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Summary

Method-of-moments estimators (MMEs) for the two-gene coefficients of relationship and
inbreeding, and for the four-gene Cotterman coefficients, are described. These estimators, which
use co-dominant genetic markers, are most appropriate for estimating pairwise relatedness or
individual inbreeding coefficients, as opposed to their mean values in a group. This is because,
compared to the maximum likelihood estimate (MLE), they show reduced small-sample bias and
lack distributional assumptions. The 'efficient' MME is an optimally weighted average of estimates
given by each allele at each locus. Generally, weights must be computed numerically, but if true
coefficients are assumed zero, simplified estimators are obtained whose relative efficiencies are quite
high. Population gene frequency is assumed to be assayed in a larger, 'reference population'
sample, and the biases introduced by small reference samples and/or genetic drift of the reference
population are discussed. Individual-level estimates of relatedness or inbreeding, while displaying
high variance, are useful in several applications as a covariate in population studies.

1. Introduction

Relationship, in its most general sense, involves the
identity-by-descent of homologous alleles either be-
tween individuals ('relatedness') or within individuals
('inbreeding'). If the pedigree of individuals is
unknown, relationship may be estimated with genetic
markers (Li & Horvitz, 1953; Morton et al. 1971;
Thompson, 1975; Robertson & Hill, 1984; Lynch,
1988; Queller & Goodnight, 1989). Such inferences
are useful in studies of kin selection (Michod &
Hamilton, 1980; Grafen, 1985; Schuster & Mitton,
1991), isolation by distance (Wright, 1943; Malecot,
1969), spatial autocorrelation (Barbujani, 1987;
Epperson, 1989), paternity analysis (Chakraborty et
al. 1988), and mating systems (Brown et al. 1985).

A large body of literature has accumulated on the
estimation of the average inbreeding coefficient or
coefficient of relatedness (see Li & Horvitz, 1953;
Yasuda, 1968; Wright, 1969; Crow & Kimura, 1970;
Curie-Cohen, 1981; Robertson & Hill, 1984; Weir,
1990). Despite its utility in several areas of ecology
and evolution, the methodology of using markers to
estimate relatedness or inbreeding coefficients for
individuals has received relatively little attention,
being primarily represented by the works of Thompson
(1975), Lynch (1988) and Queller & Goodnight (1989).

One problem in estimating relatedness or inbreeding
for individuals is statistical bias caused by small
samples. In considering sample size, there are two
dimensions: the number of individuals, and the
number of marker loci. With individual-level esti-
mates, the number of individuals is at a bare minimum
(one for inbreeding, two for relatedness), magnifying
the bias due to small samples, even when a large
number of marker loci are used. This can be a
significant problem when using maximum likelihood
estimators (MLEs), which are recognized to often
show bias with small sample sizes (Curie-Cohen,
1981; Weir, 1990). Generally, estimators of relatedness
have been designed only for larger sample sizes
(Wilkinson & McCraken, 1986).

A second problem posed by individual-level esti-
mates is a large error of inference. This problem was
studied by Thompson (1975), who tested alternative
hypotheses of relationship using maximum likelihood.
She found that, even with 20 highly polymorphic loci,
the data could not often distinguish among the major
classes of relatives. Likewise, human geneticists have
long recognized the large sample sizes needed to detect
the small levels of inbreeding characteristic of human
populations (e.g. Emigh, 1980).

Thus, for individual-level estimates to be useful, the
object of study should transcend a single pairwise
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relationship, and involve a set of relationships or
inbreeding coefficients in conjunction with other data.
The increasing application of genetic markers in
population studies of wild species (Cruzan, 1996)
warrants examination of individual-level estimators
of relatedness or inbreeding. Individual-level esti-
mators are useful in inferences involving: (1) the
covariation of relationship with physical distance (in
the study of isolation by distance, Loeselle el al.
1996) or with the similarity for a quantitative
character (for quantitative genetic inheritance,
Ritland, 1996a); (2) actual variance of relatedness or
inbreeding (for describing population structure,
Ritland, 19966); (3) average relatedness within a
group (Schuster & Mitton, 1991) or (4) the covariance
of inbreeding level with fitness.

These applications also introduce a third difficulty
with individual-level estimates: in natural populations,
the distribution of relatedness or inbreeding among
individuals is unknown, making the method of
maximum likelihood, with its requirement to assume
a certain distribution of relatedness, of further
uncertain value.

In this paper, I describe method-of-moments esti-
mators (MMEs) for the pairwise relatedness between
outbred individuals, and for the inbreeding coefficient
of an individual. The relatedness coefficients include
the classical 'two-gene' coefficient as well as a four-
gene coefficient, which is needed to completely specify
relatedness between two outbred individuals. No
MMEs have been described for the four-gene coef-
ficient, and efficient MMEs have previously been
described with reference only to estimating the
mean inbreeding coefficient in mildly inbred popu-
lations (Robertson & Hill, 1984). The efficiency and
bias of these MMEs are evaluated with analytical
formulae and Monte-Carlo simulations, and com-
pared to MLEs. The primary advantages of the
MME over the MLE is the reduction in bias with
individual-level estimates and a lack of distributional
assumptions.

