Frjy v) where c is such that F(x) = c(Tx, x). Thus 

F(z) = \2F(x) + c(Tv, y) = c(r(Xx + rj), Xx + T?). 

This completes the proof of the theorem. 

Next we proceed to the case when T-orthogonality is symmetric and F is an 
odd functional. In this case if x J_ x, then Fis linear on [x]. Thus, if (Tx, x) = 0 
for all x, we expect F to be a linear functional. However we provide an example 
to show that this need not be the case when every vector x in E is isotropic and 
rank T = 2. 

THEOREM 3. Let T:E —> E* be a linear mapping such that T-orthogonality is 
symmetric and rank T ^ 2. Then every odd continuous T-orthogonally additive 
real valued function on E is linear if there is at least one nonisotropic vector. 
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Proof. Since there is a nonisotropic vector and ^-orthogonality is symmetric, 
the linear mapping T is symmetric. Further we note that since F is an odd 
orthogonally additive function, F is linear on [x] if x is isotropic. We proceed to 
verify that F is linear on [x] even if x is nonisotropic. As already noted in the 
second paragraph of the proof of the preceding theorem there is a vector y J_ x 
such that {Ty, y) 9^ 0. We may even assume that {Ty, y) = ±{Tx, x). If 
{Ty, y) = {Tx, x) then since x _L y, K{x + y) _L K{x — y) for all real 
numbers K. Thus noting that F is an odd function it is verified that F{2Kx) = 
2F{Kx) and F{2Ky) = 2F{Ky). Further since for any real number m, 
m{x + y) _L (x — y) it is verified that 

F{{m + l)x) + F{{m — l)y) = F{mx) + F(x) + F {my) — F{y). 

Now by straightforward induction it is verified that for integers m, F{mx) = 
mF{x) and F{my) = mF{y). Since x, y could be replaced by rx, ry, r a real 
number, F{mrx) = mF{rx) for all real numbers r and integers m. Hence for 
rationals m/n we have 

Jm \ m . . 
F\ — x) = — Fix). 

\n I n 

Since F is continuous F is linear on [x\. If {Tx, x) = —{Ty, y), since x _L y, 
x + y, x — y are isotropic vectors. Thus for any real number X, F{\{x + y)) = 
\{F{x) + F{y)) and F{X{x - y)) = \[F{x) - F{y)]. Hence F{\x) + F{Xy) = 
\{F{x) + F{y)) and F{\x) - F{\y) = X[F{x) - F(y)]. Thus F{\x) = XF{x). 
Hence F is linear on all 1-dimensional subspaces of E. 

We proceed to show that F is indeed linear on E. Since F is linear on each line 
in E and orthogonally additive it is enough to show that in any two dimensional 
subspace [x, y] there are two linearly independent orthogonal vectors. Let x, y 
be two linearly independent vectors. If x JL y we have two orthogonal vectors 
in [x, y]. If x JL y, but {Tx, x) 9^ 0 {{Ty, y) ^ 0) the pair x, x + ay{y, y + ax) 
where a = —{Tx, x)/{Tx, y){a = —{Ty, y){Tx, x)) is verified to be a pair of 
of the required type in the subspace (x, y). If {Tx, x) = 0 = {Ty, y) then the 
pair x + y, x — y is one such since T is symmetric. This completes the proof 
of linearity of F. Thus F G E*. 

Before proceeding to the case when every vector is T-isotropic let us recall 
that according to Lemma 2, if the rank of T is an odd integer ^ 3 then there is 
at least one non-isotropic vector. We start with a preliminary result dealing 
with the case when rank T = 4. 

PROPOSITION 3. If dim E = 4 and T:E —> £* is a symmetric linear isomor­
phism and if every vector is isotropic, then every odd orthogonally additive con­
tinuous real valued function on E is linear. 

Proof. Let ^ £ £ ^ { 0 } . Since Tex ^ 0, the subspace M = 7>i~1(0) is 
3-dimensional. Let e2 be a vector in Tei~l{Qi) such that e\, e% are linearly 
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independent. Since Te2 and Te± are linearly independent there is a vector e% 
such that ei _L £3 and (Te2, ez) = 1 and a vector e4 such that e2 J_ £4 and 
(Teu eÀ) = 1. It is verified that {ei, e2, £3, £4} is a base for E and representing 
linear functional f on E with vectors in E by the isomorphism 

It follows from the properties that every vector is isotropic, and orthogonality 
is symmetric, that 

Te\ = e±, Te2 = ez, Tez = — e2, and Te± = — e\. 

