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Abstract

Climate changewill impact wind and, therefore, wind power generation with largely unknown effects andmagnitude.
Climate models can provide insight and should be used for long-term power planning. In this work, we use Gaussian
processes to predict power output given wind speeds from a global climate model. We validate the aggregated
predictions from past climate model data with actual power generation, which supports using CMIP6 climate model
data for multi-decadal wind power predictions and highlights the importance of being location-aware. We find that
wind power projections for the two in-between climate scenarios, SSP2–4.5 and SSP3–7.0, closely align with actual
wind power generation between 2015 and 2023. Our location-aware future predictions up to 2050 reveal only minor
changes in yearly wind power generation. Our analysis also reveals larger uncertainty associated with Germany’s
coastal areas in the North than Germany’s South, motivating wind power expansion in regions where the future wind
is likely more reliable. Overall, our results indicate that wind energy will likely remain a reliable energy source.

Impact Statement

Climate change will affect wind and, therefore, wind power; climate models can help to gain insights into future
power generation. Using Gaussian processes, we project wind power output given wind speeds from a global
climate model. We show that turbine locations are essential for accurate multi-decadal power projections. We
show that for the more likely climate scenarios, only minor changes in wind power generation are expected—
indicating that wind energy can continue to be a reliable energy source in the upcoming years.

1. Introduction

Tomitigate climate change, wind energywill play an essential role in the future power supply (Barthelmie
and Pryor, 2021). Efficient power planning should, therefore, account for natural wind variability as well
as climate change by incorporating climate projections into multi-decadal predictions (e.g., Miao et al.,
2023. However, these climate projections have two main shortcomings: Their output resolutions are
coarse due to the high (computational) complexity of climatemodels and are uncertain as they account for,
among other things, unpredictable human behavior.
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To overcome the issue of coarse spatial resolution (usually ≥ 100 km) of general circulation models
(GCMs), so-called downscaling techniques have been developed (e.g., Sun et al., 2024). Downscaling,
including statistical and machine learning methods (e.g., Langguth et al., 2024) and dynamical downscaling,
can increase the spatial but also the temporal resolution of GCMs. For multi-decadal wind power predictions,
where the primary goal is an accurate cumulative power prediction, Effenberger et al. (2023) have shown that
a temporal resolution of 6 hours is generally sufficient. An analogous observation has not yet been made for
spatial resolutions; a high spatial resolution is often beneficial (e.g., Tamoffo et al., 2020) and can resolvemore
physical processes and weather phenomena (Letson et al., 2020) but requires careful selection (Pryor et al.,
2020). For CMIP6 (Eyring et al., 2016), the latest version of globally organized GCMs, no high-resolution
regional model runs are available yet, in contrast to its predecessor CMIP5 (compare e.g., Jacob et al., 2014).
To overcome this issue, Bartók et al. (2019) have developed a climate projection dataset tailored for the
European energy sector basedonCMIP5. Previous research, however, revealed thatCMIP6 andCMIP5 show
differences in futurewind resource projections for Europe (Carvalho et al., 2021),withCMIP6 showing better
capability in simulating past surface wind speeds across the entire Northern Hemisphere (Miao et al., 2023).
However, there is an important difference between historical and future climatemodel data, as climatemodels
do not only predict one future scenario of the atmosphere. A critical point of climate models is their ability to
integrate radiative forcing and represent different future scenarios. In this context, Jung and Schindler (2022)
show that the unlikely worst-case climate model scenario SSP5–8.5 (Hausfather and Peters, 2020) is over-
represented in current research.Therefore,while the plausibility of different scenarios is unclear (e.g., Pielke Jr
et al., 2022), there is a need for projecting realistic scenarios of CMIP6 for multi-decadal power prediction.