In the weighted, efficient MME procedure, estimates
are found separately for each allele at each locus, then
linearly combined into a single estimate using opti-
mized weights. This optimization gives an estimator
that efficiently utilizes the differing information
provided by alleles of differing frequency, and the
linearity reduces small sample size bias. Thus, the
MME is ideal for individual-level estimates. However,
in obtaining weights, relatedness must be guessed and
it is assumed that population gene frequency has been
estimated from a large sample, such that its sampling
variance is negligible relative to the estimate of
relationship. If this is not true (such as when estimating
mean relatedness or inbreeding), maximum likelihood,
with its capacity for joint estimation, may be
preferable.

2. Estimators for two-gene relatedness and inbreeding
coefficients

The definition of relationship as estimated from
genetic markers has been somewhat ambiguous,
reflecting the historical development of ideas about
relationship and its estimation. Relationship can be
defined in terms of the correlation or regression of
alleles (Wright, 1922; Pamilo & Crozier, 1982; Queller
& Goodnight, 1989), or by the probabilities of identity-
by-descent of alleles (Malecot, 1969; Jacquard, 1974;
Thompson, 1976). In this paper, we adopt the gene-
identity definition because it easily allows the more
complex, four-gene treatment of relatedness.

The fundamental measure of relatedness between
two individuals is the 'coefficient of kinship' between
two individuals A and B. This quantity, denoted r, is
the probability that two alleles, one randomly sampled
from each individual, are identical-by-descent
(Jacquard, 1974). It is a 'two-gene' coefficient because
of this dependence upon pairs of sampled genes. This
quantity r is alternatively defined as the correlation
between the additive values of the two individuals
(Crow & Kimura, 1970). Wright's (1922) coefficient of
relationship, defined as the correlation between rela-
tives for additive effects of genes, equals 2r for
outbred relatives. This coefficient increases with the
level of relationship; in outbred populations, r = 1 /4
for parent-offspring, r = 1/4 for full-sibs, r = 1/8 for
half-sibs, and r = 1/16 for first-cousins (see Jacquard,
1974).

The inbreeding coefficient / (also due to Wright,
1922) is also a two-gene measure, and it is analogous
to the two-gene coefficient of relationship, except that
the two sampled genes are represented by both alleles
at a diploid locus within a single individual. Both r
and/are herein defined relative to a single population,
e.g. we are not concerned with how variation of gene
frequency (or Wright's FST) contributes to relationship.

For estimation of relatedness, the 'unit of ob-
servation' is a pair of diploid genotypes, or 'pairwise
genotypes'. For inbreeding, the unit is the individual.
For all procedures given below, we assume inde-
pendence or near-independence between pairs of
individuals (for relatedness) or between individuals
(for inbreeding). This is not true for those populations
in which groups of individuals share the same
parentage, but such violations are often unavoidable,
and besides, cause only a marginal increase in the
variance of estimates (Robertson & Hill, 1984).

To describe the data, we denote St as the observed
proportion of pairs similar for marker allele /. It can
be regarded as an 'indicator' variable of relationship.
For the case of the inbreeding coefficient/, then S( = 1
if the two alleles at a locus are allele /; otherwise
St = 0. For the case of two-gene relatedness r, there are
four equally probable ways of sampling two alleles,
one for each of two relatives. S( is the average over the
four ways that a pair of alleles can be sampled. For
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example, for pairwise genotypes AiAj — AiAj the
observed St = 1/2, and for AtAj — AiAk the observed
S, = 1/4.

The expectation of S( (denoted st), conditioned
upon relationship, is

st = ppi + (\—p)p2, (1)

where p is the two-gene relationship, which equals
either r or /. This similarity is a mixture of the
probability of identity-by-descent (pp() and the non-
identity-by-descent, (1 —p)p2. The latter is termed
' identity-by-state'. This expectation assumes the popu-
lation gene frequencies equal the pedigree gene
frequencies (the gene pool from which alleles were
randomly drawn during the formation of the pedigree).
The probabilities over several independent loci are the
products of these single-locus probabilities.

(i) Efficient method-of-moments estimators

To obtain an efficient method-of-moments estimator
(MME) for two-gene relationship (generally, related-
ness or inbreeding), one first obtains estimates for
each marker allele i, for / = 1 to n (the number of
alleles at the locus), based upon the observation of
whether the pair of alleles are both of type / or not.
Although there are n(n +1)/2 combinations of alleles,
each of which can give an estimate of relationship,
these estimates are not independent, and only the set
of n estimates corresponding to the sharing of allele /,
/ = 1, «, are sufficient to capture all information in
the data (Robertson & Hill, 1984). The variance-
covariance matrix of these n estimates is then used to
optimally combine the n estimates in a linear fashion
into a single estimate. Estimates are likewise averaged
over loci. Because of mathematical complexity and
the unique nature of individual-level estimators, we
derive the estimator assuming known reference popu-
lation gene frequencies. This assumption is further
discussed below.

