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Abstract
Most simple ailerons produce adverse yaw. However, with proper aileron placement and wing twist, an aileron can
produce proverse or neutral yaw, eliminating the need for aileron-rudder mixing, differential aileron deflection or
Frise ailerons. The relationship between wing planform, aileron placement and lift distribution is studied here for a
special class of optimal lift distributions that minimise induced drag for a variety of design constraints. It is shown
that a wing employing the elliptic lift distribution will always produce adverse yaw, independent of aileron design
or operating condition. However, for wings employing other optimal lift distributions, the ailerons can be placed to
produce proverse or neutral yaw. A numerical lifting-line algorithm is used to explore the impact of aileron design
on a wide range of wing planforms and lift distributions. Results can be used in the early stages of design to correctly
place ailerons with respect to desired roll-yaw coupling.

Nomenclature
Aj Fourier coefficients used in the solution to the fundamental lifting-line equation
aj decomposed Fourier coefficients corresponding to wing planform shape
Bj normalised Fourier coefficients: Bj ≡ Aj/A1

b wingspan
bj decomposed Fourier coefficients corresponding to spanwise symmetric twist
C̃L,α section lift slope
CDi induced-drag coefficient
CL lift coefficient
C� rolling-moment coefficient
Cn yawing-moment coefficient
c local section chord length
cj decomposed Fourier coefficients corresponding to spanwise antisymmetric twist caused by ailerons
j term in the Fourier sine series
N number of terms retained when truncating the infinite Fourier sine series
RA aspect ratio
Rn/� roll-yaw control ratio
RT taper ratio
s normalised spanwise coordinate: s = 2z/b
scentre spanwise position of the aileron centre
sroot aileron root, spanwise position of the inboard aileron edge
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stip aileron tip, spanwise position of the outboard aileron edge
swidth aileron width along the semispan
V∞ freestream velocity
z spanwise coordinate centred at the wing root, positive out the left wing

Greek symbol
α local geometric angle-of-attack relative to the freestream
αL0 local zero-lift angle-of-attack
� local circulation strength on the lifting line
δa amount of aileron deflection
εf local section flap effectiveness
θ change of variables for the spanwise coordinate
χ normalised spanwise antisymmetric twist distribution function used to describe aileron size and

location
	 amount of the symmetric component of wing twist
ω normalised spanwise symmetric twist distribution function

1.0 Introduction
Conventional ailerons typically produce adverse yaw. To combat this, several methods have been widely
used including mixing aileron deflection with rudder deflection, applying non-antisymmetric aileron
deflections, or employing specific aileron designs that increase drag when deflected upwards such as
Frise ailerons [1–3]. An alternative method, which is the focus of this paper, couples particular aileron
placement with a series of symmetric lift distributions designed to produce proverse yaw. The Horten
brothers were allegedly the first to implement this approach on a flying wing, although literature on
this can be difficult to find [4, 5]. More recently, Bowers et al. [6] have demonstrated this principle
on a subscale aircraft, and Hunsaker et al. [7] have shown theoretical continuous antisymmetric twist
distributions that will produce proverse yaw when coupled with a particular class of optimal symmetric
lift distributions.

Simply placing an aileron in a specific location on a wing is not sufficient to ensure the production
of proverse yaw. Rather, aileron placement that will result in proverse yaw depends on the symmet-
ric lift distribution. Some lift distributions, such as the elliptic lift distribution, cannot be used with
ailerons to produce proverse yaw [6–10]. However, as will be shown here, there is a class of optimal
symmetric lift distributions that, when coupled with proper aileron placement, can produce proverse,
adverse or neutral yaw. The particular class of optimal symmetric lift distributions that will be used in
this work is the same as those studied by Phillips et al. [11–13], Taylor et al. [14, 15], and Hunsaker
et al. [7, 9]. It includes several lift distributions that have been shown to minimise induced drag under
a variety of aerodynamic, geometric, structural, deflection and operational constraints. This class of
lift distributions includes the elliptic lift distribution, Prandtl’s bell-shaped lift distribution [16], and
several other distributions [11–14]. This class of analytic lift distributions has been shown to match high-
fidelity aero-structural optimisation studies performed computationally and experimentally as shown by
Taylor [15].