Several studies investigate potential changes in wind power resources due to climate change. The studies
primarily differ in the data used and the study region considered.We refer to Jung andSchindler (2022) for an
overview of recent studies on wind resource projections under climate change and summarize some main
points andmore recentwork here.Gernaat et al. (2021) investigate data fromCMIP5 and find that changes in
wind energy are uncertain with complex patterns across climate models; Barkanov et al. (2024) investigate
rawCMIP6 data and reveal changes inEuropean offshore renewable energy resources.Martinez and Iglesias
(2024) find a significant decline in wind resources by 2100 in CMIP6, particularly evident in the mid-
latitudes of theNorthernHemisphere; forGermany, they findnegligible changes inwindpowergeneration in
the long-term future (2091–2100) under the high emission climate change scenario SSP5–8.5. Investigating
CORDEX climate model data (compare Jacob et al., 2014) for 2025–2049, Sander et al. (2021) support this
claim and find that climate change will affect wind energy in Germany only marginally. Several studies
investigate regions out of the scope of this study (e.g., Nabipour et al., 2020;Martinez and Iglesias, 2022; He
et al., 2023); all reveal similar results in terms of the complexity of spatial and temporal patterns.

As most of the renewable power data is confidential, using wind speeds (Jung and Schindler, 2020) or
wind speeds cubed (Miao et al., 2023) as a proxy for wind power is common. Most of the reviewed work
considers gridded climate data only; however, some research also incorporates turbine locations for more
realistic power predictions (e.g., Tobin et al., 2016; Jung and Schindler, 2020). In this work, we further
expand the framework of location awareness by predicting turbine location-aware multi-decadal wind
power and validating these predictions with actual wind power generation.

Using CMIP6 data directly, we account for the latest climate model updates. The framework of Gaussian
processes (GPs) allowsus to additionally include turbine locations in our powerprojections, andwe show that
these are similar to the ground truth aggregated power generation. GPs have proven useful in recent wind
power assessment studies e.g., by Moradian et al. (2024) or Esnaola et al. (2024) as well as downscaling
climate variables (e.g., Chau et al., 2021;Kupilik et al., 2024). Inmost cases, downscaling refers to increasing
the resolution of gridded data (compare Sun et al., 2024). One main advantage of GPs compared to other
statistical downscaling approaches is that they do not rely on a grid. This makes them a natural choice for
turbine location-specific downscaling. Additionally, their probabilistic framework can be useful in climate
modeling where projections are usually associated with high uncertainty (Lehner et al., 2020).

In this work, we present a new approach for validating multi-decadal wind power predictions and
provide turbine location-aware predictions for Germany up to 2050. We describe our approach in
Section 2, our results in Section 3, and discuss and conclude in Sectios 4 and 5.
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2. Methods

Our general approach includes 1) estimating wind speeds at turbine locations, 2) extrapolating wind
speeds to hub height, and 3) predicting the corresponding power output. We compare the wind speeds at
turbine locations to predictions that do not consider actual turbine placement but are based on gridded
weather or climate datasets.We perform the same steps on these datasets, but 1) use thewind speeds at grid
points, 2) extrapolate wind speeds to the average hub height, and 3) compute the power output using the
most common turbine across the dataset.

2.1. Data

For our evaluation, we consider the gridded reanalysis dataset ERA5 (Hersbach et al., 2020) and the
gridded climate dataset MPI-ESM1.2-HR (Müller et al., 2018) from CMIP6. Furthermore, we compare
our predictions generated using theseweather and climate datasets to aggregated transmission level power
generation. The power data was collected from individual transmission system operators (TSOs) across
Germany (OPSD, 2024) and data provided by the German federal agency “Bundesnetzagentur” through
the SMARD database (Bundesnetzagentur, 2024). We use a turbine dataset provided by Manske and
Schmiedt (2023) to access the turbine locations and other static turbine data. For the gridded data that
covers Germany, we set the boundaries in ERA5 to longitudes ∈ 5 ° ,15 °½ � and latitudes ∈ 47 ° ,56 °½ �. In
the CMIP6 model runs, the boundaries of the box considered are longitudes ∈ 5:63 ° ,15:0 °½ � and
latitudes ∈ 47:22 ° ,55:63 °½ � and use all climate scenarios available for MPI-ESM1.2-HR, namely
SSP1–2.6, SSP2–4.5, SSP3–7.0, SSP5–8.5. The recent work of Morelli (2024) motivates our model
selection, which finds that the MPI-ESM1.2-HR model represents the wind speed distribution across
Germany particularly faithfully. As suggested by Effenberger et al. (2023), we use 6-hourly wind speed
data. For an overview of the data used, see Figure 1.

