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Abstract

We study Frobenius groups acting on curves.
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1. Introduction

Let k be an algebraically closed field of characteristic p ≥ 0. Consider a separable
nontrivial rational map f : X→ Y between smooth projective curves X, Y defined
over k. We call the Galois group of the Galois closure of k(X)/k(Y ) the monodromy
group of f . A major tool in studying such covers is to translate arithmetic and
geometric questions to questions about the monodromy group. This has been used
very successfully in many instances. See [4] and [5] for examples and other references.

Recall that a Frobenius group is a finite permutation group G acting transitively
on a set � with nontrivial point stabilizer such that no nonidentity element fixes two
points. It follows that there is a Frobenius kernel N , a normal subgroup such that
N #
= N \ (1) is precisely the set of fixed point free elements of G, and a Frobenius

complement H (a point stabilizer). Rather surprisingly the only proof that the
Frobenius kernel exists involves character theory (this was first proved by Frobenius).

This implies easily that N acts regularly on �. So we can identify � with N as an
H -set, and so every nontrivial element of H acts on N # by conjugation without fixed
points. By a famous theorem of Thompson [7], this implies that N is nilpotent.

A rational function is a map from P1 to P1; similarly, a polynomial is a rational
function that is totally ramified at∞.
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In this note, we show that rational functions with monodromy group a Frobenius
group have very special properties; in particular, the Galois closure has genus at most
one. This was originally proved independently by the author [2] and Flynn [1]. These
come up in many of the examples of interesting polynomials (for example, exceptional
polynomials, subadditive polynomials) and also come up in a reduction theorem of the
author (see [4, 5, 3]). The proofs given here are representation theoretic in nature and
quite different from the earlier proofs.

In fact, we prove a much more general result for Frobenius groups acting on a curve
X ; see Theorem 3.1 for the precise statement. We also prove an analog under a weaker
condition on fixed points of elements in inertia subgroups (see Theorem 4.2).

See [4] or [5] for basic results on monodromy groups and coverings of curves.

2. Basic properties of frobenius groups

We first point out an easy property of Frobenius groups. Recall that a group acts
semiregularly on a set if no nonidentity element of the group fixes a point. If V is a
G-module, let V G denote the fixed points of G on V . If H is a subgroup of G and W
is an H -module, let W G

H denote the induced module.

LEMMA 2.1. Let G be a Frobenius group with k a field.

(1) The subgroup H acts semiregularly on the set of isomorphism classes of
nontrivial irreducible modules of N (by conjugation).

(2) If V is an irreducible kG-module, then either V N
= V or V ∼=W G

N for some
(nontrivial) irreducible N-module W .

(3) If V is an irreducible kG-module, then either V N
= V or V is a free module for

H and V H
6= 0.

PROOF. Let V be an irreducible k N -module. Suppose that 1 6= h ∈ H preserves V .
Let M be the kernel of N on V . Since N is nilpotent, N/M has a nontrivial center and
h must centralize this center (since it preserves the representation), whence CN (h) 6= 1
(since the order of h is coprime to |N |). This contradicts the definition of Frobenius
group.

Let V be an irreducible G-module with V N
6= V . Let W be an irreducible

N -submodule of V . By (1), W G
N is a direct sum of nonisomorphic N -modules

permuted freely by H and in particular is irreducible. Since 0 6= HomN (W, V )
∼= HomG(W G

N , V ) (by Frobenius reciprocity), it follows that V ∼=W G
N . This implies

that V is a free H -module. Parts (2) and (3) follow. 2

COROLLARY 2.2. Let G be a Frobenius group with Frobenius kernel N and
complement H. Let V be a finite-dimensional CG-module with V G

= 0. Then
dim V = dim V N

+ |H | dim V H .

PROOF. It suffices to prove this formula for an irreducible nontrivial G-module. If
V N
= V , then V H

= V G
= 0 since V is nontrivial. If V N

= 0, then V is a free
H -module, whence the result holds. 2
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3. Frobenius groups acting on curves

We first recall some facts about the Tate module for a finite group acting on a
curve X . The Tate module is a CG-module of dimension 2g with g the genus of
X . It can be constructed as follows. Let r be a prime different from the characteristic
of X with r not dividing the order of G. Let W be the r -torsion points of the Jacobian
of X . This has order r2g and is a module for G. Its Brauer character is the character
of G on the Tate module (this defines the Tate module; it does not depend upon the
choice of r ). The Tate module is uniquely determined by noting that its character is
rational valued and that, if H is a subgroup of G, then dim V H

= 2g(X/H). This
is the property that we require. Applying Corollary 2.2 to the Tate module gives the
following corollary.

COROLLARY 3.1. Let G be a Frobenius group acting on a curve X of genus g with
X/G of genus zero. Let N be the Frobenius kernel and H a Frobenius complement.
Then g = g(X/N )+ g(X/H)|H |.

The special case when g(X/H)= 0 had been proved much earlier independently
by the author and Flynn [1, Theorem 9]. The previous result with g(X/H)= 0 says
that g = g(X/N ). This implies that g ≤ 1 (since if X is a curve of genus g > 1,
there is no separable map of degree greater than one from X to another curve of
genus g). Moreover, if g = 1, then g(X/N )= 1, and so the cover X→ X/N must
be unramified (and conversely). In particular, it follows that N is abelian of rank at
most two. By considering subgroups of Aut(P1)= PGL(2, k) and Aut(X) with X of
genus one, we have the following result (see [6] for facts about automorphism groups
of elliptic curves).

