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A Remark on the Dixmier Conjecture

V. V. Bavula and V. Levandovskyy

Abstract. heDixmier Conjecture says that every endomorphism of the (ûrst) Weyl algebra A1 (over
a ûeld of characteristic zero) is an automorphism, i.e., if PQ − QP = 1 for some P,Q ∈ A1 , then
A1 = K⟨P,Q⟩. he Weyl algebra A1 is a Z-graded algebra. We prove that the Dixmier Conjecture
holds if the elements P and Q are sums of no more than two homogeneous elements of A1 (there is no
restriction on the total degrees of P and Q).

1 Introduction

In this paper, K is a ûeld of characteristic zero and K∗ ∶= K ∖ {0}. he algebra
A1 ∶= K⟨X ,Y ∣ [Y , X] = 1⟩ is called the ûrst Weyl algebra where [Y , X] = YX − XY .
he n-th tensor power of A1,

An ∶= A⊗n
1 = A1 ⊗ ⋅ ⋅ ⋅ ⊗ A1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

,

is called the n-th Weyl algebra. he algebra An is a simple Noetherian domain of
Gel’fand–Kirillov dimension GK(An) = 2n; it is canonically isomorphic to the alge-
bra of polynomial diòerential operators K⟨X1 , . . . , Xn , ∂1 , . . . , ∂n⟩ (where ∂ i = ∂

∂X i
)

via X i ↦ X i , Yi ↦ ∂ i for i = 1, . . . , n.
In his seminal paper, Dixmier [9] found explicit generators for the group

G = AutK(A1) of K-automorphisms of the Weyl algebra A1. Namely, the group G
is generated by the obvious automorphisms:

(X ,Y) z→ (X ,Y + λXn), (X ,Y) z→ (X + λY n ,Y), (X ,Y) z→ (µX , µ−1Y),

where λ ∈ K, µ ∈ K∗, and n ∈ N+ ∶= {1, 2, . . .}.
In [9], Dixmier posed six problems. he ûrst problem of Dixmier (in the list) asks

if every endomorphism of the Weyl algebra A1 is an automorphism, i.e., given elements
P,Q of A such that [P,Q] = 1, do they generate the algebra A1? A similar problem,
but for the n-thWeyl algebra, is called theDixmier Conjecture. Problems three and six
have been solved by Joseph [10], Problem four (in the case of homogeneous elements)
and Problem ûve have been solved by Bavula [4].

he Dixmier Conjecture implies the Jacobian Conjecture [2], and the inverse im-
plication is also true [8, 11]; a short proof is given in [6]; see also [1].
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In [5], it was shown that for each K-endomorphism ϕ∶An → An , its image is very
large, i.e., the le� A2n-module ϕAn

ϕ is a holonomic A2n-module, where for all a,
b ∈ An and c ∈ ϕAn

ϕ , a⋅c⋅b ∶= ϕ(a)cϕ(b). In particular, it has ûnite lengthwith simple
holonomic factors over A2n (see [5] for details). To prove that theDixmier Conjecture
holds for the Weyl algebra An , it remains to show that the length is 1. Note that the
Gel’fand–Kirillov dimension of a simple A2n-module can be 2n, 2n+1, . . . , 4n−1, and
the last case is the generic case.

It was also shown [7] that every algebra endomorphismof the algebra I1=K⟨x , ∂,∫ ⟩
of polynomial integro-diòerential operators is an automorphism and it was conjec-
tured that the same result holds for

In ∶= I⊗n
1 = K⟨x1 , . . . , xn , ∂1 , . . . , ∂n ,∫

1
, . . . ,∫

n
⟩ .

he Weyl algebra A1 = ⊕i∈Z A1, i is a Z-graded algebra (A1, iA1, j ⊆ A1, i+ j for all i ,
j ∈Z) where A1,0 =K[H], H =YX, and, for i ≥ 1, A1, i =K[H]X i and A1,−i =K[H]Y i .
For a nonzero element a of A1, the number of nonzero homogeneous components is
called the mass of a, denoted by m(a). For example, m(αX i) = 1 for all α ∈ K[H] ∖
{0} and i ≥ 1. he aim of this paper is to prove the following theorem.

heorem 1.1 Let P,Q be elements of the ûrst Weyl algebra A1 with m(P) ≤ 2 and
m(Q) ≤ 2. If [P,Q] = 1, then P = τ(Y) and Q = τ(X) for some automorphism
τ ∈ AutK(A1).

