
19

Neutrino masses and mixing

In this chapter we introduce the phenomenology of neutrino masses and mixing,

and show how the phenomenology can be made to be consistent with the SU(2)

× U(1) broken gauge symmetry of the Standard Model. We take it that neutrinos

and antineutrinos are distinct Dirac fermions, setting aside, until Chapter 21, the

suggestions that neutrinos are Majorana fermions.

The phenomenology arose from the observations that the number of electron

neutrinos arriving at the Earth from the Sun is only about half of the number

expected from our knowledge of the nuclear reactions that occur in the Sun, and the

physics of the Sun’s interior. These observations are now explained as the result of

some electron neutrinos turning into muon neutrinos and tau neutrinos during their

transit between their creation in the interior of the Sun and their observation on

Earth. These transitions violate the conservation laws of Section 9.3. We will show

that they occur because the e, μ and τ neutrinos are not massless but, as conceived

by Pontecorvo (1968) they do not have a definite mass, i.e., they are not eigenstates

of the mass operator.

19.1 Neutrino masses

The most general Lorentz invariant neutrino mass term that can be introduced into

the Lagrangian density of the Standard Model is

Lν
mass(x) = −

∑
α,β

ν
†
αL (x) mαβνβR (x) + Hermitian conjugate, (19.1)

where mαβ is an arbitrary 3 × 3 complex matrix, α and β run over the three neutrino

types e, μ, τ, and ναL (x), ναR (x) are left-handed and right-handed two-component

spinor fields. (Spinor indices are omitted here.)
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186 Neutrino masses and mixing

An arbitrary complex matrix can be put into real diagonal form with the help of

two unitary matrices (see Problem A.4). We can write

mαβ =
∑

i

U L∗
αi miU

R
βi , (19.2)

where mi are three real and positive masses; UL and UR are unitary matrices. It is

evident that U L
αi and U R

βi can be replaced by U L
αi e

−iδi and U R
βi e

−iδi , where the δi are

three arbitrary phases.

If we now define the fields

νiL (x) = ∑
α

U L
αiναL (x),

νiR (x) = ∑
α

U R
αiναR (x),

(19.3)

the mass term takes the standard Dirac form (5.12)

Lν
mass (x) = −

∑
i

mi
(
ν
†
iLνiR + ν

†
iRνiL

)
. (19.4)

It is easy to show that the transformations given by equations (19.3) retain the Dirac

form of the dynamical terms:

Lν
dyn = ∑

α

i
[
ν
†
αLσ̃ μ∂μναL + ν

†
αRσμ∂μναR

]
= ∑

i
i
[
ν
†
iLσ̃ μ∂μνiL + ν

†
iRσμ∂μνRi

]
.

(19.5)

(Lν
dyn + Lν

mass) is the Lagrangian density of free neutrinos of masses m1, m2, m3.

Since UL and UR are unitary matrices, and a unitary matrix U satisfies UU† =
U†U = I, we can invert equations (19.3) to give

ναL (x) =
∑

i

U L∗
αi νiL (x),

ναR (x) =
∑

i

U R∗
αi νiR (x).

(19.6)

The e, μ and τ neutrinos are mixtures of the neutrinos having definite mass. We

shall see that this leads to the phenomenon of neutrino oscillations.

19.2 The weak currents

Neutrinos interact with each other and with other particles through the weak cur-

rents. The charged weak current (9.2), expressed in terms of the neutrino mass

eigenfields using (19.6), becomes

jμ =
∑

α

α
†
Lσ̃ μναL =

∑
α,i

α
†
Lσ̃ μU L∗

αi νiL (19.7)

αL are the charged lepton fields α = e, μ, τ .
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19.3 Neutrino oscillations 187

The neutral weak current (9.17) keeps the same form: since UL is unitary, we

have

∑
α

(ναL)† σ̃ μναL =
∑

i

(νiL)† σ̃ μνiL. (19.8)

As an example of how these modifications influence the physics discussed in

earlier chapters, consider our effective pion interaction (9.1):

Lint = απ

[
jμ∂μ
π + jμ†∂μ
†

π

]
.

The β decay rate formula (9.3) for π− → e− + ν̄e becomes three decay rates:

1

τ (π− → e−ν̄i )
= α2

π

4π

(
1 − ve

c

)
p2

e Ee

∣∣U L
ei

∣∣2
, i = 1, 2, 3.

In the derivation of this result the effects of small neutrino masses have been

neglected. Because neutrino masses are small (see Table 1.2), it is not possible with

present technology to discern differences in energy between these decay modes. The

total decay rate is measured, and since
∑

i U L
eiU

L∗
ei = 1 we recover the expression

(9.3) for this. A similar conclusion can be drawn about the processes π− → μ− +
ν̄μ and τ− → π− + ντ , described in Section 9.2 by the same effective Lagrangian,

and about the results on muon decay of Section 9.4.