2.2. Estimate wind speeds at turbine locations

Using the gridded climate and weather datasets described in the previous section, we compute wind
speeds at turbine locations using Gaussian processes (GPs), see Figure 2 for an example. A GP is a
collection of random variables where any finite subset follows a multivariate normal distribution. AGP is
defined by a mean function μ �ð Þ and a covariance function k �, �ð Þ that is a positive definite kernel, see
Equation (2.2).We consider the casewhere the output of the climatemodels is noisy, that is the underlying
function f xð Þ is corrupted by Gaussian noise and therefore

y¼ f xð Þ+ ϵ, where ϵ�N 0,σ2
� �

: (2.1)

We compute σ2 as the variance over time of the two model runs available on the ESGF website
(ESGF, 2024). To keep extreme values of the individual model runs, we do not use the mean of the
model runs as input, but only the first model run r1i1p1f1. In GP regression, we put a GP prior on f and
compute the posterior given dataD¼ xi,yið Þni¼1≕ X,yf g. The posterior is also a GP and can be computed

Figure 1. We use weather (ERA5), climate (CMIP6 historical and SSPs), and power data (TSO and
SMARD) between 2011 and 2023.Due to limited data availability, not all datasets are temporally aligned.
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analytically. For further details, we refer toMurphy (2022). In the following, we describe our parameter
choices for the GPs in detail.

2.3. Kernel choice

We use a Matérn kernel of order 3
2, which for inputs x,x0 and metric d �, �ð Þ is given by

k x,x0ð Þ ¼ λ2 1+

ffiffiffi
3

p
d x,x0ð Þ
ℓ

� �
exp �

ffiffiffi
3

p
d x,x0ð Þ
ℓ

� �
, (2.2)

where d is the Euclidean metric d x,x0ð Þ ¼ x� x0k k2 and λ and ℓ are hyperparameters. We model the wind
speed w at one location and time point using a single-output GP. The original data consists of wind
velocities u and v and we first compute the wind speed as

w¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 + v2

p
: (2.3)

To predict wind speeds at turbine locations, we condition on the gridded spatial dataset simultaneously.
Our predictions for past data between 2011 and 2023 are then compared to ERA5 predictions and actual
power generation. For the high-resolution reanalysis data set ERA5, we chose a multi-output GP that
models wind velocities. We present results with multi-output GPs on historical data in Supplementary
Figures A.2 and A.3. Since this approach did not lead to a noticeable improvement in results (see
Supplementary Table A.2), we rely on single-output GPs based on wind speeds for all subsequent
predictions using GCMs, to avoid unnecessary computational overhead. This decision is further sup-
ported by the findings of Joos and Staffell (2018), who estimate that curtailment in Germany accounts for
approximately 4:4% of the potential power output. Since manual interventions such as curtailment limit
the predictability of power generation based solely on weather variables, we define any error below 4:4%
as falling within the uncertainty of inherent predictability. As the differences between the single-output
and multi-output model projections remain below this threshold in all cases, we consider both models to
be of comparable predictive quality.We give an example of wind speed predictions for turbine locations at
two example time points in Figure 2.