2 Proof of Theorem 1.1

heWeyl algebra is a generalizedWeyl algebra. LetD be a ringwith an automorphism
σ and a central element a. he generalized Weyl algebra A = D(σ , a) of degree 1, is
the ring generated by D and two indeterminates X and Y subject to the relations [3]

Xα = σ(α)X and Yα = σ−1(α)Y , for all α ∈ D,YX = a, and XY = σ(a).

he algebra A = ⊕n∈Z An is a Z-graded algebra, where An = Dvn , vn = Xn (n > 0),
vn =Y−n (n < 0), v0 = 1. It follows from the deûning relations that vnvm =(n,m)vn+m
= vn+m<n,m>, for some elements

(n,m) = σ−n−m(<n,m>) ∈ D.

If n > 0 and m > 0, then

n ≥ m ∶ (n,−m) = σ n(a) ⋅ ⋅ ⋅ σ n−m+1(a), (−n,m) = σ−n+1(a) ⋅ ⋅ ⋅ σ−n+m(a),
n ≤ m ∶ (n,−m) = σ n(a) ⋅ ⋅ ⋅ σ(a), (−n,m) = σ−n+1(a) ⋅ ⋅ ⋅ a.

In other cases (n,m) = 1.

Let K[H] be a polynomial ring in a variable H over the ûeld K, σ ∶H → H − 1
be the K-automorphism of the algebra K[H], and a = H. he ûrst Weyl algebra
A1 = K⟨X ,Y ∣ YX − XY = 1⟩ is isomorphic to the generalized Weyl algebra A1 ≃
K[H](σ ,H), X ↦ X , Y ↦ Y , YX ↦ H. We identify both these algebras via this
isomorphism, that is, A1 = K[H](σ ,H) and H = YX.
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If n > 0 and m > 0, then

n ≥ m ∶ (n,−m) = (H − n) ⋅ ⋅ ⋅ (H − n +m − 1),
(−n,m) = (H + n − 1) ⋅ ⋅ ⋅ (H + n −m),

n ≤ m ∶ (n,−m) = (H − n) ⋅ ⋅ ⋅ (H − 1),
(−n,m) = (H + n − 1) ⋅ ⋅ ⋅H.

In other cases (n,m) = 1.

he localization B = S−1A1 of theWeyl algebra A1 at the Ore subset S = K[H]/{0}
of A1 is the skew Laurent polynomial ring B = K(H)[X , X−1; σ]with coeõcients from
the ûeld K(H) = S−1K[H] of rational functions, where σ ∈ AutK K(H), and σ(H) =
H − 1. he map A1 → B, a ↦ a/1 is an algebra monomorphism. We identify the
algebra A1 with its image in the algebra B via A1 → B, X ↦ X, Y ↦ HX−1. he
algebra B = ⊕i∈Z B i is a Z-graded algebra, where B i = K(H)X i . he algebra A1 is a
Z-graded subalgebra of B.
A polynomial f (H) = λnHn + λn−1Hn−1 + ⋅ ⋅ ⋅ + λ0 ∈ K[H] of degree n is called

a monic polynomial if the leading coeõcient λn of f (H) is 1. A rational function
h ∈ K(H) is called a monic rational function if h = f /g for some monic polynomials
f , g. A homogeneous element u = αxn of B is called monic if α is a monic rational
function. We can extend the concept of degree of polynomial to the ûeld of rational
functions by the rule deg h = deg f − deg g, where h = f /g ∈ K[H]. If h1 , h2 ∈ K(H),
then deg h1h2 = deg h1 + deg h2 and deg(h1 + h2) ≤ max{deg h1 , deg h2}. We denote
by sign(n) and by ∣n∣ the sign and the absolute value of n ∈ Z, respectively.

Let A be an algebra and a ∈ A. he subalgebra of A,

CA(a) = {b ∈ A ∣ ab = ba},

is called the centralizer of the element a in A.