Since for every x Ç E, x J_ x it follows that F is linear on [x] for every x (z E. 
Thus if x JL 3> then F is linear on the subspace [x, 3;]. Since ei ± fa, e2, ez], 
e2 J_ fa, e2, eA], ez 1_ fa, e3, e4], e4 ± [e2, ez, e4] and [e2, ez] _L fa, eA] it is enough 
to verify that F is linear on the subspaces [e2, ez] and fa, e4]. Consider a typical 
vector, say \e2 + \xez in [e2, ez]. It is verified that e\ + Xe2 _L M 3̂ — X^4 and 
ei — X^4 -L \e2 + fiez. Thus 

i ^ i + Xe2 + nez — X/ze4) = F fa + Xe2) + ^(M^3 — X/x^). 

Since ei _L e2 and £3 J_ #4, 

(1) F fa - XMe4) + F(\e2 + nez) = F(*i) + F(Xe2) + F(M^) - F(XMe4). 

Once again since ei + Xe2 + M̂3 JL Xe2 + XJÛ 4 and ez _L e\ — \\xe± it follows 
that 

F fa + M 3̂ — AjueO = F(fxez) + F fa — \fieA) 
= F fa + \e2 + ^ 3 ) - F(Xe2 + X^4) 
= Ffo) + F{\e2 + iiez) - \F{\e2) + FÇkpe*)]. 

Thus 

(2) F fa - X/ze4) - ^(Xe2 + fxez) = F fa) - F(\^e,) - F(\e2) - F(pez). 

From equations (1) and (2) and from the linearity of F on each line in E it 
follows that 

F(\e2 + fiez) = F(\e2) + F(nez) = \Ffa) + fiFfa) 

and 
F fa — X/*e4) = F fa) — \ixF(eA). 

Thus F is verified to be linear on the subspaces [e2, ez] and fa, e j . Hence i7 is 
a linear functional on E. 

THEOREM 4. Le/ £ be an arbitrary topological vector space, and let T:E —> £* 
be a linear mapping such that rank T è 3 and (Tx, X) = 0/or a// x Ç £ , and 
T-orthogonality is symmetric. If F is a continuous orthogonally additive functional 
on E, then F is linear. 

Proof. Let ely e4 be an arbitrary pair of linearly independent vectors. If 
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ei _1_ e± then since F is linear on [x] for each x 6 E, F is linear on the subspace 
[d, e$\. Next let ei JL e±. Since e\ JL e±, e4 _!_ e4 and Te\ 9^ 0 7^ Te± it is verified 
t h a t Te\y Te2 are linearly independent . Since x _L x for all x G E and dim 
2" ^ 3, it follows from the remarks preceding Proposit ion 3 t h a t dim T ^ 4. 
T h u s there exists a vector J, say £ = À£4 + &, where & G 7>i_1(0) such t h a t 
T£ (? [T^i, Te4]. Now let h = fxei + e2 where e2 _L ei. T h e n it is verified t h a t 
Te2 d [Tex, Te4] and ei JL e2, eA J_ e2. 

Now let e3 be a vector in r^ i _ 1 (0) H 7>4
_1(0) such t h a t e2 JL e3. I t follows 

t h a t 7>3 ? [ ^ 1 , ^ 2 , ^ 4 ] . Fur the r it is verified t h a t the rank of I\ = T\EA is 4, 
where E 4 = [e±, e2, e%, £4] and the 2"-orthogonality restricted to EA coincides 
with TYorthogonali ty. T h u s applying the preceding proposition, it is inferred 
t h a t F\EA is linear. Hence F is linear on [e\, e2], completing the proof of the 
theorem. 

Before summarizing the results we discuss an example showing t h a t the 
preceding theorem cannot be improved. 

Example. Consider E = R2. Let {ei, e2] be a base of E. Let T be the operator 
defined by Te\ = e2 and Te2 = — e\. T h e n it is verified t ha t (Tx, x) = 0 for 
x e R2- Let F:R2 -> R be defined by, 

F(aex + be2) = (a3 + &3)1/3. 

I t is verified tha t F is a cont inuous T-orthogonally addit ive odd functional on 
R2. T h u s in the preceding theorem rank T ^ 3 cannot be replaced by rank 
T ^ 2. 

Since every orthogonally addi t ive functional F is the sum of an even and an 
odd orthogonally addit ive functional we can summarize the results of this 
section as follows. 

T H E O R E M 5. Let T:E—>E* be a linear mapping such that dim T ^ 2. If 
T-orthogonality is symmetric and if there is at least one non-isotropic vector, then 
a continuous function F'.E—^R is orthogonally additive only if there are a real 
number c and a functional l £ E* such that 

F(x) = c(Tx, x) + l(x) 

for all x £ E. If T is as above except that every vector in E is isotropic, then if 
dim T ^ 3 every continuous orthogonally additive functional is linear. 

In conclusion it might be remarked t h a t if the quadra t ic form associated 
with the linear mapping T is no t cont inuous on E, then c = 0 in Theorems 2 
and 5. 

Some applications of the concept of T-orthogonali ty to harmonic analysis 
will be indicated elsewhere. 
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