By equating observed quantities to their expec-
tations in (1), we obtain these estimators for each
allele i at an n allele locus as

Pi = - i = 1 , . . . , / ? , (2)

where Pt = 1 — Q( is the estimate of gene frequency pt

(capital letters are used to denote estimated quantities),
and the hat denotes the estimate. For simplicity, gene
frequency can be estimated by counting alleles in the
entire sampled population (this assumes low mean
relationship; see below).

The total estimate of relationship (relatedness or
inbreeding) is then the weighted average,

(3)

To obtain the optimal weights, note that the n
estimates of relationship (2) have variances and
covariances

Var(p() = ^

Cov(p(,p}) = i,j= 1,2,...,«. (4a)

where the weights wl sum to unity.

These are obtained by noting that the S( are
multinomially distributed with variances ,̂(1 — st) and
covariances — stsp and that Var(aX+b) = a2Vat(X)
for a and b constant. The constant c = 1 for/, while
c ^ 4 for r (two independent or partially independent
similarities are averaged; its exact value is irrelevant
because it cancels when computing weights). Note
these variances differ from those given by Robertson
& Hill (1984), who stated VarQ5,) = 1 and that the
covariances were of opposite sign from above;
nevertheless, they obtain an estimator equal to (5)
below (but they were generally concerned with finding
MLEs and not MMEs). However, numerical simu-
lations confirm (4a) are the correct expressions.

The optimal weights are then found via a standard
procedure of weighting correlated estimates. Briefly,
these weights minimize Var(p) = wT Vw, where w is an
n element column vector of weights and V is the
variance-covariance matrix of allele-specific estimates.
To solve for these weights, the set of n — 1 equations
dVar(p)/dwt = 0 (/= 1,...,«—1) is solved. This is
rewritten as Cw = c, where C is an (n — l )x(« — 1)
matrix with ij-th element Co\(pt, p}) — Cov(p(, pn) —
Co\(pp pn) + Var(/5n), w is an n — 1 element column
vector containing the first n — 1 weights, and c is
an n-\ element column vector with /th element
Var(/5J — Cov(pt,pn). The optimal weights w are thus

w = C~1c, (4 b)

with the nth weight being one minus the other
weights. Unless one assumes p — 0 or p = 1, this
expression must be solved numerically.

Multilocus estimates of relatedness involve a second
stage of weighting. After a weighted estimate is found
for each locus, a 'grand' weighted estimate is found
by weighting estimates across loci. If loci are unlinked
and in linkage equilibrium, estimates from different
loci will be independent, and the weighting used for a
given locus is simply proportional to the inverse of its
variance, as computed by the above weighting
procedure.

(ii) Cautions

It should be noted that, for the purpose of tractability
and because of the unique nature of individual-level
estimates, several simplifications have been made.
First, this MME was derived by equating estimated
gene frequencies (P) to their true values (p). This
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neglects the effect of finite sample size. The major
cause of a finite sample is to cause a positive covariance
of S{ with P(. This can be removed by excluding the
particular individual(s) from the estimate of;?,. (Queller
& Goodnight, 1989; also see Fig. 2). In addition, since
we assume gene frequency is estimated from a much
larger, population sample (Ritland & Ritland, 1996,
used a population size of 300), any residual variation
of Pt has little effect in terms of the bias/variance ratio
of p, (see discussion of Fig. 2).

However, even if this source of bias is removed,
there remains another source of bias due to the
sampling of gametes during population founding. The
effect of this is to create groups of relatives in the
descendent population, which causes additional bias
due to the correlations Ss with other, related indivi-
duals which are accidentally included in Pr If no
relatives are excluded from Pf, this bias equals —AFSX

or minus the increase of inbreeding due to drift. Thus,
the average pairwise estimate is zero, regardless of the
average level of relationship. For example, in a
population of TV equal-sized, full-sib families with
unrelated parents, there are TV groups of relatives, and
the average pairwise r will be 0025 yet the estimated
r will be zero. To remove this bias, an unrelated
'reference' or 'outgroup' population can be used
(discussed by Ritland, 1996ft). It may also be possible,
through an iterative procedure, to identify putative
relatives to exclude from Pt, but we lose the properties
of the MME. Given the difficulty of removing this
systematic bias, it becomes obvious that we should
focus on inferences involving variance and covariance
of relationship (quantities not biased by A7 t̂), and not
mean relationship.

Secondly, this MME approach does not allow for
simultaneous estimation of gene frequency. If related-
ness or inbreeding are non-zero, gene frequencies
should properly be simultaneously estimated. How-
ever, unless relationship is high, estimates obtained by
simple gene-counting methods are very close to the
simultaneous estimate (Robertson & Hill, 1984). If
one was to properly estimate gene frequency jointly
with relationship, one must somehow consider all
higher-order relationships among triplets, quadru-
plets, etc. of individuals, to account for the correlations
of alleles across multiple individuals.