Proposition 2.1 (Centralizer of a Homogeneous Element of the Algebra B) [4, Pro-
position 2.1]

(i) Let u = αXn be a monic element of Bn with n ≠ 0. hen the centralizer CB(u) =
K[v , v−1] is a Laurent polynomial ring for a unique element v = βXsign(n)s , where
s is the least positive divisor of n for which there exists an element β = βs ∈ K(H),
necessarily monic and uniquely deûned, such that

βσ s(β)σ 2s(β) ⋅ ⋅ ⋅ σ(n/s−1)s(β) = α if n > 0,

βσ−s(β)σ−2s(β) ⋅ ⋅ ⋅ σ−(∣n∣/s−1)s(β) = α if n < 0.

(ii) Let u ∈ K(H)/K. hen CB(u) = K(H).

Let A1,+ ∶= K[H][X; σ] and A1,− ∶= K[H][Y ; σ−1]. he algebras A1,+ and A1,− are
(skew polynomial) subalgebras of A1.

Lemma 2.2 ([4]) If u ∈ A1,± ∖ {0}, then CA(u) ⊆ A1,±.
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he K-automorphism of the Weyl algebra A1,

ξ∶A1 Ð→ A1 , X z→ Y , Y z→ −X ,
reverses the Z-grading of the Weyl algebra A1, that is,

(2.1) ξ(A1, i) = A1,−i for all z ∈ Z.

By the degree of an element ofA1 wemean its total degreewith respect to the canonical
generators X and Y of A1. Let A1,≤i ∶= {p ∈ A ∣ deg(p) ≤ i} for i ∈ N. hen {A1,≤i}i∈N
is the standard ûltration of the algebra A1 associated with the generators X and Y . For
all i ∈ Z ∖ {0} and f ∈ K[H] ∖ K,

(2.2) deg σ i( f ) = deg f and deg(1 − σ i)( f ) = deg f − 1.

Proof of Theorem 1.1 Case 1. If P,Q ∈ A1,≤1, then P = τ(Y) and Q = τ(X) for
some τ ∈ AutK(A1). Clearly, P = aY + bX + λ and Q = cY + dX + µ for some
a, b, c, d , λ, µ ∈ K. hen 1 = [P,Q] = ad − bc. So the automorphism τ can be chosen
of the form τ(Y) = aY + bX + λ and τ(X) = cY + dX + µ.

So, until the end of the proof we assume that at least one of the polynomials P or Q
does not belong to the spaceA1,≤1. In view of the relation 1 = [P,Q] = [−Q , P], we can
assume that P ∉ A1,≤1. In view of (2.1), we can assume that the highest homogeneous
part of P, say Pp ∈ A1,p , satisûes the condition that p ≥ 2. Since m(P) ≤ 2, either
P = Pp (if m(P) = 1) or P = Pr + Pp for some nonzero Pr ∈ A1,r , where r < p.
Case 2. (m(P),m(Q)) ≠ (1, 1). Suppose that m(P) = m(Q) = 1. We seek a con-

tradiction. hen P = αX p and Q = βY p for some nonzero polynomials α, β ∈ K[H].
hen

1 = [P,Q] = ασ p(β)(p,−p) − βσ−p(α)(−p, p)
= ασ p(β)(p,−p) − βσ−p(α)σ−p((p,−p))
= (1 − σ−p)(ασ p(β)(p,−p)).

Since p ≥ 2 (or P ∉ A1,≤1),

0 = deg 1 = deg(1 − σ−p)(ασ p(β)(p,−p)) = deg α + deg β + deg(p,−p) − 1

(by (2.2)) ≥ 0 + 0 + p − 1 ≥ 2 − 1 = 1, a contradiction.
Case 3. (m(P),m(Q)) ≠ (1, 2). Suppose that m(P) = 1 and m(Q) = 2. hen

P = αX p for some p ≥ 2 and Q = Qs + Qq , where Qs ∈ A1,s , Qq ∈ A1,q , and s < q.
By Lemma 2.2, the equality [P,Q] = 1 implies that [P,Qs] = 1 and [P,Qq] = 0. By
Case 2, this is not possible.
Case 4. Suppose that m(P) = 2 and m(Q) = 1. hen P = Pr + Pp and Q = Qq . By

