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Abstract
An important test of the quality of numerical methods developed to track the interface
between two fluids is their ability to reproduce test cases or benchmarks. However,
benchmark solutions are scarce and virtually nonexistent for complex geometries. We
propose a simple method to generate benchmark solutions in the context of the two-
layer flow problem, a classical multiphase flow problem. The solutions are obtained by
considering the inverse problem of finding the required channel geometry to obtain a
prescribed interface profile. This viewpoint shift transforms the problem from that of
having to solve a complex differential equation to the much easier one of finding the
roots of a quartic polynomial.
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1. Introduction

The flow of two immiscible fluid layers in channels appears in a range of applications
such as lubricated piping, oil recovery, and lithographic printing [7]. Such flows
are also common in microfluidic technologies [16]. Beyond the mere technological
interest, such flows epitomise one of the great challenges of modern fluid dynamics
research, that is, modelling the dynamics of interfaces in multiphase flows. This field is
rich in available literature and a survey is beyond the scope of this paper; the interested
reader is referred to the review of Scardovelli and Zaleski [14], for example.

Alongside the development of analytical and numerical techniques to solve such
flows, it is essential to establish a library of benchmark solutions which can be used
to validate the results obtained. The complexity and nonlinearity of the Navier–Stokes
equations with the required boundary conditions strongly limit the availability of such
solutions, even more so in nontrivial geometries. In this paper, we propose a simple
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technique to build solutions for the two-layer flow problem in corrugated channels.
It is based on the analysis of Lenz and Kumar [7] who reduced the Navier–Stokes
equations to a nonlinear ordinary differential equation for the interface profile in the
long-wave approximation limit. This flow configuration is particularly suitable as a
benchmark problem as the interaction between the wall topography and the two-fluid
layer interface is nontrivial, as recently demonstrated by Luo and Pozrikidis [9] and
Luo et al. [8].

The main idea behind the construction of the benchmark solutions is to adopt a
reverse stand whereby the interface between the two fluids is a prescribed function and
the corresponding corrugation profile is sought. This viewpoint shift transforms the
problem from that of having to solve a complex nonlinear differential equation to that
of finding the roots of a quartic polynomial. This approach offers some advantages:
• The approach does not require the discretization of the governing ordinary

differential equation, so the solutions generated are free of discretization error.
Moreover, the solutions to the ordinary differential equation are exact.
• The implementation is significantly simplified since finding the roots of a

polynomial is routine practice compared to discretizing and solving a nonlinear
ordinary differential equation or indeed the full Navier–Stokes equations.
• The existence (or not) of a solution to the polynomial provides an indication of

the admissibility of an interface profile.
The concept of generating a class of solutions for a given prescribed interface profile
was first introduced by Sautreaux towards the end of the nineteenth century in the
context of steady, inviscid, and irrotational free-surface flows [13]. The idea was
subsequently exploited by Rudzki [12] and Richardson [11] to compute exact solutions
of free-surface flows over a corrugated bottom. More than a century later, the
technique was extended by MacDonald et al. [10] to find closed-form solutions of
open-channel flows. Tuck [17] also built on the work of Sautreaux to compute exact
solutions of the flow of air over free surfaces of stationary water. Following a similar
tack, Hocking [4] derived exact solutions of problems involving a line source or sink
beneath a cusped free surface. Finally, Sellier [15] used a similar procedure to find
which substrate profile leads to a desired or observed free-surface shape in the context
of thin film flows over corrugations. Viscous effects play an important role in the latter
study as in the present case.

The next section gives a brief description of the problem and governing equations.
It is followed by a description of the idea behind the derivation of the solutions to the
problem, and a demonstration of the validity of the method. Finally, the limitations of
the proposed technique are discussed and conclusions drawn.

2. Problem definition and governing equations

Figure 1 illustrates the problem considered and the notation adopted. The flow
is in the positive x-direction and is driven either by an applied pressure gradient
1P/L or the motion of the upper boundary with velocity uT . This corresponds to
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FIGURE 1. Sketch of the problem considered and the notation adopted (following Lenz and Kumar [7]).

the Poiseuille or Couette flow configuration, respectively. The fluids, labelled 1 and
2, are incompressible, Newtonian, immiscible and form two layers. The viscosities
of fluids 1 and 2 are µ1 and µ2, respectively, and the corresponding densities are ρ1
and ρ2. The height of the lower boundary is hb(x), while that of the interface between
fluids 1 and 2 is h(x). The asymptotic values of the interfacial height are h0 upstream
and hstep + h′0 downstream.