The method of producing proverse yaw by coupling the lift distribution with aileron placement can
be particularly useful for flying-wing designs that do not have a rudder control surface, and can be
considered bio-inspired since there is evidence that birds can produce proverse yaw in a similar manner
[6]. Additionally, these methods can be particularly important for high-aspect-ratio wings that use a
non-elliptic lift distribution to reduce structural weight and wing deflection [11–14]. Finally, a more
thorough understanding of this approach can be useful for designing future tailless aircraft.

The symmetric lift distribution produced on a finite wing depends on the wing planform and washout
distribution. The relationship between planform, twist, lift distribution and the resulting integrated forces
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and moments on a finite wing are well understood and have been studied since the development of
lifting-line theory in the early 20th century [17–25]. Theoretical relationships for roll-yaw coupling are
first developed using classical lifting-line theory. A numerical analogue to this theory is then used to
compute aileron placement that will produce desired roll-yaw coupling over a wide range of planforms
and optimal lift distributions. The resulting data and analysis can be used in early stages of aircraft design
for aircraft intending to control roll-yaw coupling with aileron placement. It should be noted that the
computational solutions included in the Results section were computed assuming an aerofoil lift slope of
C̃L,α = 2π . Since many common aerofoils have a lift slope close to this value, the results shown here are
a reasonable approximation for many applications. However, blended-body flying-wing designs often
implement thick aerofoils near the wing root. Since effects of thickness were not directly studied, results
presented in this paper should be used with caution for blended-body configurations.

2.0 Analytic formulation
Prandtl’s classical lifting-line theory [17, 18] has formed the basis of our understanding of wing design
for the past century. Solutions to the fundamental lifting-line equation are obtained by assuming a
circulation distribution � that can be written in terms of a Fourier sine series as

�(θ) = 2bV∞A1

(
sin(θ) +

∞∑
j=2

Bj sin jθ

)
, θ ≡ cos−1(−2z/b) , Bj ≡ Aj/A1 (1)

where b is the wing span, V∞ is the freestream velocity, Aj are the Fourier coefficients, Bj are normalised
Fourier coefficients and θ is a change of variables related to the spanwise location z. The Fourier coeffi-
cients Aj are obtained by forcing the lifting-line equation to be satisfied at a finite number of (N) locations
along the wing. This gives a linear system of equations that can be solved for the truncated Fourier
series

N∑
j=1

Aj

(
4b

C̃L,αc(θ)
+ j

sin(θ)

)
sin(jθ) = α(θ) − αL0(θ) (2)

where C̃L,α is the aerofoil section lift slope, c is the local section chord, α is the local section geometric
angle-of-attack, and αL0 is the local section zero-lift angle-of-attack. The integrated lift, induced-drag,
rolling-moment and yawing-moment coefficients on the wing in the absence of rolling rate can be
computed from the resulting Fourier coefficients [26, 27]

CL = πRAA1 (3)

CDi =
C2

L

πRA

(
1 +

N∑
j=2

jB2
j

)
(4)

C� = −1

4
CLB2 = −1

4
πRAA2 (5)

Cn = − C2
L

4πRA

(
N∑

j=2

(2j − 1) Bj−1Bj

)
(6)

where RA is the wing aspect ratio defined as RA ≡ b2/Sw and Sw is the wing area.
An alternative form of lifting-line theory has been presented [26] that decouples the effects of angle-

of-attack, washout and aileron deflection. This method has been used to develop significant insight into
the optimum washout distributions and will be used here to consider optimum aileron placement. In
a theoretical sense, the deflection of an aileron is simply a step-change in aerodynamic twist, since a
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Table 1. Optimal lift distributions for various structural constraints

B3 Constraints
a –1/3 Fixed gross weight and moment of inertia of lift

–1/3 Fixed net weight, maximum stress, and stall speed
b –0.17715 Fixed net weight, maximum deflection, and stall speed
c –3/8 + √

9/64 − 1/12 Fixed gross weight, maximum stress, and wing loading
d -3/7 + √

9/49 − 1/21 Fixed gross weight, maximum deflection, and wing loading

deflection changes the section zero-lift angle-of-attack but produces very little change in the section lift
slope. Here we apply the change of variables

