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THE MATHEMATICS OF HYSTERESIS

ULRICH HORNUNG

A survey over three different approaches to model hysteresis

phenomena is given. The starting point for mathematical models

are

(a) memory,

(b) population, or

(c) spatial distribution.

In any case the hysteresis effect is interpreted using an

averaging procedure over the inner state of the system in

consideration.

1. Introduction

Hysteresis can be observed in many different fields of science. It is

well known that for a ferromagnetic material the magnetic induction 8 is

not a single valued function of the magnetic field H . If H is a

periodic function of time t , then the variation of B lags behind that

of H , and we obtain a loop of the type shown in Figure 1. If a different

input signal t -*• H(t) is used a different output signal t •* B(t) is

observed, and in general also a different graph in the #-B-plane.

Similar phenomena are encountered in ferroelectric materials, where

the variables in question are the electric field and the polarization, and

in elasticity. In the latter case the variables for which hysteresis
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FIGURE 1

occurs are stress and strain. For all these examples the area enclosed by

the loop corresponds to the energy which is lost as heat if a full cycle is

performed.

Another example is a crowd of moths which fly towards two lights of

variable intensity. If we consider the relation between the intensities

and the fraction of moths being attracted by one of the lights we observe

some type of hysteresis. A similar example is provided by two political

parties and their voters.

Finally we mention the example of unsaturated water flow through

porous media. Here the two variables for which hysteresis has been

observed are the water content and the capillary pressure head.

Though hysteresis phenomena have been known for about one hundred

years {of. Rayleigh [25], Ewing [J7]), a rigorous mathematical treatment

has been tried only very recently. The purpose of a model is not only to

make it accessible to mathematical theory and so to contribute to a better

understanding of the phenomenon. A model is also a means to be used for

computer simulations of processes in which hysteresis is an essential

feature.

Before dealing with various theoretical approaches we give a
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preliminary definition. We say that the relation of an input signal v

and an output signal u is of hysteresis type if all possible points

(u, u) form a set M in the phase plane v - u surrounded by some outer

loop such that:

(A) each point within the loop is attainable, that is M is

equal to the interior of the loop;

(B) the forthcoming behaviour nf the system cannot be predicted

from the knowledge of the actual point in the set M alone;

(C) the scanning curves in the set M depend on the frequency

of the input signal, that is, on the derivative of U with

respect to time.

The properties (A), (B), and (C) can be found in many systems with

hysteresis. It is clear that not all properties need be shared by all

systems. Some authors neglect some of them. There is a school saying that

hysteresis is a phenomenon in which (C) is not true, that is, in which .the

curves in the phase plane remain unchanged if the time scale is changed.

It is our opinion that a general model should be compatible with

observations from all experiments.

2. Memory models

2.1 ORDINARY DIFFERENTIAL EQUATIONS

The first attempt to study mathematical models for hysteresis was made
by Duhem [2]-[70] in a series of papers. He studied hysteresis in the

context of physical chemistry and investigated the role of the inequality

of Clausius in thermodynamics. A result of his work was that within a

hysteresis loop there are two families of curves, the family of ascending

curves and the family of descending curves. Through every point (y, u)

passes exactly one curve of each family. Those points where these two

curves are parallel were called "natural states" of the system.

A mathematical model of this approach can be given as an ordinary

differential equation

(2.1) •£ u(t) = f^u(t) , v{t) , signf;| w(*)]J • J£ v(t) .

The two families of curves are obtained from this equation as the solutions
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of the two d i f f e r e n t i a l equations

(2.2a) j&= f{u< v* +1)

and

(2.2b) &± = f(u, v. -1) .

It is obvious that properties (B) and (C) are not satisfied by hysteresis

systems of this kind.

2.2 MEMORY OPERATORS

A phenomenological study of hysteresis leads to the idea that it is

caused by some time lag or a memory of the system. Therefore it seems to

be natural to use a mathematical model that relates the value of the output

signal u{t) to the history v{t) , t 5 t , of the input signal. Hence

we have an equation of the form

(2.3) u(t) = H[v('), t, u{0)) ,

where u( •) € C [0, t] is the history of v and 'ux{0) is the initial

value of u . The operator H describes the dynamic behaviour of the

system in consideration. In some special cases this operator may have the

form of a convolution integral

rt
i, t, Mfl) = I K{t-s, t)G(v(s))ds + uQ .