Thirdly, the weighting formula (4) assumes that we
know the true values of similarity (denoted as s, in our
convention of writing parametric values with lower
case). This is a function of the true relationship as well
as the true gene frequency. We cannot use observed
similarities - this causes a downward bias of estimate
due to statistical correlations (alleles showing less
similarity by chance receive spurious higher weights;
in fact, this is the basis for the problems with
individual-level maximum likelihood estimates).
Rather, one must use separate information for 5
values. One method would be to use estimates of
relationship based upon all other loci to predict s

using (1). Alternatively, one can use the average
relationship in the population to specify s via (1). A
third possibility is to assume p = 0 so st = Pf in (4a).
This last alternative is considered further below.

In addition, for the case where relatedness r is
estimated, the four-gene coefficient h is not sim-
ultaneously estimated. This, in effect, ignores the
correlations of the four f obtained from the four
pairings of alleles between two diploid individuals,
and was mainly adopted for simplicity at this stage of
presentation (it also is a valid assumption when h is
near zero); the joint estimation of r and h is given in
Section 3.

(iii) A simple, explicit MME

A simplified estimator can be obtained by assuming
p = 0 in the weights. The assumption seems good
since levels of relatedness or inbreeding are often low
in natural populations, and errors of p in the weights
increase only the variance of the estimate, and not its
bias.

At p = 0, the procedure for obtaining optimal
weights gives the weight for allele / as wt = q(/(n — \),
for n the number of alleles at the locus. This gives an
estimator for a single locus, which combines in-
formation among alleles, as

C D2

To combine estimates among loci, we use the fact that
at zero true relationship and known gene frequency,
the variance of a single-locus weighted MME is
proportional to l/(n —1), regardless of the frequency
distribution of alleles. The inverse of this quantity
serves as the weight. This gives a simplified multilocus
estimator of relationship, based upon a prior p of
zero, as

~~ rtt

i.l
(5)

where / denotes the locus. This estimator was first
described by Li & Horvitz (1953), who did not realize
this was the minimum variance estimator. Robertson
& Hill (1984) explored in greater details these
properties, but did not realize the applicability of this
estimator to the individual-level inferences.

A second simple method-of-moments estimator for
p can be obtained by assuming p = 1 in the weights.
The weights then become p(qJ(\—J), for J the
expected homozygosity. Over TV independent loci, this
estimator equals

P =
S-J

(6)

for
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000 005 010 015
True relatedness r

0-20 0-25

0-2
000 005 010 015 0-20

True relatedness r with h = r (1—r)
0-25

Fig. 1. Relative efficiency of estimators for (a) two-gene
relationship p and (b) four-gene relationship h (discussed
in Section 3) under different prior relationship in weights
and different gene frequencies: • , P = {0-4, 0-6}; prior
r = 0; D, P = {04, 06}; prior r=\;Q,P = {0-2, 08};
prior r = 0; • , P = {0-2, 08}; prior r = 1; A , P = {01,
0-2, 0-3, 0-4}; prior r = 1; A , P = {0-1, 0-2, 0-3, 0-4}; prior

the mean expected homozygosity over the N loci and

the arithmetic average of allele similarity between
the two individuals across loci.

Figure 1 a compares the efficiency of the estimators
eqns (5) and (6) across values of true relationship, for
three distributions of gene frequency. Weights as-
suming p = 0 (eqn 5) are much more efficient than
weights that assume p = 1 (eqn 6), showing at least
95% efficiency when true p = 1/8 (for relatedness r,
this is less than full-sibs) except for diallelic loci with
more extreme gene frequencies, where the efficiency is
as low at 85 %. Weir & Cockerham's (1984) estimator
for Fst uses these weights of eqn (6), implying
inefficiency in their procedure. Figure 1 a also shows a
greater efficiency with more even distribution of gene
frequency (with uniform distribution of p, weights are
100% efficient).

Thus, the weighted MME with weights assuming
p = 0 generally have at least 85 % of the efficiency of
the MLE, with greater efficiency obtained by using loci
with even gene frequencies, or by a fortuitous nearly
correct guess of true relatedness in forming weights.
While the MLE has equal or greater efficiency in all
cases, efficiency is only one criteria for choosing an

estimator. Another criteria is bias, which clearly
favours the weighted MME for case of individual-
level estimation, as shown below.

One can also use the actual estimate of relationship
between the two individuals to form the weights via
(5a-b). This is guessed at first, but the subsequent
estimate of relationship can then be used in new
weights, and the procedure iterated until convergence.
Numerical solutions indicate that this procedure gives
the same estimate as the maximum likelihood pro-
cedure. This demonstrates the efficiency of the method-
of-moments estimation procedure and a numerical
equivalency between an iterated MME and the MLE
(it is not meant to be another method for finding
MLEs). An analytical demonstration of the equiv-
alency between the iterated MME and the MLE seems
impossible, as it would involve solving nonlinear
equations with powers equal to the number of
observations.

