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A Remark on the Dixmier Conjecture

V. V. Bavula and V. Levandovskyy

Abstract. The Dixmier Conjecture says that every endomorphism of the (first) Weyl algebra A; (over
a field of characteristic zero) is an automorphism, i.e., if PQ — QP = 1 for some P, Q € Aj, then
A1 = K(P, Q). The Weyl algebra A; is a Z-graded algebra. We prove that the Dixmier Conjecture
holds if the elements P and Q are sums of no more than two homogeneous elements of A (there is no
restriction on the total degrees of P and Q).

1 Introduction

In this paper, K is a field of characteristic zero and K* := K \ {0}. The algebra
Ay = K(X,Y | [Y,X] =1) is called the first Weyl algebra where [Y,X] = YX — XY.
The n-th tensor power of A,
A, =A%"=A1® - ® A,
—_—
n times
is called the n-th Weyl algebra. The algebra A, is a simple Noetherian domain of
Gel'fand-Kirillov dimension GK(A,) = 2#; it is canonically isomorphic to the alge-
bra of polynomial differential operators K(Xi, ..., Xy, 01,...,0,) (where 9; = aix,»)
ViaX,- '—>X,‘,Yi i a[ forizl,...,n.
In his seminal paper, Dixmier [9] found explicit generators for the group
G = Autg(A;) of K-automorphisms of the Weyl algebra A;. Namely, the group G
is generated by the obvious automorphisms:

(X,Y) — (X, Y +AX"), (X,Y)— (X+AY"Y), (X,Y)+— (uX,u’'Y),

where A € K, p e K*,andn e N, := {1,2,...}.

In [9], Dixmier posed six problems. The first problem of Dixmier (in the list) asks
if every endomorphism of the Weyl algebra A, is an automorphism, i.e., given elements
P, Q of A such that [P, Q] = 1, do they generate the algebra A;? A similar problem,
but for the n-th Weyl algebra, is called the Dixmier Conjecture. Problems three and six
have been solved by Joseph [10], Problem four (in the case of homogeneous elements)
and Problem five have been solved by Bavula [4].

The Dixmier Conjecture implies the Jacobian Conjecture [2], and the inverse im-
plication is also true [8,11]; a short proof is given in [6]; see also [1].
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In [5], it was shown that for each K-endomorphism ¢: A, — A,, its image is very
large, i.e., the left A;,-module $A,? is a holonomic A,,-module, where for all a,
beAy,andce?A,?, acb:=¢(a)cd(b). Inparticular, it has finite length with simple
holonomic factors over A,, (see [5] for details). To prove that the Dixmier Conjecture
holds for the Weyl algebra A,,, it remains to show that the length is 1. Note that the
Gel'fand-Kirillov dimension of a simple A,,-module can be 2n,2n+1,...,4n—-1,and
the last case is the generic case.

It was also shown [7] that every algebra endomorphism of the algebra I} = K(x, 9, [ )
of polynomial integro-differential operators is an automorphism and it was conjec-
tured that the same result holds for

Hn::E{@":K(xl,...,xn,al,...,an,[,...,f>.

The Weyl algebra A; = @z Ay, is a Z-graded algebra (A, ;A,; € Ay, for all 4,
j€Z) where Ao =K[H], H=YX, and, for i>1, A, ; =K[H]X' and A,_; =K[H]Y".
For a nonzero element a of A;, the number of nonzero homogeneous components is
called the mass of a, denoted by m(a). For example, m(aX') = 1forall « € K[H] \
{0} and i > 1. The aim of this paper is to prove the following theorem.

Theorem 1.1 Let P, Q be elements of the first Weyl algebra A; with m(P) < 2 and
m(Q) < 2. If[P,Q] =1, then P = 7(Y) and Q = 1(X) for some automorphism
TE AutK(Al).

2 Proof of Theorem 1.1

The Weyl algebra is a generalized Weyl algebra. Let D be a ring with an automorphism
o and a central element a. The generalized Weyl algebra A = D(0, a) of degree 1, is
the ring generated by D and two indeterminates X and Y subject to the relations [3]

Xa=o(a)Xand Ya =o' (a)Y, foralla € D,YX = a, and XY = o(a).