Lemma 2.2, the equality [P,Q] = 1 implies that [Pp ,Qq] = 0 and [Pr ,Qq] = 1. hen
q ≥ 0, by Lemma 2.2. he case q = 0 is not possible since then both Pr ,Qq ∈ K[H] and
this would contradict the equality [Pr ,Qq] = 1. herefore, q > 0. hen Pr = βY q and
Qq = αXq for some nonzero elements β, α ∈ K[H]. hen −1 = [Qq , Pr] = (1 − σ−q)
(ασ p(β)(q,−q)) implies that

0 = deg(−1) = deg (1 − σ−q)(ασ p(β)(q,−q)) = deg α + deg β + q − 1,

by (2.2). Hence, q = 1, α, β ∈ K∗, and β = −α−1. hen P,Q ∈ A1,≤1, and, by Case 1, the
pair (P,Q) is obtained from the pair (Y , X) by applying an automorphism of A1.
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Case 5. (m(P),m(Q)) ≠ (2, 2). Sincem(P) = m(Q) = 2, we canwrite P = Pr+Pp
and Q = Qs +Qq as sums of homogeneous elements, where r < p, Pr ∈ A1,r , Pp ∈ A1,p ,
and s < q, Qs ∈ A1,s , Qq ∈ A1,q . he equality [P,Q] = 1 implies that [Pr ,Qs] = 0 and
[Pp ,Qq] = 0; see Lemma 2.2. By the same Lemma, the elements r and s have the same
sign, i.e., either r < 0, s < 0 or r = s = 0 or r > 0, s > 0, and also the elements p and q
have the same sign. Since p ≥ 2, we must have q > 0.

Suppose that r ≥ 0, we seek a contradiction. hen s ≥ 0 and so the elements P and
Q are elements of the subring A1,+ = ⊕i≥0 K[H]X i . Now

K[H] ∋ 1 = [P,Q] ∈ [A1,+ ,A1,+] ⊆⊕
i≥1

K[H]X i ,

a contradiction. herefore, r < 0 and s < 0.
he equality 1 = [P,Q] = [Pr ,Qq]+[Pp ,Qs] andLemma2.2 imply that r+q = 0 and

p+ s = 0, that is, r = −q and s = −p. So P = P−q +Pp and Q = Q−p +Qq . he elements
Pp and P−q are homogeneous elements of the Weyl algebra A1. he Weyl algebra A1

is a homogeneous subalgebra of the algebra K(H)[X , X−1; σ] = K(H)[Y ,Y−1; σ−1],
where K(H) is the ûeld of rational functions in the variableH and the automorphism
σ of K(H) is given by the rule σ(H) = H−1. By [4, Proposition 2.1(1)], the centralizer
CB(Pp) of the element Pp in B is a Laurent polynomial algebra

K[αXn , (αXn)−1]
for some nonzero element α ∈ K(H) and n ≥ 1. In general, α ∉ K[H]. Similarly,
CB(P−q) = K[βYm , (βYm)−1], for some nonzero element β ∈ K(H) and m ≥ 1.

Since [Pp ,Qq] = 0, Qq ∈ CB(Pp), and

Pp = λ(Pp)(αXn)i = λ(Pp)ασ n(α) ⋅ ⋅ ⋅ σ n(i−1)(α)Xni = αn , iX p ,

Qq = λ(Qq)(αXn) j = λ(Qq)ασ n(α) ⋅ ⋅ ⋅ σ n( j−1)(α)Xn j = α′n , jXq ,

for some nonzero scalars λ(Pp), λ(Qq) ∈ K∗ and some i ≥ 1 and j ≥ 1, where,

αn , i = λ(Pp)ασ n(α) ⋅ ⋅ ⋅ σ n(i−1)(α) ∈ K[H], p = ni ,

α′n , j = λ(Qq)ασ n(α) ⋅ ⋅ ⋅ σ n( j−1)(α) ∈ K[H], q = n j.