(iv) Properties of the MME

The MME allows estimation of relatedness or in-
breeding with data from as few as one locus. Table 1
gives examples of estimates given by one locus for the
case of pairwise relatedness (with additional loci, the
MMEs are weighted averages over loci). It shows that
the MME can give negative estimates of relatedness,
reflecting the large statistical error with this small
sample size (constraining the estimate to non-negative
bounds introduces positive bias into the estimate, and
distorts associations with other variables; see dis-
cussion). Estimates greater than 1-0 also occur when
relatives share rare alleles. Table 1 also shows that
more similar genotypes give higher estimates of
relatedness, and that similarity for a rare allele gives
an even higher estimate. Increased diversity for other
alleles, or increased a-priori relatedness, tends to
reduce this dependence upon allele frequency.

To determine the statistical properties of the MME,
a computer program was written which generated
Monte-Carlo datasets, then applied the above es-
timation procedure. Initially, no sample size correc-
tions were made for P(. Random numbers were
generated by the commonly used 'minimal standard
random number generator' (Park & Miller, 1988).
Results showed the variance of the MME to be
approximately a function of 1/w for n the number of
loci, which is expected since the MME is nearly a linear
function of the data. However, for relationships
spanning a wide range, and for many different distri-
butions of gene frequency, a systematic bias on the
order of \/N, was observed, for N the number of
individuals used to estimate gene frequency. As dis-
cussed above, the greatest source of bias is due to the
inclusion of the particular individual(s) in the estimate
of population gene frequency Pt; this can be removed
by excluding the related alleles from Pt (this procedure
should not be confused withjackknifing, which would
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Table 1. Examples of MMEs of pairwise relatedness r, based upon one marker locus, for various distributions
of gene frequency and levels of relatedness

Genotypes

Gene frequencies and true relatedness

= 0-8, 0-2; r = P = 06, 04 ; r = 1/4 P = 08, 02 ; r = 0 P = 0-6, 0-2, 0-2; r = 0

A1A1 Al
AlA1-Al
AlA2~A1
AlA2 — A2
A1A1-A2

2 2 2

A
A2

A2

4
A2

0-25
-0-38

0-56
1-50

- 1 0 0
400

0-67
017
004
0-25
100
1-50

0-55
-0-45

Oil
0-67

-1-45
2-80

0-33
- 0 0 8

0-33
0-75

-0-50
200

(a) Two gene relationship h

a -004

004
(b) Four gene relationship h

30 40

-004

000 000
10 40

Number of pairs sampled

Fig. 2. Bias and variance of estimates as a function of the sample size used to estimate the population gene frequency,
for different distributions of gene frequency and actual relatedness (eight loci used to estimate relatedness): # . P = {01,
0-2, 0-3, 0-4}; no true relationship; • , P = {0-2, 03, 05}; no true relationship; A, P = {03, 0-7}; no true relationship;
T , P = {0-2, 0-3, 0-5]; full-sib relatives.

estimate N ' pseudovalues' of P{ for each particular
pair of relatives). Figure 2 shows the results of
applying this procedure. The bias and variance of
estimates are plotted against population sample size,
for various gene frequencies and actual relationship,
using eight marker loci (all with identical gene
frequencies).

Figure 2 shows that statistical bias largely disap-
pears with a population size of 20-30 pairs. The
remaining bias, due to randomness of gene frequency,
is small (c. 0-01 or less), corresponding to roughly the
level of relatedness between third cousins. The sign of
bias is unpredictable, being negative for a diallelic
locus but positive with more alleles. Thus, opposing
biases across loci with different gene frequencies may
cancel out. The estimation variance also declines, but
more dramatically; it almost plateaus by 20-30 pairs,
where it nearly equals the predicted asymptotic
variance (l/[4(«— 1) m] for n alleles at each of m loci).
Thus a sample size of 20-30 pairs is sufficient for
estimating population gene frequency (40-60 indivi-
duals when the inbreeding coefficient is estimated).

(v) Comparison to maximum likelihood estimates

The maximum likelihood procedure (Thompson,
1975, 1976) gives asymptotically efficient estimates
and allows tests of hypothesis via likelihood ratios.
For two-gene relationship, the likelihood equation for
data from a multiallelic locus is

for Xo is the number of pairs with different alleles, Xt

the number of pairs of allele /, and J the expected
homozygosity (in this equation, we assume allele
frequencies are known so the different heterozygotes
combine into one term, or ' factorize'). Given the
data, the value of p which maximizes this equation is
the MLE of p. Because we are not testing alternative
hypothesis of relationship, but rather estimating
relationship as a parameter p, we allow estimates to
span outside the allowable ' space' of relationship as a
consequence of sampling error. Although constraining
p to within the interval (0,1) is an accepted practice,
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°r

(c)

> 1 0 <

Fig. 3. The joint density of MME ("linear estimate") and
MLE estimates based on the same data, (a) 64 diallelic
loci each with P = {0-2, 0-8}, (b) eight diallelic loci with
the same gene frequencies, and (c) four loci each with
eight alleles of frequency P = {2 x 005, 3 x 010, 3 x 0-20}.
The true relatedness was r = 0. Note change of scale from
(a) to (b) and (c).

it does introduce biases because as a consequence the
error residuals do not have zero expectation.