COROLLARY 3.2. Let G be a Frobenius group acting on a curve X of genus g over
a field k of characteristic p ≥ 0. Let N be the Frobenius kernel and H a Frobenius
complement of index n. If X/H has genus zero, then g ≤ 1. Moreover, N is abelian.
Furthermore:

(1) either g = 0, and

(a) G is dihedral of order 2n, or
(b) n = 4, or
(c) n = pa;

(2) or g = 1, X→ X/N is unramified (X/N also has genus one) and H is cyclic of
order two, three, four or six or p ≤ 3.

By considering the automorphism groups of curves of genus at most one, we can
write down all such examples. We single out a special case.

COROLLARY 3.3. Let f (x) be a separable rational function in k(x) of prime
degree r . Assume that k is algebraically closed of characteristic p. Assume that the
Galois group G of the Galois closure L of k(x)/k( f (x)) is solvable. Then G has a
normal subgroup N of order r and one of the following holds:
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(1) there is a totally ramified point, L has genus zero, and

(a) r 6= p and G is cyclic of order r or dihedral of order 2r , or
(b) r = p and G ≤ AGL(1, p);

(2) there is no totally ramified point, L = k(E) where E is an elliptic curve,
E→ E/N is unramified and G/N is a nontrivial cyclic subgroup of Aut(E);
in particular, G/N has order two, three, four or six.

PROOF. Observe that G is a solvable transitive subgroup of the symmetric group of
degree r . Thus, G is a Frobenius group (or is cyclic of order r ). Thus, our earlier
results apply and it is straightforward to determine the possibilities. 2

One can easily write down the rational functions (up to equivalence) that occur in
the previous result. In particular, if r 6= p and f is a polynomial, then L has genus
zero and f is equivalent either to xr or to a Dickson polynomial of degree r .

4. A variation on the theme

Now we consider another variation. Rather than consider the case where G is a
Frobenius group, we just assume that:

(∗) G is a finite group acting on a curve X of genus g with a subgroup H of index
n > 1. If 1 6= x ∈ G fixes some point of X , then x fixes at most one point on G/H .

So we are only assuming the condition that nontrivial elements of inertia groups fix
no more than one point on G/H . We first point out the following result. Recall that
Op(J ) is the largest normal p-subgroup of J .

LEMMA 4.1. Let G be a finite transitive permutation group on the a � of
cardinality n. Let I be a subgroup of G with I/Op(G) cyclic. Assume that, if
1 6= g ∈ I , then g fixes at most one point on �. Then every orbit except perhaps one is
regular for I . In particular, the number of orbits of I on � is at most (n − 1)/|I | + 1.
Moreover, equality holds precisely when I fixes a point of �.

PROOF. We may assume that I has at least one nonregular orbit. Let w be a point
in that orbit, and let x ∈ I be an element of prime order r fixing w. Note that the
centralizer of x in G must also fix w (since w is the unique point fixed by x). In
particular, if r = p, then the center Z of Op(I ) fixes w as does the normalizer. Since
w is also the unique fixed point of Z and I normalizes Z , I also fixes w. In this
case I has a fixed point, and all other orbits are regular. Thus the number of orbits is
1+ (n − 1)/|I |.

So we may assume that no nontrivial element of Op(I ) fixes a point of � and r 6= p.
In particular, it follows that any element of I of order prime to p fixes a point in Iw,
and so has no fixed points in any other I -orbit. In this case, there is one orbit of size
|Op(I )| and all other orbits are regular. 2
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THEOREM 4.2. Assume that (∗) holds. Let h be the genus of X/H and |G| = m.

(1) Then g − 1≤ hm/(n − 1), with equality if and only if each inertia subgroup is
conjugate to a subgroup of H.

(2) In particular, if h = 0, then X has genus at most one. Moreover, X has genus
one if and only if each inertia group is conjugate to a subgroup of H.

PROOF. Let g be the genus of X and h the genus of X/G. Let J be any subgroup of
an inertia group. Set n = [G : H ] and m = |G|.

By the Riemann–Hurwitz formula,

2(g − 1)/m =−2+
∑

aJ (1− 1/|J |)

and
2(h − 1)/n =−2+

∑
aJ (1− orb(J, G/H))n.

Here the sum runs over some family of subgroups each contained in an inertia group
and the aJ are positive rational numbers. Also orb(J, G/H) is the number of orbits of
J on G/H . By the previous lemma, orb(J, G/H)≤ 1+ (n − 1)/|J | and so

1− orb(J, G/H)/n ≥ (n − 1)/n − (n − 1)/n|J | = [(n − 1)/n](1− 1/J |).

Thus, multiplying the second equation by n/(n − 1) and using equality in the third
equation, we see that

2(h − 1)/(n − 1)≥−2n/(n − 1)+
∑

aJ (1− 1/|J |)= 2(g − 1)/m − 2/(n − 1).

So h/(n − 1)≥ (g − 1)/m or g − 1≤ hm/(n − 1). In particular, h = 0 implies that
g ≤ 1. The same argument shows that we have a strict inequality above unless each
inertia group has one orbit of size one and all other orbits regular (and in this case, we
have equality, forcing g = 1). 2
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