Bj = πRA

CL

[
aj(α − αL0)root + bj	 + cjδa

]
(7)

where aj, bj, and cj are decomposed Fourier coefficients, 	 is the amount of symmetric wing twist, and δa

is the aileron deflection, or the amount of antisymmetric twist. The three components on the right-hand
side of Equation (7) are the contributions of angle-of-attack and planform, spanwise-symmetric twist
(washout) and spanwise-antisymmetric twist caused by an aileron deflection. Considering only wings
with symmetric planforms and noting from Equation (2) that only odd Fourier coefficients depend on
symmetric components and only even coefficients depend on antisymmetric components, Equation (7)
can be expressed as

Bj = πRA

CL

{
aj(α − αL0)root + bj	 j odd

cjδa j even
(8)

The decomposed Fourier coefficients aj, bj and cj can be obtained from

N∑
j=1

aj

(
4b

C̃L,αc(θ)
+ j

sin(θ)

)
sin(jθ) = 1 (9)

N∑
j=1

bj

(
4b

C̃L,αc(θ)
+ j

sin(θ)

)
sin(jθ) = ω(θ) (10)

N∑
j=1

cj

(
4b

C̃L,αc(θ)
+ j

sin(θ)

)
sin(jθ) = εf (θ) χ(θ) (11)

where ω(θ) is a normalised symmetric twist distribution function (washout distribution), χ(θ) is a nor-
malised antisymmetric twist distribution function caused by the ailerons, and εf (θ) is the section flap
effectiveness of the ailerons [27].

We will limit this study to a special class of optimum symmetric lift distributions given by Bj = 0
for all odd terms j > 3 [7, 9, 11–14, 16]. This class of lift distributions provides the minimum induced
drag for various aerodynamic and structural design constraints [11–14, 16–18] and is fully defined by
the single parameter B3. For example, an elliptic lift distribution is defined by B3 = 0, and Prandtl’s bell-
shaped lift distribution is defined by B3 = −1/3. Other optimal lift distributions minimising induced
drag for various design and operating constraints exist within the range −1/3 < B3 < 0 and are shown
in Table 1 along with their associated structural and aerodynamic constraints [11–14, 16–18, 26].

For a wing of arbitrary planform to produce a prescribed lift coefficient and lift distribution within
this class of optimal lift distributions, the symmetric dimensionless twist distribution, twist amount and
angle-of-attack must be [12]
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ω(θ) = 4b/C̃L,α

[
(1 − B3) /croot−

[
sin(θ) + B3 sin(3θ)

]
/c(θ)

]− 3B3

[
1 + sin(3θ) /sin(θ)

]
4b(1 − B3) /

(
C̃L,αcroot

)
− 12B3

(12)

	 = CL

πRA

(
4b(1 − B3)

C̃L,αcroot

− 12B3

)
(13)

(α − αL0)root = CL

πRA

(
4b(1 − B3)

C̃L,αcroot

+ 1 − 3B3

)
(14)

The normalised twist distribution function due to aileron placement can be written as [27]

χ(s) ≡

⎛
⎜⎜⎜⎜⎝

0, s < −stip

1, −stip ≤ s < −sroot

0, −sroot ≤ s ≤ sroot

−1, sroot < s ≤ stip

0, stip < s

(15)

where s is a normalised spanwise coordinate s ≡ 2z/b, and sroot and stip are the spanwise locations cor-
responding to the aileron edges closest to the wing root and wing tip and will be called the aileron root
and aileron tip respectively. These two design variables sroot and stip can be altered to consider their effect
on roll-yaw coupling for this class of symmetric lift distributions.

From Equations (5) and (8) it can be seen that only the c2 component of the aileron contributes to the
rolling-moment coefficient

C� = −1

4
πRAc2δa (16)

By inspection of Equations (4), (8), and (11), the χ(θ) design that minimises induced drag requires
cj = 0 for j > 2 [10]. Such a design requires continuous antisymmetric twist [28–39] and is not possible
with the discrete aileron deflection distribution defined in Equation (15). Effects of discrete aileron
placement on induced drag have been considered by Feifel [40] and Brincklow et al. [41]. From Equation
(6) we see that the yawing-moment depends on the product of neighbouring Fourier coefficients Bj−1Bj.
This fact combined with the definition of the class of symmetric lift distributions considered in this work
means that only the c2 and c4 components of the aileron contribute to the yawing-moment coefficient.
From Equations (6) and (8) the yawing-moment coefficient can be written as