Figure 3 shows the relationship between individual-
level MMEs and MLEs based upon the same data. In
this figure, each graph is based upon 105 Monte-Carlo
datasets (p = 0 assumed), and for each dataset, the
likelihood equation was maximized via the Newton-
Raphson method to obtain MLEs (maximization was
achieved by the Newton-Raphson method, and was
determined to be reliable by inspections of the
likelihood surface; gene frequencies were assumed
known). Three cases were considered: (a) 64 diallelic
loci each with;? = {02,0-8}, (b) eight diallelic loci with
same gene frequencies, and (c) four loci each with
eight alleles of frequency p = {2x005, 3x010,
3 x 0-20}.

Figure 3 shows that fewer numbers of marker loci,
or with greater polymorphism at marker loci, the
disagreement between the MME and the MLE is
greater, with the MLE showing higher variances and
often being very negative. In fact, when no markers
are shared, the maximum of the likelihood surface is

undefined, residing at negative infinity. Generally,
when the proportion of shared alleles between the two
relatives is high, the MME and the MLE are close to
each other, but as this proportion decreases, the
MMEs and MLEs diverge, with the MLE diving
downwards. Other simulations indicate that with any
reasonable number of loci (< 50 loci), the MLE of
pairwise relatedness still shows downward bias.
However, this bias cannot be quantified because of
occasional maxima of the likelihood equation at
negatively infinite values of r.

3. MMEs for four-gene relationship (Cotterman
coefficients)

To completely specify relationship between two
outbred relatives, a second coefficient is needed. We
hereafter assume no inbreeding (simultaneous es-
timation of all eight independent coefficients of
relationship between inbred relatives, as described by
Jacquard 1974, will be given elsewhere). Figure 4
shows the three possible configurations of gene identity
between diploid, outbred relatives. Their frequencies
can be specified by Cotterman's coefficients k0, kv k2,
where k0 + 2kx + k2 = 1 (Cotterman, 1940), or by r and
a four-gene coefficient termed h,

Prob(both identical) = k2 = 2h,

Prob(one identical) = 2kx =4r—4h

Prob(none identical) = k0 = 1 — 4r+2h.

Either (k0, kr and k2) or (r, h) describe relatedness; the
latter is used herewith (efficient estimates of the
Cotterman coefficients are obtained by these relation-
ships).

The ' four-gene' coefficient h is the probability that
two pairs of genes are identical by descent between the
two relatives. In outbred populations, h = 1/8 for
full-sibs while h = 0 for parent-offspring, half-sibs
and first-cousins (see Jacquard, 1974). This pattern
of relatedness would also be expected in a sub-
structured population; if r varies among demes and
mating is random within demes, h = fi + o-2

r. The
Cotterman coefficients give the genetic covariance
between outbred relatives for a quantitative trait
as (kl + k2)Va + k2Vd, where Va and Vd are the

First individual's alleles
Both identical

ii i:
One identical None identical

Second individual's alleles

Fig. 4. The three modes of gene identity-by-descent
between two outbred individuals at a single locus.
Identical genes are linked by lines.
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Table 2. Probabilities of genotypes of two relatives at a diploid marker locus, conditioned by relationship.
Subscripts denote alleles, with i < j , i < k and j 4= k (pf = 1 — qt, z\ = pi + q\ — S;/?2)

Coefficient

Pairwise genotypes Probability

j^ A A A

A A j \ /[

^ A AA

Pt Ui
pliti,-Pi)

additive and dominance genetic variances, respectively
(Crow & Kimura, 1970, p. 137). They are 'four-gene'
coefficients of relationship because the patterns
of gene identity depend upon all four homologous
genes at the locus.

(i) The MME for four-gene relationship

Among the four alleles shared by two relatives at a
diploid locus, there are a large number of confi-
gurations of allelic identity-by-state. In principle, each
configuration can give an estimate of h given r, and an
estimate of r given h. However, estimates based upon
different configurations are correlated and all in-
formation in the data is captured by a relatively small
subset of configurations. This subset is represented by
the following indicators of similarity:

S4i = 1 if genotype AiAi — AiAi is observed,

S3i = 1 if genotype AlAi — AiAi or

AiAi — AiAi (i <j) is observed,

S2i = 1 if genotype AlAi — AiAk

(i <j, i < k,j =f= k), is observed, and

S2l2j = 1 if genotype AiAj-AtAj

is observed (/ < j); (7)

otherwise, these 5s are zero. These indicators con-
stitute the data; at most one is non-zero, this value
corresponding to observed genotype. For example, if
we observe A2A2 — A2A2, then £42= 1 and all re-
maining Ss are zero. If we observe A1A2 — A3A3, then
every single one of these 5s is zero. The first, second
and third similarity applies to each of n alleles, and the
fourth to each of n{n —1)/2 pairings of different
alleles. The third is omitted for diallelic loci, as it
applies to configurations involving at least three
different alleles. In total, there are five configurations
for diallelic loci, and n(n+ 5)/2 configurations for
multiallelic loci (n > 2). The sufficiency of these
configurations has been confirmed by numerically
calculating that the analytical variance of the MLE
equalled that of the following MME.