This approach was first used by Krasnosel 'ski i [20]. It was studied

systematically and in connection with partial differential equations by

Visintin [26]. It is clear that very general systems can be modelled using

(2.3), but the physical interpretation of the operator H is not evident.

3. Population models

3.1 THEORY OF INDEPENDENT DOMAINS

Ewing [J7] was one of the first who explained magnetic phenomena in

terms of forces between atoms. Weiss [2S] studied magnetic fields of

molecules. Later We i ss and de Freudenreich [29] developed the idea of

elementary magnetic domains further. This leads to the idea of independent

domains described by Preisach [24], which was put into a more abstract form
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by Neel [22], [23]. Later this was rediscovered independently by Everett

[73]-[76] and Enderby [77], [72].

The basic assumption of the theory is that the system tinder

consideration is a population of domains each of which reacts in a very

elementary way to the input signal v . Each domain behaves like a switch,

a typical example for which is a thermostat. The switch has only two

possible states , say 0 and 1 ; it switches from 0 to 1 if the

input V becomes larger than an upper threshold x , it switches from 1

to 0 if the input becomes smaller than a lower threshold y ; see Figure

2.

->> v

FIGURE 2

The hysteresis loop of a switch can be modelled by the evolution

equation

[3.1) I{t, x, y) € -A(l(t, x, y) , v{t), x, y) .

Here A{•, v, x, y) is the set valued operator from R to R given by

t h e g r a p h A(•, y , x , y) = {{a, b) : b € A(a, v, x , y)} i n R x R ,

( { 0 } x R) , v < y ,

( { 0 } x ( ^ o , o ] ) u ( [ 0 , 1 ] x {o}) u ({1} x [ o , ••«>)) ,

y 2 V < x

{0} x R , x <• v ;

i 4 ( - , u , x, y) =
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of. Brezis [ ! ] • I t i s easy to see tha t for a l l v, x , and y the

operator A{', V, x, y) i s maximal monotone; that i s , we have

and A is maximal in R x R of this type.

A switch of the type described above is a very simple example of a

system with hysteresis. Obviously properties (A), (B), and (C) do not

apply to the relation between v and J .

A general system considered by the theory of independent domains is a

population of switches each of which reacts independently of the others to

the input signal. The state u of the whole system is a weighted average

of the states of all domains

(3.2) u(t) = j I{t, x, y)dF{x, y) .

Here F is a two-dimensional distribution function of a measure

= f dF{x, y)

with support in the half plane {(x, y) : y 5 x} . I t is understood that

F can be defined by y via

F(x, y) = u({(x, y) : x s x, y s y}) .

Evidently \x{M) is the fraction of domains in the population having

thresholds (x, y) € M .

Since I{t, • , •) is the characteristic function of the set

M(t) = {{x, y) : I(t, x, y) = 1} ,

the state of the system is

u(t) = v[M(t)) = f dF(x, y) = f I ( t , x, y)dF(x, y) .
>M{t) >

Therefore in general the inner state of the system is not known if only

(i>(i), u{t)) is given, but it is described by I(t, •, •) or by M{t) .

This inner state has been called the "domain complexion". It is easy to

see that if W(t) has been generated by some signal v(i) , i 5 t , then

it. can be represented as a union

https://doi.org/10.1017/S0004972700001957 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700001957


Hysteres i s 2 7 7

M{t) = U (-co, X ) X (-co, y )

where the x. and y . are relative maxima and minima that occurred in the
3 3

history of V .

According to the theory of independent domains, hysteresis systems are

described by equations (3-1) and (3.2). Obviously properties (A) and (B)

apply to general systems of this kind, but property (C) does not. The

behaviour of a system can be predicted if the measure u or equivalently

the distribution function F is known. For instance the primary scanning

curves, that is, the ascending and the descending boundaries of the

hysteresis loop, can be obtained very easily from F . These curves are

the maximal monotone extensions of the sets

(3.3) {(x, y) : y = F(x, x)} and {(x, y) : y = F(», a;)} .