19.3 Neutrino oscillations

The Lagrangian density (19.1) with (19.5) for a free neutrino yields the equations

iσ̃ μ∂μναL − mαβνβR = 0,

iσμ∂μναR − m∗
βανβL = 0.

(19.9)

These equations are a generalisation of the Dirac equations (5.11), and in this

section we shall interpret their solutions as neutrino wave functions for the three

types α = e, μ, τ , not as neutrino fields. We shall look for energy eigenfunctions

with time dependence e−iEt .

Zero mass neutrinos would have plane wave solutions of negative helicity (see

Section 6.6). For a wave in the z direction

ναL (z, t) = e−iE(t−z) fα

(
0

1

)
, ναR = 0,

where the fα are constants.
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188 Neutrino masses and mixing

The introduction of neutrino masses modifies these solutions by allowing the fα
to depend on z:

ναL (z, t) = e−iE(t−z) fα (z)

(
0

1

)
,

ναR (z, t) = e−iE(t−z)gα (z)

(
0

1

)
.

(19.10)

Substituting in the Dirac equations gives

i
d

dz
fα (z) − mαβgβ (z) = 0,

(
2E − i

d

dz

)
gγ (z) − m∗

αγ fα (z) = 0.

(19.11)

(
Note that σ̃ 3

(
0

1

)
=

(
0

1

)
, σ 3

(
0

1

)
= −

(
0

1

)
.

)

For neutrino energies much greater that their mass we can neglect −i dgγ /dz
compared with 2Egγ (see Problem 19.1) to obtain

gγ (z) = m∗
αγ fα (z) /2E, (19.12)

and hence by substitution three coupled equations for fα (z):

i
d

dz
fβ (z) = mβγ m∗

αγ fα (z) /2E .

Diagonalising the mass matrices mβγ and mαγ gives

i
d

dz
fβ (z) = U L∗

βi U L
αi fα (z) m2

i /2E . (19.13)

The right-handed U R do not now appear, so that the label L is now redundant and

we shall put U L
αi = Uαi for the remainder of this section.

To solve these equations we construct linear combinations

fi (z) = Uαi fα(z); i = 1, 2, 3. (19.14)

which satisfy, using (19.13),

i
d

dz
fi (z) = iUαi

d

dz
fα (z) = UαiU

∗
α jUβ j m

2
j fβ (z) /2E

= δi jUβ j m2
j fβ (z) /2E = (

m2
i /2E

)
fi (z) .

(19.15)

These uncoupled equations have the simple solutions

fi (z) = e−i(m2
i /2E)z fi (0) .
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19.3 Neutrino oscillations 189

Inserting the factor e−iE(t−z), the νi neutrino wave function is

νi (z, t) = e−iEt+i(E−m2
i /2E)z fi (0) . (19.16)

This state has energy E and momentum pi = E − m2
i /2E . For m2

i � E2, p2
i =

E2 − m2
i , which is the relativistic relationship for a particle of mass mi . Thus the

neutrino νi carries mass mi . νi (z, t) are the left-handed wavefunctions of (19.3).

Suppose that at z = 0 a neutrino of type α is born. The να wavefunction is a

linear superposition of mass eigenstates νi with fi (0) = Uαi fα (0). Different mass

eigenstates propagate with different phases so that the neutrino type changes with

z:

fβ(z) = U ∗
βi fi (z) = U ∗

βi e
−i(m2

i /2E)zUαi fα(0). (19.17)

To be exact a neutrino is born as a wave packet in some localised region of space

time around some point z = 0, t = 0. A realistic treatment of its propagation requires

the construction of the appropriate wave packet. We take it that the packet travels

with almost the speed of light and with little distortion so that having travelled

a distance z = D the probability amplitude for finding a neutrino type β will be

e−iE(t−D) fβ (D).

The probability of a transition PD
(
να → νβ

)
is

PD(να → νβ) =
∣∣∣U ∗

βi e
−i(m2

i /2E)zUαi

∣∣∣2

=
∑

i j

U ∗
βiUαiUβ jU

∗
α j e

−i
(
�m2

i j D/2E
)
.

(19.18)

Re(U ∗
βiUαiUβ jU ∗

α j ) is symmetric and Im (U ∗
βiUαiUβ jU ∗

α j ) antisymmetric under the

interchange of i and j, from this and the unitarity of U we can write

PD(να → νβ) = δαβ − 4
∑
i> j

Re
(
U ∗

βiUαiUβ jU
∗
α j

)
sin2

(
�m2

i j D

4E

)

(19.19)
+ 2

∑
i> j

Im
(
U ∗

βiUαiUβ jU
∗
α j

)
sin

(
�m2

i j D

2E

)

where �m2
i j = m2

i − m2
j .