Cn = 1

4
CLδa[(3 + 5B3) c2 + 7B3c4] (17)

Equations (16) and (17) can be combined to give the roll-yaw control ratio [7]

Rn/� ≡ Cn

CLC�

= − 1

πRA

(
3 + 5B3 + 7B3

c4

c2

)
(18)

Equation (18) provides important insight into the design of wings for prescribed roll-yaw coupling.
Notice that for B3 = 0 (the elliptic lift distribution), the roll-yaw coupling will always be negative and
equal to

Rn/� = −3

πRA

(19)

This relationship was first published by Munk [42] and demonstrates that the elliptic lift distri-
bution will always produce adverse yaw, independent of the aileron design or placement. However,
Equation (18) also shows that for any lift distribution defined by a non-zero value for B3, the roll-yaw
coupling depends on the ratio of the decomposed Fourier coefficients c4/c2, which are both related
to the aileron design. For B3 < 0, if c4/c2 < − (3 + 5B3) / (7B3), the wing will produce adverse yaw;
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if c4/c2 = − (3 + 5B3) / (7B3), the wing will produce neutral yaw, and if c4/c2 > − (3 + 5B3) / (7B3),
the wing will produce proverse yaw. The decomposed Fourier coefficients c2 and c4 are not indepen-
dent parameters that can be varied directly. Rather they depend on the wing planform and aileron
design through Equations (11) and (15). Even so, Equation (18) provides a strong theoretical foun-
dation demonstrating that proverse yaw is possible for many lift distributions with proper aileron
design.

Equation (18) provides additional important insight into the dependence of the roll-yaw control
ratio on wing design and operating conditions. Note that the right-hand side of Equation (18) is
completely independent of the wing operating condition, including angle-of-attack, lift coefficient or
rolling-moment coefficient. Additionally, from Equation (11), it can be shown that c2 and c4 are both
dependent on aileron design, but independent of aileron deflection magnitude. Hence the roll-yaw con-
trol ratio is independent of the aileron deflection magnitude. The right-hand side of Equation (18) does
depend on the wing aspect ratio, lift distribution B3, wing planform and aileron design. In the following
analysis, operating conditions and aileron deflections were chosen out of necessity to produce solutions.
As will be illustrated, the results for the roll-yaw control ratio shown for a range of wing planforms,
aspect ratios, lift distributions and aileron designs in the following sections are independent of operating
condition or aileron deflection magnitude below stall.

Numerical methods could be employed to solve the infinite-series solution to the lifting-line develop-
ment shown here and correlate the wing and aileron geometry to solutions for c2 and c4. However, this
classical lifting-line development is best solved using cosine clustering, which is limited in how well
the discrete changes in twist due to aileron deflection can be resolved [41]. Therefore, in the remainder
of this work, a modern numerical lifting-line algorithm developed by Phillips and Snyder [43] is used,
which is a numerical analogue to the classical lifting-line theory but allows for grid clustering in areas of
high gradients. In this way, the step-change in twist distribution due to aileron deflection can be properly
resolved.

3.0 Numerical method
The numerical lifting-line algorithm of Phillips and Snyder [43], similar to classical lifting-line theory,
assumes that the section lift coefficient at any given spanwise location along the lifting surface is equiva-
lent to the 2D case at the same local angle-of-attack. Because of this, the algorithm works best for wings
with aspect ratio of four or greater, where spanwise flow effects are minimal. The numerical algorithm
shows good agreement with higher fidelity aerodynamic tools and experimental results [43], and has
been implemented in several journal publications [10, 41, 44–49]. The particular implementation of the
numerical lifting-line algorithm used in this work is an open-source tool called MachUp [43, 49], which
allows control points to be clustered at the wing tips as well as near the aileron edges. MachUp was
used here to evaluate the effect of aileron placement on the resulting yawing moment for a large range
of planforms and B3 lift distributions.