2.4. Hyperparameter optimization

We optimize the hyperparameters θ¼ λ,ℓf g of the Matérn kernel K in Equation (2.2) by maximizing the
marginal likelihood

p yjX,θð Þ¼N yj0,K + σ2I
� �

: (2.4)

Hyperparameters are optimized on the historical data from 2011 using gradient descent (Nocedal and
Wright, 1999) on the log marginal likelihood

Figure 2. Turbine locations and the corresponding wind speeds on January 1st 2011 (left) and 2023
(right), respectively. In Germany, there are more turbines in the North than in the South, and wind speeds
are usually higher in the North.
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logp yjX,θð Þ¼�1
2
yT K + σ2I
� ��1

y�1
2
log K + σ2I

�� ���n
2
log2π, (2.5)

where I is the identity matrix and n the number of data points. During inference time, the hyperparameters
are fixed and set to the average value of the historical run 2011. We give more information on the
variability of the hyperparameters in Supplementary Appendix A and visualize the results of the
hyperparameter optimization in Supplementary Figure A.1.

2.5. Spatial uncertainty

We investigate the posterior marginal standard deviation of wind speeds at turbine locations. To better
account for the large differences in average wind speeds over land and sea, we normalize the standard
deviation with the average wind speed at the same location.

2.6. Extrapolate wind speeds to hub height and compute power

We predict wind speeds at turbine locations using GPs. Given wind speeds w10 at a height of 10 m (CDS,
2021, the wind speed w zð Þ at hub height z can be computed assuming a wind profile power law with

w zð Þ¼w10 � z
10

� 	α
: (2.6)

Following Wan et al. (2019), we set the wind shear coefficient to α¼ 1
7. To compute the wind power

generation of each turbine, we feed the GP wind speed predictions at the turbine locations into turbine
power curves. An example of such a curve is given in Figure 3.We choose a suitable power curve for each
turbine wemodel bymapping the turbines from the Python library windpowerlib (Haas et al., 2024) to the
static turbine data provided by Manske and Schmiedt (2023). For each installed turbine in the German
database, we choose the turbine in windpowerlib whose capacity is closest to the actual installed capacity.
To model past yearly wind power generation, we account for all turbines installed in or before the
respective year. For future wind power generation, we account for all turbines in the database whose
commission date is 2024 or earlier.

We compare these location-aware predictions to non-location-aware predictions using gridded data.
An overview of the two approaches is given in Figure 4. For the gridded approach, we set the turbine
height to the mean (78.77 m) of the 2011 turbine dataset (Manske and Schmiedt, 2023) and choose the
turbine that occurs most often (E-53/800), one of the smallest turbines in the database. The gridded
approach cannot account for an increasing number of turbines as the power curve is applied to each grid
point, independent of the number of turbines installed. The prediction of the total power generated by
either of the predictions at a time point t is called ppred tð Þ, which is the sum over all grid points or turbines.
We perform linear bias correction by computing a factor f that ensures that the cumulative power

Figure 3. Turbine power curve of the Enercon E-53/800 turbine. No power is generated at very low and
very high wind speeds (purple), and once the rated power has reached maximum, power is generated in
all cases (green). The relationship between wind speed and power output is almost cubic in the blue part.
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generation prediction after 365 daysPpred 365 �4ð Þ equals the powerPtrue 365 �4ð Þ that was generated in the
considered year

f ¼
P365�4

i¼1 ppred ið ÞP365�4
i¼1 ptrue ið Þ≕

Ppred 365 �4ð Þ
Ptrue 365 �4ð Þ : (2.7)

This linear bias correction term accounts for dispatch (e.g., Göransson and Johnsson, 2009) and other
constant biases in wind power modeling. We correct the historical projections (2011 to 2014), past
projections (2015 to 2023), and future projections (starting 2024) with the actual power generation of
2011, 2015, and 2023, respectively. Bias correction is applied to both gridded and location-aware
predictions in the same way. It scales the gridded and location-aware predictions, allowing for a
quantitative comparison of the two predictions.