In this paper we present what could be termed the “base case” in which the
viscosity ratio µr and the density ratio ρr are set equal to 1. The significance of
this limit is that it creates an equal contribution from both layers. In the limit in
which these ratios approach zero, the well-studied case of a single fluid layer flowing
over topography is obtained. As discussed in [7], this causes the size of capillary
features to be substantially larger than in the two-layer case. On the other hand,
increases in µr and ρr cause the top layer to dominate the flow, such that the impact
of topography on the fluid interface is less significant. Obviously, increases in ρr
would also lead to an instability associated with density stratification, which is not
incorporated into our formulation. Attention is therefore focused on the “base case”,
having an understanding already in place of how variation in the density and viscosity
parameters would impact the problem’s physics. A complete derivation of the equation
governing the interfacial height follows, but the interested reader is referred to [6, 7]
for further details.

The vertical length scale of the problem is taken to be the height of the wide
part of the channel. This dimensional (indicated by the tilde) thickness is h̃t , and
in accordance with lubrication theory is assumed to be much smaller than l̃, the length
scale of variations in the x-direction. A small parameter ε = h̃t/l̃ is defined, which
leads to the following scaling for the dimensionless lengths and velocities:

x =
ε x̃

h̃t
, z =

z̃

h̃t
, ui =

ũi

ũ◦
, wi =

w̃i

εũ◦
.

The subscript i indicates to which fluid phase a variable corresponds, and u and w
are the fluid velocities in the x and z directions. The horizontal velocity scale is
ũ◦ = µ1/(ρ1h̃t ), where µ1 and ρ1 are the viscosity and density of the lower layer.
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The scalings for the dimensionless time and pressure variables are then

t =
ε t̃ ũ◦
h̃t

, pi =
ε p̃i h̃t

µ1ũ◦
.

Development of the governing equations begins with the dimensional momentum
balance and stress balance at the fluid interface:

ρi (∂t̃ ũi + ũi · ∇ũi )=−∇ p̃i + ρi g+ µi∇
2ũi , (2.1)

T1 · n− T2 · n=−κγ̃n, (2.2)

where ũi is the velocity vector in fluid i , Ti is the stress tensor in fluid i , g is the
gravity vector, n is the vector normal to the fluid interface pointing into fluid 2, κ
is the interfacial curvature, and γ̃ is the dimensional interfacial tension. The set of
lubrication equations is obtained by substituting the dimensionless variables into (2.1)
and (2.2) and discarding terms of order ε and smaller. The momentum balance
becomes

0 = −∂x pi +
ρi

ρ1
B +

µi

µ1
∂2

z ui ,

0 = ∂z pi ,
(2.3)

where B = h̃2
t ρ1gx/(µ1ũ◦) is the dimensionless horizontally acting body force. The

normal and shear stress balances are also simplified:

3Ca−1∂2
x h = p2 − p1,

µr∂zu2 = ∂zu1.
(2.4)

Here µr is the viscosity ratio, µ2/µ1, and Ca−1 is the inverse capillary number:

Ca−1
=

ε3γ̃

3µ1ũ◦
.

The ε3 term is included to keep capillary forces in balance with viscous forces.
Velocity profiles may be obtained by integrating (2.3) for both fluid layers and

applying no-slip boundary conditions at the channel walls, and velocity and shear
stress continuity at the fluid interface. After doing so, the only unknowns in the
problem are the pressure gradients, ∂x pi , and the interfacial height, h. The three
equations needed to determine these unknowns are the normal stress balance, and
mass conservation for both fluid layers in the form of constant flow-rate conditions.
To employ mass conservation we first calculate the base flow-rates for each fluid layer
where the fluid interface is flat in the wide part of the channel:

Q1 = −
1P/L − B

12(1+ hr )3
+

ubase
I

2(1+ hr )
, (2.5)

Q2 = −
(1P/L − ρr B)h3

r

12µr (1+ hr )3
+

hr (ubase
I + uT )

2(1+ hr )
, (2.6)
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with the base interfacial velocity, ubase
I , given by:

ubase
I =−

[1P/L − B(hrρr + 1)/(1+ hr )]hr

2(µr + hr )(1+ hr )
+

µr uT

µr + hr
.