These expressions describe the phenomena of neutrino oscillations. We note

that experiments designed to observe and measure neutrino oscillations (Chapter

20) can only give values for the differences �m2
i j , and cannot give values for the

individual masses mi . The differences must satisfy the condition

�m2
12 + �m2

23 + �m2
31 = 0.
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190 Neutrino masses and mixing

Restoring factors of c and �, it will be useful to write

�m2
i j D

4E
= �m2

i j c
4

(
D

�c

)
1

4E
= 1.27

(
�m2

i j c
4

leV2

) (
D

1 km

) (
1 GeV

E

)
.

(19.20)

By considering the equations for the charge conjugate wave functions νc
α (see

Section 7.4), similar formulae result, but with Uαi replaced by its complex conju-

gate U ∗
αi . If Im {U ∗

βiUαiUβ jU ∗
α j } is not zero it changes sign for antineutrinos and

PD(ν̄α → ν̄β) �= PD(να → νβ). The lepton sector joins the quark sector in display-

ing matter–antimatter asymmetry.

19.4 The MSW effect

In many experiments that investigate oscillations the neutrinos are not completely

free, but pass through matter on their journey from source to detector. This modifies

the free wave functions discussed in the previous sections. In particular, matter

contains electrons that interact with neutrinos through the charged weak currents.

The effective interaction Lagrangian for this process is given by (9.8):

Lint = −2
√

2GFgμν jμ jν†,

where, from (9.2), jμ = e†Lσ̃ μνeL, jν† = ν
†
eLσ̃ μeL, giving

Lint = −2
√

2GFgμν

(
e†Lσ̃ μνeL

)(
ν
†
eLσ̃ νeL

)
= −2

√
2GFgμν

(
e†Lσ̃ μeL

)(
ν
†
eLσ̃ ννeL

)
. (19.21)

The last step uses a Fierz transformation (Appendix A),

For matter at rest, the expectation value of e†Lσ̃ oeL = e†LeL = 1
2

Ne (x) where

Ne (x) is the total electron density at x. The factor of 1/2 stems from the involve-

ment of the left-handed electron field components only. Also, apart possibly from

ferromagnetic effects, we can expect that the expectation value of e†Lσ̃ i eL = 0. The

neutrino Lagrangian density acquires an additional term −√
2GF Ne (x) ν

†
eLνeL. This

results in the modified equations for f(z):

i
d fβ (z)

dz
− mβγ m∗

αγ fα (z)
/

2E − V (z) δβe fe (z) = 0,

or equivalently (see equation 19.15)

i
d fi (z)

dz
= m2

i

2E
fi (z) + V (z) Uei U

∗
e j f j (z) (19.22)

where V(z) = √
2Ne (z) GF.
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19.6 Parameterisation of U 191

The influence of matter on the propagation of neutrinos was pointed out by

Wolfenstein (1978), and further elaborated by Mikheyev and Smirnov (1986). It is

known as the MSW effect.

The neutral weak currents also contribute to the Lagrangian density of all neutrino

types and result in an additional common phase factor on the wave functions of all

types, which has no influence on neutrino oscillations.

19.5 Neutrino masses and the Standard Model

In the Weinberg–Salam electroweak theory for leptons of Chapter 12 we introduced

three left-handed lepton doublet fields:

Le =
(

LeA

LeB

)
=

(
νeL

eeL

)
, Lμ =

(
νμL

μL

)
, Lτ =

(
ντL

τL

)
,

and three right-handed singlets eR, μR, τR. Under an SU(2) transformation,

Lα → L′
α = ULα, αR → α′

R = αR.

Dirac neutrinos having mass implies the existence of right-handed neutrino fields.

In the Standard Model the right-handed neutrino fields, like the right-handed fields

of the charged leptons, must be SU(2) singlets. Neutrino masses are introduced into

the model in the same way as the u, c and t quarks by coupling to the Higgs field.

An SU(2) invariant coupling of the Higgs field to neutrinos is then (equation (14.9)

and Problem 14.3.)

Lν
Higgs = −

∑
αβ

[
Gν

αβ

(
L†

αε

∗) νβR − Gν∗

αβν
†
βR

(

TεLα

)]
(19.23)

where Gν
αβ is a complex 3 × 3 matrix. On symmetry breaking this gives the neutrino

mass term

Lν
mass = −φo

∑
α,β

[
Gν

αβν
†
αLνβR + Gν∗

αβν
†
βRναL

]
. (19.24)

This is just the mass term of equation (19.1) if we identify φoGν
αβ with mαβ .