The algebra A = @,z A, is a Z-graded algebra, where A, = Dv,,, v, = X" (n > 0),
vy =Y " (n<0), vy =1 It follows from the defining relations that v, v,, = (1, m)v,4m
=V, em<n, m>, for some elements

(n,m)=0""(<n,m>) e D.

If n > 0and m > 0, then

n>m:(n,-m)=0"(a)---0c""""(a), (-n,m)=0""(a)---a7""(a),

n<m:(n,-m)=0"(a) --a(a), (-n,m)=0""(a) - a.
In other cases (n, m) = 1.

Let K[H] be a polynomial ring in a variable H over the field K, o:H — H — 1
be the K-automorphism of the algebra K[H], and a = H. The first Weyl algebra
A; = K{X,Y | YX - XY = 1) is isomorphic to the generalized Weyl algebra A; ~

K[H](0,H), X~ X, Y » Y, YX — H. We identify both these algebras via this
isomorphism, that is, A; = K[H](o,H) and H = YX.
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If n >0 and m > 0, then

n>m:(n,-m)=(H-n)---(H-n+m-1),
(-n,m)=(H+n-1)---(H+n-m),

n<m:(n,-m)=(H-n)---(H-1),
(-n,m)=(H+n-1)---H.

In other cases (n, m) = 1.

The localization B = S™A; of the Weyl algebra A at the Ore subset S = K[H]\{0}
of A, is the skew Laurent polynomial ring B = K(H)[X, X'; ¢] with coefficients from
the field K(H) = S™'K[H] of rational functions, where ¢ € Autx K(H), and o(H) =
H - 1. The map A; - B, a — a/lis an algebra monomorphism. We identify the
algebra A; with its image in the algebra B via A} - B, X = X, Y —» HX'. The
algebra B = @, B; is a Z-graded algebra, where B; = K(H)X'. The algebra A is a
Z-graded subalgebra of B.

A polynomial f(H) = A,H" + A,_,;H" ' + --- + 1y € K[H] of degree n is called
a monic polynomial if the leading coefficient A,, of f(H) is 1. A rational function
h € K(H) is called a monic rational function if h = f /g for some monic polynomials
f>g. A homogeneous element u = ax" of B is called monic if « is a monic rational
function. We can extend the concept of degree of polynomial to the field of rational
functions by the rule deg h = deg f — deg g, where h = /g € K[H]. If hy, h, € K(H),
then deg hyhy = deghy + deg h, and deg(h; + hy) < max{deg h, degh,}. We denote
by sign(n) and by |n| the sign and the absolute value of n € Z, respectively.

Let A be an algebra and a € A. The subalgebra of A,

Ca(a)={beAlab=ba},
is called the centralizer of the element a in A.

Proposition 2.1 (Centralizer of a Homogeneous Element of the Algebra B)  [4, Pro-
position 2.1]

(i) Letu = aX" be a monic element of B, with n + 0. Then the centralizer Cy(u) =
K[v,v™"] is a Laurent polynomial ring for a unique element v = BX¥8°(Ds where
s is the least positive divisor of n for which there exists an element 5 = B, € K(H),
necessarily monic and uniquely defined, such that

Ba*(B)a® (B)---a V(B =a ifn>0,
Bo=*(B)a*(B)---a~ /DBy =& ifn <o0.
(ii) Letu € K(H)\K. Then Cz(u) = K(H).

Let Ay, := K[H][X;0] and A, _ := K[H][Y;07']. The algebras A, , and A, _ are
(skew polynomial) subalgebras of A;.

Lemma 2.2 ([4]) Ifue Ap.~ {0}, then Ca(u) C Ay ..
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The K-automorphism of the Weyl algebra A,

EAL— A, X—Y, Y+— -X,
reverses the Z-grading of the Weyl algebra A;, that is,
(2.1) (A1) =A,_; forallzeZ.

By the degree of an element of A; we mean its total degree with respect to the canonical
generators X and Y of A;. Let A; ; := {p € A| deg(p) < i} fori € N. Then {A1 <; }ien
is the standard filtration of the algebra A; associated with the generators X and Y. For
allieZ~ {0} and f € K[H] \ K,

(2.2) dego’(f) = deg f and deg(1- o' )(f) = deg f - 1.