A grid resolution study was performed for the case of RA = 8, RT = 1, B3 = −1/3, CL = 0.5, C� = 0.1,
sroot = 0.5, and stip = 0.9. Figure 1 shows the induced drag coefficient and roll-yaw control ratio results
for this study for increasing node count. For reference, the classical lifting-line results are also shown
for varying truncation points of the infinite series solution. Results from this study show that using
100 nodes along each wing semispan in the MachUp simulations gives grid-resolved solutions. For this
study and the following results, the nodes were distributed using cosine clustering across the inboard
section of the wing, the aileron section, and the outboard section. The number of nodes used along each
wing section was proportional to the spanwise length of that section divided by the wing semispan. For
example, if the aileron covered 20% of the spanwise length of the wing, 20 nodes were used on that
section. The aileron flap-chord fraction is unity for all cases in this study. However, as Feifel [40] notes,
the flap-chord fraction does not affect the induced drag predicted by potential-flow algorithms, and only
affects the aileron deflection magnitude. As discussed earlier and demonstrated in Equation (18), the
aileron deflection has no influence on the roll-yaw control ratio.
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Figure 1. Grid resolution of MachUp and classical lifting-line theory.

(a) (b)

Figure 2. Induced-drag and roll-yaw control ratio contours.

The class of lift distributions included in this study are completely defined by the single parameter
B3. For a given planform, lift coefficient, rolling-moment coefficient and lift distribution defined by B3,
the washout distribution, washout magnitude, and root angle-of-attack were computed from Equations
(12)–(14) and employed in the MachUp simulation. A Newton-Secant method was used to find the
aileron deflection that would produce the prescribed rolling moment, and the resulting induced drag
and yawing moment as predicted by MachUp were recorded. From these results, the roll-yaw control
ratio Rn/� was computed from the definition given in (18). This process was repeated over a wide range
of wing planform shapes and aileron placement. For the results presented in this study, εf (θ) was set to
1.0 for all wing sections with an aileron, and the section lift slope was set to the theoretical value from
thin-aerofoil theory, C̃L,α = 2π .

Figure 2 shows example results for the induced-drag coefficient and roll-yaw control ratio for a rect-
angular wing with RA = 8, B3 = –1/3, CL = 0.5, and C� = 0.1. Figure 2 includes two plots that show
contours of the induced-drag coefficient and roll-yaw control ratio as a function of the aileron spanwise
size and location. Figure 2(a) shows the view with respect to sroot and stip while Fig. 2(b) shows the data
with respect to the aileron centre scentre = (

sroot + stip

)
/2 and aileron width swidth = stip − sroot. Note that

the shaded regions are blank since they represent infeasible aileron designs. All results only assume
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(a) (b)

Figure 3. Induced-drag and roll-yaw control ratio contours for a Prandtl-D-like wing planform [6].

inviscid conditions and do not include the effects of stall. As will be shown, these results are indepen-
dent of aileron deflection and operating condition below stall. Notice the nearly vertical contour with a
noted Rn/� = 0 near a scentre of 0.825 in Fig. 2(b). This contour line represents the range of aileron widths
that can be used to produce zero roll-yaw coupling, and indicates that an aileron centred at the spanwise
location s = 0.825 will produce neutral yaw for this design. In general, an aileron with the centre inboard
of this location will produce adverse yaw, and an aileron with the centre outboard of this location will
produce proverse yaw, regardless of aileron width. The contours for induced drag demonstrate that in
general, the induced drag decreases with increasing aileron size along lines of constant roll-yaw control
ratio. Therefore, if we wish to minimise induced drag, we should select an aileron that extends to the
wing tip. The case that corresponds to this minimum-induced-drag solution for a design with Rn/� = 0
is marked with a circle in Fig. 2.

Figure 3 shows similar data based on the planform of the Prandtl-D aircraft created by NASA [6]
with RA = 15.55 and a taper ratio RT = 0.26. NASA’s Prandtl-D wing is an experimental aircraft, which
showed Prandtl’s bell-shape wing lift distribution combined with careful aileron design is capable of
producing proverse yaw. Research [6] supports that this lift distribution is more similar to avian flight
compared to the elliptical lift distribution. The design of the aircraft planform is a quarter-scale of the
Horten H Xc aircraft; the aircraft has no vertical surfaces, and has elevons starting at 86% of the wing
semi-span and continuing to the wing tip [6]. For more information about the design, manufacturing,
flight-testing and results of this aircraft, the reader is referred to the following publications [6, 50, 51].
This can be examined in a theoretical sense by considering the data in Fig. 3. The point marked with an
‘x’ represents the aileron design used on the Prandtl-D aircraft. Results shown in this figure predict that
the aileron placement on the Prandtl-D will in fact produce proverse yaw and minimise induced drag for
that roll-yaw control ratio. Additionally, the aileron design that would produce zero roll-yaw coupling
and minimise induced drag is marked with a circle.