19.6 Parameterisation of U

We have taken the parameters me, mμ, mτ and g2 to be real and positive, but this

is in fact a phase convention: any phase on these parameters can be absorbed in

phase factors multiplying the lepton fields, and such phase factors are of no physical

significance. It is also the case that the definition of the mass matrix mαβ depends

on a phase convention.
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192 Neutrino masses and mixing

Define the six neutrino fields ν ′
αL, ν ′

αR(α = e, μ, τ) and the six charged lepton

fields α′
L, α′

R by

ναL = eiθαν ′
αL, ναR = eiγαν ′

αR,

(
αL

αR

)
= eiθα

(
α′

L

α′
R

)
.

The leptonic part of the electroweak Lagrangian density described in Chapter 12

(equation (12.12)), and the charged current (equation (12.16)) and neutral current

(equation (12.23)) that give the neutrino coupling to the W± and Z fields, are

unchanged in form under these transformations. The neutrino mass matrix retains

the same form but with mαβ replaced by

m ′
αβ = e−iθα+iγβ mαβ.

We can redefine mαβ in this way, keeping the physical content of the theory

unchanged.

The unitary matrix UL was defined by mαβ = ∑
i U L∗

αi m iU R
βi. Hence we can

redefine U L′
αi = ei(θα−δi )U L

αi , where the phase factors eiδi were introduced in Section

19.1. As in our discussion of the KM matrix in Section 14.2, when the non-physical

phase factors have been taken out, the resulting matrix depends on four physical

parameters. We parameterise it in the same way as the KM matrix but replace θ1 j

by θe j , θ2 j by θμ j and θ3 j by θτ j , etc. It can be called the neutrino mass mixing

matrix.

The term exhibiting matter–antimatter asymmetry in PD(να → νβ) is (see

Problem 19.2)

2
∑
i> j

Im
(
U ∗

βiUαiUβ jU
∗
α j

)
sin

�m2
i j D

2E

=

⎧⎪⎨
⎪⎩

0 if α = β

±8J sin

(
�m2

21 D

4E

)
sin

(
�m2

32 D

4E

)
sin

(
�m2

31 D

4E

)
, otherwise

where J = ce2c2
e3cμ3se2se3sμ3 sin δ, cf. (14.18, 14.19), the minus sign is taken for

transitions e → μ, μ → τ, τ → e, and the plus sign otherwise.

19.7 Lepton number conservation

Having defined the phase conventions that fix the parameters of the neutrino mixing

matrix, the Lagrangian density has only one remaining global U(1) symmetry. It is

unchanged if all lepton fields, charged and neutral, left-handed and right-handed,

are multiplied by the same phase factor eiδ. Following the method of Section 7.1, we

consider an arbitrary small space- and time-dependent variation in δ, and conclude
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that we have one conserved current:

jμ(x) =
∑

α

[
α
†
L(x)σ̃ μαL(x) + α

†
R(x)σμαR(x)

+ ν
†
αL(x)σ̃ μναL(x) + ν

†
αR(x)σμναR(x)

]
. (19.25)

The quantity
∫

jo(x) d3x counts the number of leptons minus the number of

antileptons, and this number is conserved.

19.8 Sterile neutrinos

We will see in the next chapter that there is some experimental indication that there

are more than three neutrino mass eigenstates. If these indications are confirmed

then we will be obliged to introduce a fourth neutrino type (perhaps more), say

νw. Since there is no indication of another charged lepton to partner νwL in an

SU(2) doublet, and since the decays of the Z (Section 13.6) confirm that only three

neutrino types participate in the weak interaction, both νwL and νwR must be SU(2)

singlets and have no electroweak interactions except through the mass eigenstate.

Such a neutrino is known as a sterile neutrino.

Problems

19.1 Neglect the term i(dgγ /dz) in (19.11) and show that gγ (z) = m∗
αγ

fα(z)/2E . Show

that an estimate of i(dgγ /dz) is then idgγ (z)/dz = Sγβ(2Egβ(z)) with Sγβ =
m∗

αγ mαβ/4E2, very small for E much greater than the masses.

19.2 Define Fβαi j = Im (U ∗
βiUαiUβ jU ∗

α j )

(a) Show that Fβαi j = −Fβα j i and that
∑

i Fβαi j = 0, and hence that

Fβα12 = Fβα23 = Fβα31. Define J = Fμe12 (this conforms with (14.18)

and (19.25)). Using the trigonometric identity sin(x) + sin(y) − sin(x + y) =
4 sin(x/2) sin(y/2) sin((x + y)/2).

(b) verify the matter–antimatter asymmetry term in (19.25) for PD(να → νβ).
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