The probabilities of Si(, S3i, S2l and S2i2j are given
by SPU, 0>3t, 0>2i and &>2m, respectively, in Table 2. If we

equate these ^ s with the 5s, we obtain the following
method of moment estimators for r:

r., =•

4PiZ?(\-4Pi)

f - 4hPt Ptf P, + Qt Q,)

and for h:

Sii-Pt-4PlQlfr _

t _S3i

- _ S2i-4P*Z?-4rZ?(l-4Pt)

r _
2t21

_ S2t2] - 4P1P) - 4fPt P,(P( Q, + Q.P,- 2i> P)

4PlPj(PiP1

(8)

Note that alleles of 0-25 and 0-5 frequency cannot be
used in some of the above estimators. Also note the
negative signs in some denominators, which reflect the
unusual nature of four-gene estimators.

The configuration-specific estimates of r and h are
then combined into single estimators as

= 2 wr2i f2t + wr3i f3 wr

= 2 wh2t hit + wh3( h3i + wMi hit rh2i2j "2121Kiv (9)
i>i

where the weights w are specific for r and h, as
indicated by their subscripts. This summation is also
extended across loci.

For each locus, the weights are computed separately
for r (given h) and for h (given r), using the procedure
of (4b). For each computation, a matrix of size
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n(n + 5)/2 is inverted (except size 5 when n = 2). The
precise formula for the variances and covariances
used in (4 b) are too complex to describe, but follow a
general formula as follows. If ht is estimated as h\ =
(S(-X()/Y(, then Vartfj = £[SJ(l-£[SJ)/tf and
Cov(A4,^) = —E[S^ElSf]/yty}. This follows from the
multinomial distribution of the similarities (7). As
discussed previously, these expected Ss should be
independent of the observed data, and are found via
the equations in Table 2, wherein one uses either a
prior guess of relatedness, or the population average
relatedness. Errors in the prior guess of relatedness
only increase the variance of the MME, but do not
affect bias. It is simplest to let r = h = 0 in computing
these weights.

Rewriting (9), the joint estimators for r and h take
the general form

= c + df,j

where a and c are functions of the gene frequencies
and similarities, and b and dare functions of only gene
frequencies. Explicit expressions for a, b, c and d
cannot be given, but can be computed numerically.
Solving this pair of equations gives the joint estimators

a + bc

h = c + ad
\-bd'

(106)

A simple MME for h (analogous to 6) is too
complex to be found analytically. Interestingly, when
weights are numerically calculated, they show rather
bizarre behaviour, often taking negative values and
being highly sensitive to gene frequencies.

For comparison, the corresponding likelihood
equation for a sample of data from one locus with any
number of alleles, and with gene frequencies assumed
known, is

= #>?<> n &?<« & n 0>*i

where, after Table 2, the numerical subscripts denoting
observations X give the number of alleles of type i
shared between relatives, and the probability of no
alleles in common is

for x = 1 - 6/2 + 3/2
2 + 8/3 - 6/4

and Jk =

(ii) Properties of the four-gene estimate

At h = 0 and r assumed known, the variance of a
single-locus weighted MME of h based upon an n-
allele locus is \/(2n(n — 1)), regardless of the frequency
distribution of alleles. Thus when n > 3, the estimation

variance of h can actually be less than the two-gene
parameter r (found earlier to equal l/(4(«—1)); at
n = 3, their variances are equal.

Figure 1 b shows the relative efficiency of assuming
the prior weights for h of zero v. complete relatedness
(assuming known r). The efficiency of assuming zero
relatedness is not as high as for r (Fig. 1 a), but is more
efficient than assuming maximum possible h. The
efficiency is greater for a more uniform distribution of
gene frequency. Figure 2b shows the statistical
properties of h estimates as a function of the sample
size used to estimate the population gene frequency
(based on Monte-Carlo simulations, as in Fig. la).
Again, 20-30 pairs of individuals seems sufficient to
remove bias. The variance stabilized at this number as
well, approaching the predicted asymptotic value of
l/[16«(n-l)] for eight loci.

(10 a) 4. Discussion

The method-of-moments estimator (MME) is most
appropriate for inferring relatedness between indivi-
duals or the inbreeding coefficients of individuals.
Such a fine-scale inference brings with it statistical
problems caused by the inherent small sample sizes,
but in the case when population gene frequencies are
estimated from a larger sample, the MME still has
effectively asymptotic (large sample) properties at this
individual level. This estimator should be particularly
useful for highly polymorphic markers such as
microsatellites, since the small sample problems with
the maximum likelihood equation get worst with
highly variable loci, while the properties of the MME
remain the same (Fig. 3).

This property occurs because the MME additively
combines estimates given by each allele at each locus.
In effect, the MME equates the data to an equation
linear in r, of form S = a + br, and the estimation
equation is an explicit function of the data S. (Even
in the complex case of four-gene estimation, the esti-
mators 10 b are linear in the data S, remembering that
population gene frequencies are assumed known.) By
contrast, the maximum likelihood equation is non-
linear in the data: the estimate that maximizes the
probability of the observed data involves higher
powers of r, e.g. is nonlinear in r. In both methods, the
probabilities may be assumed to generate the data,
but the estimates they give can differ greatly.