Equation (18) shows that the roll-yaw control ratio is theoretically independent of operating condition,
including lift coefficient, rolling moment and aileron deflection magnitude. To verify this numerically, a
single wing planform and lift distribution were chosen, and studied over a range of operating conditions.
The wing planform and lift distribution used in this study were the same as those used to produce
the results in Fig. 2. Two aileron designs were considered for this wing planform and lift distribution.
The first was a somewhat arbitrary aileron design defined by sroot = 0.5 and stip = 0.9. From the results
in Fig. 2, that aileron design was expected to produce adverse yaw. The second aileron design was
specifically chosen as the design that produces a neutral roll-yaw control ratio and minimises induced
drag, and is defined by sroot = 0.663 and stip = 1.0. For each aileron design, the operating lift coefficient
CL was varied from 0.001 to 1.0 using 10 equally spaced points, and the operating rolling-moment
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Figure 4. Roll-yaw control ratio results for a range of operating conditions.

coefficient C� was varied from 0.001 to 0.1 using 10 equally spaced points. Each combination of lift
coefficient and rolling-moment coefficient was considered as an individual case, which gave 100 total
cases for each aileron design. In each case, the required aileron deflection was found and the resulting
yawing moment and corresponding roll-yaw control ratio was obtained. Figure 4 shows results of the
study. Notice that the roll-yaw control ratio for each aileron design is independent of the operating
condition and aileron deflection. This substantiates the theoretical solution given in Equation (18). Also
included in the figure for comparison are the analytic results for an elliptic lift distribution on a wing
with the same aspect ratio, as given in Equation (19).

4.0 Results
Using the numerical algorithm presented in Section 3 and our understanding of the aileron design space,
we now consider the aileron design required to produce a desired roll-yaw coupling over a range of
planforms and symmetric lift distributions. To be able to predict the roll-yaw coupling of a given aileron
geometry, we simply need to find the aileron design that will produce zero roll-yaw coupling. Any aileron
inboard of that location will produce adverse yaw, and any aileron outboard of that location will produce
proverse yaw. Since, in general, there are multiple solutions for aileron designs that produce zero roll-
yaw coupling for a given wing planform and lift distribution, we wish to select the aileron design that will
minimise induced drag. Notice that for the cases shown in Figs. 2 and 3, the induced drag is minimised
by selecting an aileron that extends to the tip, i.e. stip = 1. Repeating this analysis for wing designs in
the range: −0.5 ≤ B3 < 0, 4 ≤ RA ≤ 20, 0 ≤ RT ≤ 1 and various C� values, it was determined that each
aileron design within this range that gives zero roll-yaw control ratio and minimum induced drag has
stip = 1. Therefore, in the results that follow, the aileron tip was fixed at the tip, and only the aileron root,
sroot, was allowed to vary.

The aileron root position that would provide a zero roll-yaw control ratio for each case was found
using the gradient-based optimisation code Optix [49], which employs the BFGS algorithm [52–55].
Because MachUp uses a finite number of control points per semispan, with small changes to sroot, the
distribution of control points between the ailerons and regular wing sections can change causing step
changes in the solution. This was resolved with an iterative process of running Optix with a fixed nodal
distribution between aileron sections and regular wing sections. Once a converged solution was obtained,
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Figure 5. Aileron centre location shown as a function of B3 for neutral roll-yaw coupling at stip = 1.

the nodal distribution was altered to reflect the new ratio of aileron span to wing span, and the optimi-
sation code was run again. This process was repeated in an outer loop until the location of the aileron
stopped changing. The optimisation solutions that resulted in a final roll-yaw control ratio with mag-
nitude greater than 1.0E − 9 were considered as designs that have no solution, and were discarded. In
those cases, for the given B3 and planform there is not an aileron design with εf (θ) = 1 of the form in
Equation (15) that can give a neutral roll-yaw control ratio. These scenarios were only encountered for
B3 values near 0. It is possible that other aileron designs, like multi-segmented ailerons, which have more
degrees of freedom, could achieve zero roll-yaw control ratio at B3 values nearer to 0. This is because an
aileron design with more degrees of freedom would be better able to control the term c4/c2 in Equation
(18). As the degrees of freedom of the aileron increase, ε(θ) χ(θ) would approach the absolute optimal
solution for minimum induced drag for a given roll-yaw control ratio [7].