Besides the most elementary systems, namely switches, for which the

support of the measure p is a singleton, there is an interesting class

with relatively simple behaviour. If the support of u is a monotone set

2
in IR , then all scanning curves within the hysteresis loop are

horizontal. In this case property (B) does not hold, while (A) may or may

not hold depending on the smoothness of the measure.

The class of systems described previously is one for which the

structure is known once the two primary scanning curves are given. Another

class of this type are those systems for which the similarity hypothesis

(3.U) F(x, y) = G(x) • H(y)

is satisfied. It is clear that if now

x •+ C(x) • #(x) and x -̂  £(«) • tf(x)

are measured (see (3.3)) then G and H , and so F , are determined.

Systems of this tvpe have been studied by Mualem [2/] and Haverkamp and

Parlange [IS] for seepage flow problems. In a general situation a two-

dimensional distribution has to be determined, a problem for which there is

no simple procedure.

An application of the theory of independent domains to parabolic

problems was investigated by Visintin [27].
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3.2 REVERSIBLE PROCESSES

In his paper on hysteresis Preisach [24] mentioned systems consisting

of many pairs of electric condensators and resistances. Each of the pairs,

which we again call domains, is influenced by some voltage v : see Figure

3.

FIGURE 3

In this case the voltage w at the condensator obeys the law

w = - •== (w-v) .

If we denote the time constant by

RC

we have

(3.5) , z) = - z- [w(t, z)-v(t))

indicating that different domains may have different time constants. The

state of the whole system under consideration is assumed to be a weighted

average of the states of all domains; that is,

(3-6) u{t) = ] wU,z)dF(z) .
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In this context F is the distribution function of a discrete or

continuous measure y > where \i(M) describes the fraction of domains in

the system having time constants z € M .

Since each domain has linear behaviour, the whole system behaves

linearly. By this we mean that the transition operator v -*• u is linear.

Therefore the system is fully understood if the response u to a

6-impulse is known. In the situation described above the unit response is

u(t) = [ ze~ztdF(z) .

Alternatively linear systems can also be described by their impedance

<|>(u)) = u{t)/v(t)

for periodic signals v\t) = e . Here we have

• f
Processes of this type are reversible in the sense that for extremely

slow inputs the u-w-relation is almost a line in the phase plane. Since

it is reasonable that the measure u has compact support in the half line

of positive numbers, we have, for very small frequences co ,

4>(w) w j dF(z)

and therefore

u{t) sa v{t) I dF(z) .

A natural generalization of systems described here are populations of

domains each of which can be modelled by an evolution equation

(3-7) 3tw(*, 2) = -A{w(t, z), v(t), z) .

Here A(•, u, z) is a nonlinear monotone operator. As before we assume

that the state of the system to be described is given by an integral

(3.8) u(t) = I w(t, z)dF(z) .

3.3 GENERAL POPULATIONS

It is evident that the systems studied in paragraphs 3.1 and 3-2 have
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the same general mathematical model, namely equations (3-7) and (3-8). In

any case we think of populations of domains described by parameters {x, y)

or z , respectively. The dynamics of each domain is given by (3.7), where

we assume that A(', v, z) is a maximal monotone operator. Both

reversible and irreversible processes can be modelled in this framework,

depending on whether or not A is strictly monotone. An application of

this idea to ferromagnetism has been published by Hornung [J9].

4. Spatial models

The assumption of the theory of independent domains is that the system

is a population of domains which do not interact. In this paragraph we

study systems which are distributed in space such that there is an

influence from each point to its neighbours. In this case it is natural to

assume that the state of the whole system is an average with respect to

the space variable. Let ft be a bounded domain in FT and the output

variable u be given by

(U.I) u(t) = I w{t, x)dx = wit, x)dx/\ dx .

h h >a
Now W denotes the inner state of the system which may be influenced by

the input variable v in different ways.

The first example is obtained from linear relations of the type

described in equation (3-5) by introducing a diffusion process that takes

place in space. In this case we have

(It.2a) dMt, x) = bbuit, x) - a(x) • [w(t, x)-v(t)) , x € ft ,

where b denotes the diffusivity. If we impose boundary conditions on

3ft , for example homogeneous Dirichlet conditions

(U.2b) w(t, x) = 0 , x € 8ft ,

we obtain a linear transition operator. It is easy to calculate the

impedance. If <p is the solution of the elliptic problem

i-bA(p(x) + (a(x)+£w)(p(x) = a{x) , x € ft ,cp(x) = 0 , x d 3ft ,

the impedance is given by
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•L ip(x)dx .