The MME is based upon finding estimates which
are functions of the patterns for similarity for
individual marker alleles or (in the case of four-gene
relatedness) for pairs of alleles, then averaging
estimates using a weighted summation. As discussed,
the computation of these weights requires three
compromises: (1) gene frequencies are estimated and
not known as assumed, (2) gene frequencies are not
imntiv pctimQtpH «/itV» tv*latir\ncV»ir» ar\r\ CX\ * n r i n r '
j v i l j u j wSviii.Ab«.vvvt V* i Lai m. v i u livs m~>iii LJj w i i u V / L*WvsI

relationship is guessed. The bias of the MME is not
affected by these compromises, and the increase of
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variance incurred by these compromises is small
compared to the asymptotic properties that are
maintained by the MME with individual-level esti-
mates. Also, if gene frequencies and prior relationship
were jointly estimated, the estimator would become
nonlinear, an iterative procedure would be required,
and in fact, the MLE is obtained (with the resulting
small sample size problems). Such an iterated MME,
which is analogous to an iteratively reweighted least-
squares method, shows that the original MME is
statistically efficient as best can be, and not a suggested
alternative for finding the MLE.

The MME can give negative estimates of relation-
ship (when most or all markers are not shared) as well
as estimates greater than 1-0 (when rare markers are
shared). This reflects the large statistical errors of
inferring relatedness or inbreeding at the individual
level. Some statisticians would recommend the con-
straining of estimates to the 'allowable' space of
relationship. However, unless this truncation is exactly
symmetrical, this distorts the error residuals and
introduced bias of estimates. For example, estimates
of the variance and covariance of actual relationship
(Ritland, 1996a) will be skewed downward and any
analyses performed in conjunction with these trunc-
ated estimates will be biased.

Queller & Goodnight (1989) presented a regression-
based estimator for two-gene relatedness (their eqns 5
and 6; they estimate 2r which equals the regression
coefficient of relationship for outbred individuals).
Their estimator was designed to estimate group
relatedness, but was also deemed suited for estimating
pairwise relationships with some qualifications. Their
major problem was undefined relatedness of a het-
erozygote to any other individual (Queller &
Goodnight, 1989, pp. 268-269). This does not pose
any problem with the MME, although negative
estimates are obtained (Table 1). In addition, to
combine information among alleles, they take a ratio
of a sum, rather than a sum of ratios, as Barbujani
(1987) suggests with a similar estimator. This results
in a reduction of statistical efficiency, since it ignores
the varying information among loci.

Loeselle et al. (1996), who modified Barbujani's
estimator to the case of pairwise relationship, sug-
gested weighting estimates from each locus by their
heterozygosity. Both numerical and analytical results
herein show the optimal per-locus weights are pro-
portional to simply the number of alleles at the locus.
However, we have assumed that gene frequencies
estimated from a larger population sample, such that
their sampling variance is small compared to the
variance of estimated relationship. Inclusion of this
component of variance will favour more heterozygous
loci to an unknown, but probably slight, extent.

In addition, simulations show that infrequent alleles
(ca. less than 005 frequent) introduce a heretofore
unconsidered source of bias, due to the likelihood
of missing alleles in the sample. To avoid this problem,

it is recommended to bin rare alleles into classes at
least 005 frequent (although this would depend strictly
upon the population sample size). This seems to
reduce the value of microsatellite loci, which com-
monly have 20-30 or more alleles, unless other
estimators are developed specifically for hypervariable
loci.

The four-gene MMEs are sensitive to gene fre-
quencies in totally unexpected ways. Although with
known gene frequency, the information about the
four-gene coefficient h is simply proportional to
n{n — 1), for n the number of alleles at the locus, the
actual distribution of gene frequency has a more
complex effect on estimates than in the two-gene case.
Alleles of 0-25 frequency cause r2i to 'blow up' in (8),
and alleles near 0-5 frequency cause f3l and h2( to
'blow up' in (8). Paradoxically, loci which are
informative in the two-gene case are non-informative
in the four-gene case. To deal with this problem, when
alleles are sampled near these frequencies (to within c.
005), these component estimators should be removed
from the total estimate.

The primary value of the estimators developed
herein is for studies of pairwise relatedness or
individual inbreeding coefficients. It has been noted
(Thompson, 1975) that estimates of pairwise re-
lationship have quite high variance, in the sense that
one cannot distinguish half-sibs from full-sibs, etc.
(although few or single marker loci may be sufficient
to exclude certain relationships, such as paternity).
Probably for this reason, workers have not put effort
into finding estimators of relatedness or inbreeding of
individuals with good statistical properties when few
marker loci are available. However, the recent advent
of new marker-based approaches in ecology and
evolution (Cruzan, 1996; Ritland 1996 a) are creating
opportunities for the use of individual-level estimators
of relatedness or inbreeding.

I thank Joe Felsenstein and Elizabeth Thompson for their
comments during an early stage of this work, and Joe for use
of his computer for simulations. This research was supported
by a Natural Sciences and Engineering Research Council of
Canada grant to K. R.
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