Proof of Theorem 1.1 Casel. If P,Q € A, then P = 7(Y) and Q = 7(X) for
some 7 € Autg(A;). Clearly, P = aY + bX + A and Q = ¢Y + dX + y for some
a,b,c,d, A, € K. Thenl= [P, Q] = ad — bc. So the automorphism 7 can be chosen
ofthe form 7(Y) = aY + bX + land 7(X) = cY + dX + p.

So, until the end of the proof we assume that at least one of the polynomials P or Q
does not belong to the space A <;. In view of the relation1 = [P, Q] = [-Q, P], we can
assume that P ¢ A; ;. In view of (2.1), we can assume that the highest homogeneous
part of P, say P, € Ay, satisfies the condition that p > 2. Since m(P) < 2, either
P =P, (if m(P) =1) or P = P, + P, for some nonzero P, € A, ,, where r < p.

Case 2. (m(P),m(Q)) # (1,1). Suppose that m(P) = m(Q) = 1. We seek a con-
tradiction. Then P = aX? and Q = fY? for some nonzero polynomials «, § € K[H].
Then

1=[P,Q]=ac”(B)(p,—p) - Bo P (a)(-p. p)
= ac”(B)(p,—p) — Bo " (@)o " ((p,~p))
= (1-0"")(ac?(B)(p,-p)).
Since p>2(or P ¢ Ay <1),

0 = degl = deg(1 - o7")(ac?(B)(p,~p)) = degar + deg B + deg(p, —p) — 1
(by (2.2)) 20+ 0+ p—-1>2-1=1,a contradiction.

Case 3. (m(P),m(Q)) # (1,2). Suppose that m(P) = 1and m(Q) = 2. Then
P = aX? for some p > 2and Q = Q, + Qg, where Q, € A;5, Qq € Ay 4, and s < g.
By Lemma 2.2, the equality [P, Q] = 1 implies that [P, Q;] = 1 and [P, Q4] = 0. By
Case 2, this is not possible.

Case 4. Suppose that m(P) = 2and m(Q) = L. Then P = P, + P, and Q = Q. By
Lemma 2.2, the equality [P, Q] = 1 implies that [P,, Q] = 0 and [P, Q] = 1. Then
q > 0, by Lemma 2.2. The case g = 0 is not possible since then both P,, Q, € K[H] and
this would contradict the equality [P,, Q4] = 1. Therefore, g > 0. Then P, = fY? and
Qq = aX1 for some nonzero elements 8, « € K[H]. Then -1 = [Q,,P,] = (1-079)
(aa?(B)(g,-q)) implies that

0 = deg(-1) = deg (1-0"*)(a0”(B)(q,~q)) = dega + degf+q -1,

by (2.2). Hence, g =1, a, B € K*,and B = —a™". Then P, Q € A, 4, and, by Case 1, the
pair (P, Q) is obtained from the pair (Y, X) by applying an automorphism of A;.
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Case5. (m(P),m(Q)) # (2,2). Since m(P) = m(Q) = 2, we can write P = P, +P,
and Q = Q, + Qg as sums of homogeneous elements, where r < p, P, € Ay, Py € Ay,
and s < g, Q, € A5, Qg € Ay 4. The equality [P, Q] = 1 implies that [P,, Q] = 0 and
[Py, Qq] = 0; see Lemma 2.2. By the same Lemma, the elements r and s have the same
sign, i.e., either r < 0,s <Qorr=s=0orr > 0,s >0, and also the elements p and g
have the same sign. Since p > 2, we must have g > 0.

Suppose that r > 0, we seek a contradiction. Then s > 0 and so the elements P and
Q are elements of the subring A , = @;s9 K[H]X". Now

K[H]>1=[P,Q] €[A1+, A1) € PK[H]X,

i>1
a contradiction. Therefore, r < 0 and s < 0.