In these equations hr is the height ratio, (1− h◦)/h◦, and ρr is the density ratio, ρ2/ρ1.
The velocity profiles in each layer as a function of x are integrated with respect to z

and equated to (2.5) and (2.6) to yield the two constant flow-rate condition equations
needed to solve for ∂x pi :∫ h

hb

u1 dz = (−∂x p1 + B)
(h − hb)

3

12
+ u I

h − hb

2
= Q1,∫ 1

h
u2 dz = (−∂x p2 + ρr B)

(1− h)3

12µr
+ (uT + u I )

1− h

2
= Q2.

Here h, hb, u I , and both ∂x pi are all functions of x , and the expression for the
interfacial velocity as a function of position is

u I =
1− h

2(r + µr )
[(−∂x p1 + B)(h − hb)+ (−∂x p2 + ρr B)(1− h)] +

µr uT

r + µr
,

where r is a local height ratio, (1− h)/(h − hb). The resulting expressions for ∂x pi
are then substituted into the differentiated form of (2.4) to produce the governing
equation for h:

3Ca−1∂3
x h = [Q1C1 + Q2C2 + uT C3]/C4 + (ρr − 1)B, (2.7)

where

C1 = r2(3r2
+ 12µrr + 9µr ),

C2 = −µr (9r2
+ 12r + 3µr ),

C3 = µr (1− h)(3r2
+ 6r + 3µr ),

C4 = (1− h)3(r + µr ).

(2.8)

Equation (2.7) is a third-order ordinary differential equation for the unknown function
h(x). It can be solved to obtain the steady-state profile of the interface as a function of
the various parameters. This equation is solved using the FORTRAN code developed
by Lenz [6]. The equation was discretized using finite differences, the third-order
derivative being calculated using a centered-difference formula with second-order
error.

For illustration purposes, Figure 2 shows the response of the interface between the
two fluids to a step-up or a step-down in the lower boundary. For this particular case,
1P/L and uT are set to zero, the capillary number is equal to 1 and B = 12. Both the
density and viscosity ratios are set to unity. These conditions are used for the remainder
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FIGURE 2. Sample result for (a) a step-up and (b) a step-down.

of the paper but are not restrictive since the method described in the following section
applies indiscriminately. The step in the lower boundary is introduced by using an
arctangent function, which ensures that it is continuously differentiable, according to

hb(x)= hstep

(
1
2
±

1
π

arctan
(

x

δ

))
,

where the ± is “+” for a step-up and “−” for a step-down, and δ is the horizontal
length scale for topography changes. The value of δ dictates the steepness of the step
and is set to 0.31 in the present case. The size of the step hstep is equal to 0.25.

The interface shows a number of features reminiscent of the flow of solitary thin
fluid films over steps as investigated in [2, 3]. Indeed, a depression can be observed
ahead of the step-down and a ridge ahead of the step-up. These are preceded by a series
of interface oscillations, resulting from a competition between the substrate tending to
impress its topography on the interface simply as a result of mass conservation, and
interfacial tension tending to flatten the interface [5].

3. Derivation of benchmark solutions

The question we are trying to address is: can we easily produce solutions of (2.7)
and (2.8) that could be used as a benchmark to assess the validity of interface-tracking
algorithms in nontrivial geometries? Because of the limitations inherent to the model
described here, the solutions produced will only be valid and therefore useful as
benchmark solutions in the inertialess regime and for gently sloped interfaces. In
order to address this question, we consider the inverse problem of finding the required
bottom profile which yields a prescribed interface profile. We will show that by
shifting the viewpoint from the direct to the inverse formulation, we actually transform
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the problem from solving a highly nonlinear ordinary differential equation to finding
the root of a quartic polynomial.

Assuming that the interface between the two fluids is prescribed and given by
h(x)= h p(x), (2.7) and (2.8) can be recast in the form of the quartic polynomial

A4r4
+ A3r3

+ A2r2
+ A1r + A0 = 0,

where the coefficients Ai are given by

A4 = 3Q1,

A3 = 12µr Q1,

A2 = 9µr (Q1 − Q2)+ 3uTµr (1− h p),

A1 = −
3

Ca
(1− h3

p)
d3h p

dx3 − 12µr Q2 + 6uTµr (1− h p)+ (ρr − 1)B(1− h3
p),

A0 =
3

Ca
(1− h3

p)µr
d3h p

dx3 − 3µ2
r Q2 + 3µ2

r uT (1− h p)+ (ρr − 1)B(1− h3
p)µr .