If a(x) is constant and Q is the unit ball in R , problem (U.3) can

be solved explicitly. Using

[ ' ^ o
1 + — , p = -(a+iu>)/b , and r = |x| ,

we have

cp(x) = X ' (l-i|/(y2")/ip(y)] ,

where <KS) is a bounded solution of

It is well known that we have

cos s , n = 1 ,

JQ(s) , n = 2 ,

JQ(s) , n = 3 ,

where JQ and j are the cylindrical and spherical Bessel functions of

order zero respectively. Now simple integration gives the impedance

= A

where the value ip is given by

tan y , n = 1 ,

u) , n = 2 ,

3((l/y)-eot y) , n = 3 .

I t is clear that for & •* 0 we have <J>(oo) ->• A , the limit case of
vanishing diffusivity.

In the second example we consider a diffusion process where now the
input v enters as the boundary values. Adopting linear equations we have

djud, x) = bls&it, x) , x
(h.h)
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In this case the impedance is obtained by solving the el l ipt ic problem

b&<p(x) - iuxp(x) = 0 , x € n ,

(U.5)

cp(x) = 1 , x € 3fi ,

from which the impedance

2
is calculated. If we introduce u = -i(u/b , then using the same functions

\p and 41 as before we have

(p(x) = i

and

Since the examples (U.2) and (k.U) describe linear processes there is

no bounded hysteresis loop in the u-w-plane for these systems. I t is

clear that there are many ways to introduce nonlinearities which may lead

to better models for hysteresis. The following example is of special

interest in hydrology.

Unsteady water flow through porous media is governed by the

differential equation

(U.6a) 8tw(t, x) = div{K[w(t. x))gradp(t , x)) ,

where w is the water content, p the capillary potential, and K the

hydraulic conductivity. Generally i t is assumed that there is a well

defined nonlinear relation between p and w ; see Figure h. This

functions and the function K{') depend on the microscopic structure of

the medium.

To measure the function p -»• w in a laboratory amounts to making an

experiment of the following type. At one side of a probe of the medium a

certain value v of the variable p is applied, while the other sides are

sealed using some impermeable material. In this way we impose boundary

conditions on the boundary 3fi = TQ + T. of the domain Q ; see Figure 5 •
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FIGURE 4

FIGURE 5
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' x) = o , x €

(U.6b)
p ( t , x) = v , x € r

1

For t -»• » the solution p of problem (U.6) becomes constant in Q ,

namely p = v , no matter which initial function p(0, x) was used.

Therefore the water content W becomes constant in Q , and one pair of

the function p -*• w is determined.

In practice the process described by (h.6) is not observed for

arbitrarily large t , but the average water content (U.l) is measured at

finite time. At this time the distributions of p and w may not yet be

constant in fi . Therefore the measurement gives the transition operator

V -*• u rather than the function p •*• W . It is clear that the result

depends strongly on the size of the probe and on the speed at which the

experiment is performed.

The situation becomes more complicated if we consider inhomogeneous

media. If the conductivity K varies in space over several orders of

magnitude then the rate at which an equilibrium is reached within the

domain fi varies at the same rate. Therefore the experiment mav be far

from a steady state, and hence the y-u-relation may be of hysteresis type.

A mathematical study of this phenomenon for highly oscillating

conductivities is presently in consideration and will be published

elsewhere.

5. Conclusion

The three types of mathematical models for hysteresis deal with memory,

populations and systems distributed in space. In each case the main aspect

is that there is an "inner state" of the system, which is the history, the

state of each individual of the population, or a spatial distribution,

respectively. The state of the whole system is always some mean value

obtained by averaging.

It need not be emphasized that in a hysteresis phenomenon taken from

the real world the three mechanisms described above may work together.

REMARK. Very recently the book M.A. Krasnosel'skii and A.W.

Pokrowskii , Systems with hysteresis,Nauka, Moscow (1983), appeared in
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Russian.
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