2.7. Evaluation period from 2011 to 2023

Given past data, we evaluate the methodology by comparing historical runs of GCMs from 2011 to 2014 to
ERA5 and realized power generation in Germany. Furthermore, we consider different CMIP6 scenarios
between 2015 and 2023.An overview of the different datasets and how they temporally overlap can be found
in Figure 1.We compare the historical and scenario runs of CMIP6 to ERA5, as the latter is highly correlated
with observational data (Kaspar et al., 2020) and showed better performance in forecasting wind power
generation than other reanalysis datasets such as MERRA2 in previous studies (Olauson, 2018). As actual
power generation is our variable of interest, we compare the wind power predictions from the historical runs
with the power generation reported by the four different German TSOs (OPSD, 2024). After 2015,
aggregated wind power generation data of these TSOs are available on the SMARD database Bundesnetza-
gentur (2024), which we compare to the power predictions from the climate scenario projections.

3. Results

We divide our results into three parts: 1) validation of our method through investigation of past data, 2)
future wind power projections, and 3) spatial uncertainty quantification. Our results reveal that including
turbine locations strongly influences multi-decadal wind power predictions. We further find that—
independent of the scenario considered—the uncertainty of climate projections over Germany is higher
in the coastal North than the mountainous South.

3.1. Method validation

Using GCM data and turbine locations, we predict wind power generation in Germany. For the historical
period 2011 to 2014, location-aware cumulative power predictions with ERA5 overestimate wind power

Figure 4. Overview of the gridded and location-aware approach. The gridded approach is based on
gridded weather or climate data, and the predictions cannot account for turbine locations. The location-
aware approach takes turbine locations into account.
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generation by 5.02%, and the location-aware prediction using the historical run of theMPI-ESM1.2-HR
model is considered to underestimates power generation by 0.78%, see Figure 5. In both cases, the
accuracy of the non-location-aware prediction is lower, with an underestimation of 9.49% and 12.51% for
ERA5 and CMIP6, respectively. In the future scenarios for our region and study period, we find that the
location-aware prediction based on SSP5–8.5–the worst-case reference scenario considered– is closest
(+2.68%) to the actual generated power, see Figure 6. However, the climate scenario that aligns closest
with the turbine location-aware prediction based on ERA5, in terms of mean absolute error, is the
medium-to-high reference scenario SSP3–7.0 (Meinshausen et al., 2020, see Supplementary Appendix A
and Supplementary Table A.1. If locations and with that, the increasing number of turbines are not
considered, wind power generation is underestimated in the climate scenarios as well as ERA5. If the
prediction is weighted by the number of turbines in a specific year (SSP3–7.0 + #t), wind power
predictions get underestimated compared to the location-aware prediction (SSP3–7.0).

Figure 5.Power prediction using historical CMIP6 data andERA5 relative to the actual powergenerated
using single-output GPs. A value of 1.0 indicates a perfect prediction. It can be seen that location-aware
predictions are closer to the actual power generated.

Figure 6. Power prediction relative to the actual power generated using scenarios of one climate model
using single-output GPs. The first number in brackets is the accuracy of the prediction without location
awareness (dotted lines), and the second is with location awareness (solid lines).
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3.2. Turbine location-aware multi-decadal wind power predictions in Germany using CMIP6

We predict turbine location-aware wind power for Germany up to the year 2050 and compare location-
aware to non-location-aware predictions. We present yearly results in Figure 7 and show the cumulative
predictions in Supplementary Figure A.5. For 2050, location-aware predictions result in expected power
generation between 87.87 TWh and 138.98 TWh; see Table 1. For the scenarios SSP1–2.6, SSP3–7.0, and
SSP5–8.5, being location-aware results in lower expected cumulative power between 2025 and 2050,
namely by 14.77%, 13.85% and 84.34% respectively. Only in scenario SSP2–4.5 is the cumulative
location-aware power prediction 1.34% higher than the non-location-aware prediction.