Resulting solutions for the aileron centre locations that give a zero roll-yaw control ratio are shown
in Fig. 5 as a function of B3 over a wide range of aspect ratios and taper ratios at the condition CL = 0.5
and C� = 0.01. Neutral lines for wings of aspect ratios from 4 to 20 in increments of 2 are shown, where
the neutral line represents a band of designs providing neutral roll-yaw coupling Rn/� = 0 with stip = 1.

Any aileron design centre below the neutral line shown in Fig. 5 will produce adverse yaw, while
any aileron design centre above the neutral line will produce proverse yaw. In all cases, it is assumed
that the aileron extends to the wing tip. Note that as the value of B3 decreases, solutions that produce
proverse yaw can be found further inboard. Also note that as the B3 value approaches zero (the elliptic
lift distribution), solutions no longer exist. The B3 values marked by the vertical lines labeled (a)–(d)
correspond to the values in Table 1.

From Fig. 2(a) and (b) we observed that the contours of neutral roll-yaw coupling were nearly vertical
when plotted as a function of the aileron centre. Therefore, if the designer wishes to design an aileron to
control roll-yaw coupling and does not wish to extend the aileron to the wing tip, this can be achieved as
long as the centre of the aileron remains in the correct location. The reader is reminded that maximising
aileron width while not changing the aileron centre location will minimise induced drag caused by the
ailerons.
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5.0 Conclusion
The present work shows that it is possible to design for a certain roll-yaw control ratio through specific
spanwise symmetric twist and aileron design without the need of aileron-rudder mixing, differential
aileron deflection or Frise ailerons. With proper design, a wing could be developed to give neutral or
proverse yaw when the ailerons are deflected. The present study has been limited to wings employ-
ing a special class of symmetric lift distributions fully defined by the parameter B3. This class of lift
distributions includes multiple analytic solutions that minimise induced drag from the wing when struc-
tural and design constraints are considered. For an arbitrary wing planform and desired lift distribution
defined by B3, the twist distribution and angle-of-attack that achieves this desired lift distribution is given
by Equations (12)–(14). The resulting roll-yaw control ratio for a given planform and lift distribution
depends on the aileron placement. However, it was found that any wing employing the elliptic lift distri-
bution will produce adverse yaw independent of the aileron design. Example design spaces for aileron
parameters and the resulting roll-yaw control ratio and induced drag are shown in Figs 2 and 3. It was
found that the aileron designs that minimise induced drag for a given roll-yaw control ratio generally
extend to the wing tip.

An optimisation routine was used in conjunction with a numerical lifting-line algorithm to find
the aileron design that would minimise induced drag and ensure a roll-yaw control ratio of zero for
a wide range of planforms and lift distributions within this class of distributions. The aileron centre was
recorded for each solution, and plotted in Fig. 5, which shows aileron designs as a function of B3 for
various wing planforms that give zero roll-yaw control ratio while minimising induced drag. For the
design space shown in Fig. 5, the aileron designs that minimised induced drag all extend to the wing
tip. Any aileron that extends to the tip and has a centre location further outboard than the neutral line
shown in Fig. 5 will produce proverse yaw, while a design with a centre location further inboard than
the neutral line will produce adverse yaw.

This method of aileron and wing design seem particularly well suited to sailplanes and gliders, which
require extreme aerodynamic efficiency while overcoming challenges caused by high-aspect-ratio wings.
Some of these challenges are balancing structure weight with allowable wing bending and overcoming
significant adverse yaw. The special class of lift distributions included in this study includes solutions
that minimise induced drag.

Single-segment aileron designs have limitations on the obtainable roll-yaw control ratio because
of their dependence on wing planform and B3. More complex aileron designs, like multi-segmented
ailerons, with more degrees of freedom could also be used to control roll-yaw coupling, and is a topic
of future work.
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