The equality1 = [P, Q] = [P,, Qq]+[P,, Q] and Lemma 2.2 imply that r+q = 0 and
p+s=0,thatis,r=—-gands=-p.SoP =P_,+P,and Q = Q_, + Q. The elements
P, and P_; are homogeneous elements of the Weyl algebra A;. The Weyl algebra A,
is a homogeneous subalgebra of the algebra K(H)[X, X 0] = K(H)[Y,Y 5071,
where K(H) is the field of rational functions in the variable H and the automorphism
o of K(H) is given by the rule 6 (H) = H -1. By [4, Proposition 2.1(1)], the centralizer
Cg(P,) of the element P, in B is a Laurent polynomial algebra

K[aX", (aX™)™]

for some nonzero element « € K(H) and n > 1. In general, « ¢ K[H]. Similarly,
Cp(P-g) = K[BY™, (BY™)™"], for some nonzero element 8 ¢ K(H) and m > 1.
Since [Py, Q4] = 0, Q4 € Cp(Py), and

P, =A(P,)(aX") = /\(Pp)txa"(oc)~--a"(i_1)(0c)X"i = o, XF,
Qu = M(Q) (@X")) = A(Q,)a0” (@) 0" U (a)X" = o], X1,
for some nonzero scalars A(Py ), A(Q,) € K* and some i > 1and j > 1, where,
On,i = /\(Pp)aan(oc)---a”(i_l)(a) eK[H], p=ni,
a, ;= MQy)ao"(a)---a"U™V(a) e K[H], q=nj.
Since [P_,, Q_p] =0, Q_ € Cp(P_4), and
Py = AP ) (BY") = A(P-)Bo ™" (B) -0~ "D (B) Y™ = B, Y7,
Q-p = MQp)(BY™) = A(Q-p)Bo ™ (B) -+~ ™D (B)Y™ = B, ¥,
for some nonzero scalars A(P_;),A(Q-,) € K* and some s > 1 and ¢ > 1, where,
Bons = (P (B) -+~ D (B) € K[H], p = ms,
Bl = M(Qp)Bo " (B)-a "D (B) € K[H], q - mt.
Now
1=[P,Q] =[Py, Q-p] + [P-4:Qq] = [“n,iXij:n,tYp] + [Bms Y, “;,J‘Xq]
= n,i07 (B, ) (P> =P) = Bou0 P (atni) (=p> p)
+Bm,so (0 ))(=q:9) = oy ;01 (Bm,s) (g, =)
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Using the equalities (—p, p) = 0 ?((p,-p)) and (-q,q) = 071((q,—q)), the last
equality above can be rewritten as follows

(1-ab) 1=(1-0")(a)+(1-0"")(b),

where a = a,, ;0?(pB;, ;) (p,—p) € K[H] and b = a;’jaq(ﬁm,s)(q,—q) € K[H].
Recall that P=P_, + Py, Q = Q_, + Q,,

(2-ab) p=mt=ni>2 and g=ms=nj>1L

Suppose that p = g,and so P = P_, + Py, Q = Q_, + Q,. Then Q = AP, for some
A € K*. Notice that

1=[P,Q]=[P.Q-AP], m(P)=2, m(Q-1AP)=1.

By Case 4, the pair (P, Q — AP) is obtained from the pair (Y, X) by applying an au-
tomorphism of the Weyl algebra A;.

So, either p < g or p > q. In view of (P, Q)-symmetry (ie.,1=[P,Q] = [-Q, P]),
it suffices to consider, say, the first case only. Since p < g, the equalities (2-ab) imply
that i < jand t < s. Then, using (2.2) and the fact that deg(p, —p) = p forall p > 1, we
see that

dega = degay,; +degpB,, ,+p -1,
degh = dega;, ; +degBm,s +q 1.

Since i < jand t < s, degay,; < dega,, ; and degf;, , < degfu,. In particular,
dega < degb. This equality contradicts (1-ab) since, by (2.2), 0 = degl = dega —1 -
degb+1=dega—degb > 0. This means that the cases p < gand p > q are impossible.
The proof of the theorem is complete. ]

Corollary 2.3  Let P, Q be elements of the first Weyl algebra A, with m(P) = 1 or
m(Q) =1 If[P,Q] =1, then P = 1(Y) and Q = 1(X) for some automorphism
7 € Autg(A).