In Germany, in 2023, a total of 448,85 TWh of electric power was fed into the grid, with a relative
amount of 118,78 TWh (26.46%) being wind power (Bundesnetzagentur, 2024). To contextualize the
reported results, we compare the power predictions for 2050 to the expected power consumption of
506 TWh in 2050 as reported by the Federal Environment Agency (2024). The predictions of the different
scenarios reveal an expected power generation between 87.87 TWh and 138.98 TWh, which is
between 17.37 and 27.47% of the total power target of 2050.

3.3. Uncertainty quantification

The GP framework enables integrating the different ensemble members into the projection and quanti-
fying the uncertainty. As only two not temporally aligned SSP runs are available, the variance per timestep

Figure 7. Yearly turbine location-aware power predictions for the different climate scenarios. The black
line indicates the onshore wind powergeneration in 2023. On average, wind powergeneration in SSP2–4.5
and 3–7.0 will be a bit higher than in 2023, while SSP1–2.6 and SSP5–8.5 project lower power generation.

Table 1. Power generation predictions using the different climate scenario pathways of the MPI-ESM1.2-
HR. In the 2023 persistence prediction (last row), we do not correct for the extra day in leap years

Pathway
Power prediction
2050 (in TWh)

Average prediction
2045–2050 (in TWh)

Cumulative prediction
2025–2050 (in TWh)

SSP1–2.6 90.01 88.85 2501.88
SSP2–4.5 138.98 125.54 3109.20
SSP3–7.0 87.87 115.80 3134.75
SSP5–8.5 114.65 106.22 2858.18
Wind power in 2023 118.78 118.78 3088.34
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of these is difficult to interpret. In ourmodel setup, we choose to use the variance of the twomodel runs per
scenario as noise σ (see Equation (2.1)), which results in a spatially meaningful posterior variance, see
Figure 8. The results mainly reveal two insights: The normalized posterior standard deviation is higher for
turbine locations closer to the coast in the North and varies more with latitude than longitude. This is in
line with the hyperparameter optimization, which resulted in larger values, i.e., smoother functions of
longitude compared to latitude.

4. Discussion

Our results indicate that GCM output and turbine locations make multi-decadal wind power predictions
possible. In many experiments, non-location-aware predictions differed substantially from location-
aware predictions, indicating that accounting for the number and locations of turbines is crucial. Our
results investigating past data reveal that for the region and time considered, turbine-location-aware
power predictions using SSP3–7.0 are most similar to the predictions with ERA5 data and to the ground-
truth generated power. Investigating future climate projections further reveals that the differences between
the two in-between scenarios SSP2–4.5 and SSP3–6.0 andwind power generation in 2023 areminor. This
indicates that wind energy will likely be a reliable power source. In general, accounting for turbine
locations resulted in a smaller spread of the four climate scenarios than non-location-aware predictions,
indicating that climate change could have more minor impacts on wind power generation than expected
when investigating raw climatemodel data. Due to theseminor changes in expected power generation, our
results are in line with other studies (e.g., Sander et al., 2021,Martinez and Iglesias, 2022) and underscore
that wind power and storage expansion can likely compensate for the impacts of climate change. Our
results regarding the spatial uncertainty of the projections further motivate wind power expansion in the
South of Germany—despite the on average lower wind speeds–as less uncertain wind conditions are to be
expected. Our results reveal that the best and worst-case scenarios represent only the extremes and do not
account for the full spectrum of possible outcomes. This underscores the controversial results (Schwalm
et al., 2020) by Jung and Schindler (2022) andHausfather and Peters (2020), that is the need to investigate
all scenarios available and not only SSP5–8.5 and SSP1–2.6.