Since [P−p ,Q−p] = 0, Q−p ∈ CB(P−q), and

P−q = λ(P−q)(βYm)s = λ(P−q)βσ−m(β) ⋅ ⋅ ⋅ σ−m(s−1)(β)Yms = βm ,sY p ,

Q−p = λ(Q−p)(βYm)t = λ(Q−p)βσ−m(β) ⋅ ⋅ ⋅ σ−m(t−1)(β)Ymt = β′m ,tY q ,

for some nonzero scalars λ(P−q), λ(Q−p) ∈ K∗ and some s ≥ 1 and t ≥ 1, where,

βm ,s = λ(P−q)βσ−m(β) ⋅ ⋅ ⋅ σ−m(s−1)(β) ∈ K[H], p = ms,

β′m ,t = λ(Q−p)βσ−m(β) ⋅ ⋅ ⋅ σ−m(t−1)(β) ∈ K[H], q = mt.

Now

1 = [P,Q] = [Pp ,Q−p] + [P−q ,Qq] = [αn , iX p , β′m ,tY
p] + [βm ,sY q , α′n , jX

q]
= αn , iσ p(β′m ,t)(p,−p) − β′m ,tσ−p(αn , i)(−p, p)

+ βm ,sσ−q(α′n , j)(−q, q) − α′n , jσ q(βm ,s)(q,−q).
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Using the equalities (−p, p) = σ−p((p,−p)) and (−q, q) = σ−q((q,−q)), the last
equality above can be rewritten as follows

(1-ab) 1 = (1 − σ−p)(a) + (1 − σ−q)(b),
where a = αn , iσ p(β′m ,t)(p,−p) ∈ K[H] and b = α′n , jσ q(βm ,s)(q,−q) ∈ K[H].

Recall that P = P−q + Pp , Q = Q−p + Qq ,

(2-ab) p = mt = ni ≥ 2 and q = ms = n j ≥ 1.

Suppose that p = q, and so P = P−p + Pp , Q = Q−p + Qp . hen Q = λPp for some
λ ∈ K∗. Notice that

1 = [P,Q] = [P,Q − λP], m(P) = 2, m(Q − λP) = 1.

By Case 4, the pair (P,Q − λP) is obtained from the pair (Y , X) by applying an au-
tomorphism of the Weyl algebra A1.

So, either p < q or p > q. In view of (P,Q)-symmetry (i.e., 1 = [P,Q] = [−Q , P]),
it suõces to consider, say, the ûrst case only. Since p < q, the equalities (2-ab) imply
that i < j and t < s. hen, using (2.2) and the fact that deg(p,−p) = p for all p ≥ 1, we
see that

deg a = deg αn , i + deg β′m ,t + p − 1,
deg b = deg α′n , j + deg βm ,s + q − 1.

Since i < j and t < s, deg αn , i < deg α′n , j and deg β′m ,t < deg βm ,s . In particular,
deg a < deg b. his equality contradicts (1-ab) since, by (2.2), 0 = deg 1 = deg a − 1 −
deg b+1 = deg a−deg b > 0. hismeans that the cases p < q and p > q are impossible.
he proof of the theorem is complete. ∎

Corollary 2.3 Let P,Q be elements of the ûrst Weyl algebra A1 with m(P) = 1 or
m(Q) = 1. If [P,Q] = 1, then P = τ(Y) and Q = τ(X) for some automorphism
τ ∈ AutK(A1).

Proof Without loss of generality we may assume m(Q) = 1 and m(P) ≥ 3. hat is,
Q = Qq and P = ∑i∈I Pi , where I ⊂ Z is a ûnite set, q ∈ Z ∖ {0} and the elements Qq
and Pi are homogeneous in A1. By (2.1), we may assume that q > 0. hen 1 = [P,Q] =
∑i[Pi ,Qq] implies that −q ∈ I, [P−q ,Qq] = 1 and [Pj ,Qq] = 0 for all j ∈ I such that
j ≠ −q. By heorem 1.1,

q = 1, Q1 = λX , P−1 = λ−1Y for some λ ∈ K∗ .

By Lemma 2.2, C ∶= P − P−1 ∈ CA(X) = K[X]. hen P = τ(Y) and Q = τ(X), where
τ∶A1 → A1, X ↦ λX, Y ↦ λ−1Y + C, is an automorphism. ∎
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