(3.1)

For a known interface profile, the coefficients of this quartic polynomial are defined
for all x . It is possible to find a closed-form expression for the roots of a quartic
polynomial using the method due to Ferrari (see [1], for example) but it is preferred
here to simply use the Maple function solve. A remarkable fact is that, of the four
possible roots, the one of interest is always the one with the smallest value. Once the
value of r is identified, the height of the lower boundary is simply retrieved according
to hb(x)= (h p(x)(r(x)+ 1)− 1)/r(x). The pair of functions (hb(x), h p(x)) is a
solution of the ordinary differential equation (2.7).

4. Illustrative examples

In order to assess the idea presented in the previous section, a range of prescribed
interface profiles was tested. Obviously, an interface profile needs to be at least three
times differentiable for the coefficients in (3.1) to be defined. The profiles considered
were defined in terms of the hyperbolic tangent function or the exponential function as
follows:

htanh
p (x) = h0 +

h′0
2

(
1+ tanh

(
x − x0

δ

))
, (4.1)

hexp
p (x) = h0 + h′0 exp

(
−

(
x − x0

δ

)2)
. (4.2)

Figure 3 illustrates the required bottom profile hb(x) which results in an interface
defined by (4.1) with h0 = 0.5, h′0 = 0.25 and δ = 0.3. The bottom profile is peculiar
with an initial slow increase followed by a plateau and a region of steeper increase.
Similarly, Figure 4 shows the bottom profile and corresponding fluid interface
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FIGURE 3. The computed bottom boundary (lower curve) required to obtain the interface profile defined
by the hyperbolic tangent function (4.1) with h0 = 0.5, x0 = 0, h′0 = 0.25 and δ = 0.3 (upper curve).
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FIGURE 4. The computed bottom boundary (lower curve) required to obtain the interface profile defined
by the exponential function (4.2) with h0 = 0.5, x0 = 0, h′0 = 0.25 and δ = 1.2 (upper curve).

prescribed by (4.2) with h0 = 0.5, x0 = 0, h′0 = 0.25 and δ = 1.2. In both cases, the
validity of the approach was confirmed by using the derived bottom profile as an input
to the FORTRAN code which solves (2.7) and (2.8), and comparing the computed
interface to the one given by (4.1) and (4.2). The profiles were indistinguishable.

Besides providing a simple way to build solutions to the two-layer flow problem,
the analysis above also gives information on the existence of solutions. Indeed, as one

https://doi.org/10.1017/S144618111000091X Published online by Cambridge University Press

https://doi.org/10.1017/S144618111000091X


414 M. Sellier and R. D. Lenz [9]

would expect, there exists a limit to how distorted the interface between two fluids
can become: interface tension restricts how rapidly the interface height can vary. For
example, as δ becomes smaller in (4.1), the interface varies between h0 and h0 + h′0
over a shorter distance, and one would expect the solution to cease to exist as δ tends
to zero, since the physical requirement (h − hb) > 0 is no longer met. This is indeed
observed. For a step-down the critical value below which a physical solution ceased to
exist lay between 0.4 and 0.45, while for a step-up it lay between 0.25 and 0.3. This
result implies an unexpected asymmetry between the step-up and the step-down, that
is, the interface is able to “take” a step-up over a shorter distance than a step-down.

5. Concluding remarks

This paper describes a simple way to generate solutions to the two-layer flow
problem. It is based on an ordinary differential equation introduced by Lenz and
Kumar [7]. The solutions are simply generated by considering the inverse problem
of fixing the interface profile and seeking the required bottom profile. In doing so,
the problem is transformed from one of having to solve a highly nonlinear differential
equation to finding the roots of a quartic polynomial. The solutions found using this
strategy are exact in the sense that they are free of discretization error. The validity
of the proposed approach is demonstrated on two examples but an infinite number
of solutions can be built, in principle. Validity is only justified within the limits of
the chosen approximation. The most obvious one is the “long-wave” approximation
which requires the amplitude of the interface variations to be much smaller than the
characteristic wave length (ε� 1). This restriction is, however, not too severe if the
benchmark solutions are used for validation purposes.
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