We will discuss some assumptions we made in this work in the following. Most of these are
consequences of lacking curtailment and individual turbine data. Our linear power generation bias
correction can not account for potentially changing curtailment. Generally, the value of bias correction
is unclear (Maraun, 2016), so we decided against bias correcting wind speeds. Investigating past data
reveals that the correlation between ERA5 and wind power generation is not constant, indicating changes
in curtailment or technical improvement of newly installed turbines. While curtailment data is partially

Figure 8. Average posterior standard deviation at the turbine locations in 2050 for SSP1–2.6 (top left),
SSP2–4.5(top right), SSP3–7.0 (bottom left), and SSP5–8.5 (bottom right). The overall pattern is similar
for all scenarios, with higher uncertainties in the coastal North than in the mountainous South.
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available (e.g., Joos and Staffell, 2018), most of it is confidential. Therefore, the true power generation we use
to validate our results is non-optimal, as it includes curtailment and othermanual interventions. The predictions
generated using the gridded reanalysis dataset ERA5 are a proxy for the actual wind power potential.

Another reason for not bias-correctingwind speeds is the limited availability of hub height wind data and
power data in general (compare Effenberger and Ludwig, 2022), which often limits research in renewable
energy modeling. The wind data we use is 10 m surface wind speed data, which we vertically extrapolate
using a wind profile power law that has known shortcomings (Touma, 1977). Due to the lack of data at hub
heights, these extrapolated wind speeds can not be validated. Therefore, while the cumulative sum over all
locations is valuable, we cannot also validate the power predictions of individual turbines. This means that
our predictions are only location-aware; they are not location-specific.While vertical extrapolation could, in
general, be improved (e.g., Crippa et al., 2021), the high complexity of the atmosphere further complicates
finding or learning a better parameterization of the vertical wind profile. Another simplification we make
during power prediction is using deterministic power curves. Given ground truth wind power generation
data at individual turbine locations, one could, for example, learn probabilistic power curves as done in Yun
andHur (2021).Overall, access towind speed observations at hub height, the corresponding power data, and
theoretical wind power curves could further improve such predictions.

In future work, our setup with GPs can be used to investigate other potential turbine scenarios, which
can help political decision-makers select turbine locations and expand storage capacities. Furthermore,
the ability of GPs to quantify uncertainty has not been fully exploited in this study; this could, for example,
be improved by using large ensembles (e.g., Olonscheck et al., 2023) and taking more than two ensemble
members into account and adjusting the noise-level σ in Eq. (2.1) accordingly. Additionally, it would also
be beneficial for uncertainty quantification to account for the differences among climate models.
However, this is a very complex topic (e.g., Merrifield et al., 2023; Morelli et al., 2025) and requires
careful model selection, which is why we limit the scope of this study to the MPI-ESM1.2-HR model,
motivated by Morelli (2024). Future research should also emphasize validating the methodology for
larger regions, which requires a lot of effort (e.g., Zhang et al., 2021), due to the lack of a common database
for wind turbine installations. Additionally, our setup is promising for investigating physics-informed GP
kernels (e.g., Pförtner et al., 2022). In this work, we focus on a single, interpretable machine learning
model. However, beyond the already discussed extensions within the framework of Gaussian processes,
the insights gained regarding the value of location-aware predictions can inform future research involving
more complex statistical or machine learning approaches. Additionally, systematically benchmarking
location-aware models may further improve predictive accuracy and provide deeper insights into how
climate change could impact future wind power generation.

5. Conclusion

UsingGaussian processes to investigate past data from historical and scenario climatemodel runs, we find
that multi-decadal wind power forecasting using theMPI-ESM1.2-HRmodel is promising.We also show
that accounting for turbine locations is important and results in more accurate predictions than non-
location-aware predictions. Our study demonstrates that while climate change may bring minor changes
to wind power generation in Germany by 2050, wind energy will likely remain a reliable power source
under most climate scenarios. Furthermore, the greater uncertainty in Northern coastal regions, compared
to the South, emphasizes the importance of location-specific strategies to enhance wind power reliability
in the upcoming years.
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