Proof Without loss of generality we may assume m(Q) = 1and m(P) > 3. That is,
Q=Qgand P = ¥, P;, where I c Z is a finite set, g € Z ~ {0} and the elements Q,
and P; are homogeneous in A;. By (2.1), we may assume that g > 0. Then1= [P, Q] =
Yi[Pi, Qq] implies that —q € I, [P_,, Q4] = 1and [P}, Q] = 0 for all j € I such that
j # —q. By Theorem L1,

g=1, Q =AX, P,=1"Y forsomeleK".
By Lemma 2.2, C:= P - P_j € C4(X) = K[X]. Then P = 7(Y) and Q = 7(X), where
7:A; > A, X » AX, Y = A7'Y + C, is an automorphism. m
References

[1] K. Adjamagbo and A. R. P. van den Essen, A proof of the equivalence of the Dixmier, Jacobian and
Poisson conjectures. Acta Math. Vietnam. 32(2007), no. 2-3, 205-214.

[2] H.Bass, E. H. Connel, and D. Wright, The Jacobian conjecture: reduction of degree and formal
expansion of the inverse. Bull. Amer. Math. Soc. (NS) 7(1982), 287-330.
https://doi.org/10.1090/50273-0979-1982-15032-7

https://doi.org/10.4153/50008439519000122 Published online by Cambridge University Press


https://doi.org/10.1090/S0273-0979-1982-15032-7
https://doi.org/10.1090/S0273-0979-1982-15032-7
https://doi.org/10.4153/S0008439519000122

12 V. V. Bavula and V. Levandovskyy

[3] V. V.Bavula, Finite-dimensionality of Ext" and Tor,, of simple modules over a class of algebras.
Funct. Anal. Appl. 25(1991), no. 3, 229-230.  https://doi.org/10.1007/BF01085496

[4] V. V.Bavula, Dixmier’s problem 5 for the Weyl algebra. J. Algebra 283(2005), no. 2, 604-621.
https://doi.org/10.1016/j.jalgebra.2004.09.013

[5] V. V.Bavula, A question of Rentschler and the Dixmier problem. Ann. of Math. 154(2001), no. 3,
683-702.  https://doi.org/10.2307/3062144

[6] V.V.Bavula, The Jacobian conjecture implies the Dixmier problem.  arxiv:0512250

[7]1 V. V.Bavula, An analogue of the conjecture of Dixmier is true for the ring of polynomial
integro-differential operators. J. Algebra 372(2012), 237-250.
https://doi.org/10.1016/j.jalgebra.2012.09.009

[8] A.Belov-Kanel and M. Kontsevich, The Jacobian conjecture is stably equivalent to the Dixmier
conjecture. Moscow Math. J. 7(2007), no. 2, 209-218.
https://doi.org/10.17323/1609-4514-2007-7-2-209-218

[9] J. Dixmier, Sur les algébres de Weyl. Bull. Soc. Math. France 96(1968), 209-242.

[10] A.Joseph, The Weyl algebra—semisimple and nilpotent elements. Amer. . Math. 97(1975), no. 3,
597-615.  https://doi.org/10.2307/2373768

[11] Y. Tsuchimoto, Endomorphisms of Weyl algebra and p-curvatures. Osaka J. Math. 42(2005), no. 2,
435-452.

Department of Pure Mathematics, University of Sheffield, Hicks Building, Sheffield S3 7RH, UK
e-mail : v.bavula@sheffield.ac.uk

Lehrstuhl D fiir Mathematik, RWTH Aachen University, 52062 Aachen, Germany
e-mail : Viktor.Levandovskyy@math.rwth-aachen.de

https://doi.org/10.4153/50008439519000122 Published online by Cambridge University Press


https://doi.org/10.1007/BF01085496
https://doi.org/10.1016/j.jalgebra.2004.09.013
https://doi.org/10.1016/j.jalgebra.2004.09.013
https://doi.org/10.2307/3062144
http://www.arxiv.org/abs/0512250
https://doi.org/10.1016/j.jalgebra.2012.09.009
https://doi.org/10.1016/j.jalgebra.2012.09.009
https://doi.org/10.17323/1609-4514-2007-7-2-209-218
https://doi.org/10.17323/1609-4514-2007-7-2-209-218
https://doi.org/10.2307/2373768
mailto:v.bavula@sheffield.ac.uk
mailto:Viktor.Levandovskyy@math.rwth-aachen.de
https://doi.org/10.4153/S0008439519000122

