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Asymptotic estimates for the number of integer

solutions to decomposable form inequalities

Jeffrey Lin Thunder

Abstract

For homogeneous decomposable forms F (X) in n variables with integer coefficients, we
consider the number of integer solutions x ∈ Zn to the inequality |F (x)| � m as m → ∞.
We give asymptotic estimates which improve on those given previously by the author in
Ann. of Math. (2) 153 (2001), 767–804. Here our error terms display desirable behaviour
as a function of the height whenever the degree of the form and the number of variables
are relatively prime.

Introduction

In this paper we consider homogeneous polynomials F (X) in n > 1 variables with integer coeffi-
cients which factor completely into a product of linear terms over C. Such polynomials are called
decomposable forms. We are concerned here with the integer solutions to the Diophantine inequality

|F (x)| � m. (1)
Let V (F ) denote the n-dimensional volume of the set of all real solutions x ∈ Rn to the inequality
|F (x)| � 1, so that by homogeneity mn/dV (F ) is the measure of the set of x ∈ Rn which satisfy (1).
Denote the number of integral solutions to (1) by NF (m).

In a previous paper [Thu01] we answered several open questions regarding (1). For example,
NF (m) is finite for all m if and only if F is of finite type: V (F ) is finite, and the same is true for
F restricted to any non-trivial subspace defined over Q. Also proven in [Thu01] was the following
asymptotic estimate.

Theorem [Thu01, Theorem 3]. Let F be a decomposable form of degree d in n variables with
integer coefficients. If F is of finite type, then there are a(F ), c(F ) ∈ Q satisfying

1 � a(F ) � d

n
− 1

n(n − 1)

and
(d − n)

d
� c(F ) <

(
d

n

)
(d − n + 1)

such that

|NF (m) − mn/dV (F )| << m(n−1)/[d−a(F )](1 + log m)n−2H(F )c(F ),

where the implicit constant depends only on n and d. In particular,

|NF (m) − mn/dV (F )| << m[n(n−1)2]/[d(n−1)2+1](1 + log m)n−2H(F )(
d
n)(d−n+1).
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The quantity H(F ) appearing here is defined as follows. Write F (X) =
∏d

i=1 Li(X) where the
Li(X) ∈ C[X] are linear forms in n variables. Denote the coefficient vector of Li(X) by Li and let
‖ · ‖ denote the L2 norm. Then

H(F ) =
d∏

i=1

‖Li‖.

It is useful to note how the quantities NF (m), V (F ) and H(F ) vary with the form F . In this
regard, an important concept is the notion of equivalent forms. Two forms F,G ∈ Z[X] are said
to be equivalent if F = G ◦ T for some T ∈ GLn(Z). This is useful since the quantities NF (m)
and V (F ) are clearly unchanged when F is replaced by an equivalent form. On the other hand, the
height H(F ) is certainly not such a quantity. With this in mind, we define

M(F ) = inf
T∈GLn(Z)

{H(F ◦ T )}.

One may then replace the H(F ) occurring in the theorem above with M(F ). In a subsequent paper
[Thu03] we showed how the main term in the estimate above, mn/dV (F ), is dependent on M(F ).

Theorem [Thu03, Theorem 2]. Let F (X) ∈ Z[X] be a decomposable form of degree d in n variables
which does not vanish on Zn \ {0}. Suppose V (F ) is finite. Then

M(F )−n/d << V (F ) << M(F )−1/d(1 + (logM(F ))n−1),

where the implicit constants depend only on n and d.

Note that any form F of finite type satisfies the hypotheses of this theorem. This result points out
a weakness in the asymptotic estimate above. To wit, NF (m) is estimated by a quantity mn/dV (F )
which decreases as M(F ) increases, exactly opposite the behaviour of the error term of the estimate.

Ideally, one would like an asymptotic estimate for the number of solutions NF (m) which could be
usefully applied uniformly for all forms F of finite type, i.e. where the error term is always dominated
by the estimate mn/dV (F ). Unfortunately, such cannot be the case. For example, suppose F is a
binary form of the kind F (X,Y ) = Xd + · · · . Then NF (m) � 2[m1/d], where [ · ] is the greatest
integer function. But M(F ) cannot be bounded above (and whence V (F ) cannot be bounded
below) merely because the leading coefficient is 1. In general, simply knowing M(F ) is large does
not rule out the possibility of a great many (roughly m(n−1)/d) integer solutions to (1) lying in an
(n − 1)-dimensional subspace.

Our goal here is to improve the dependence on F in the error term. Specifically, we aim to derive
an error term which, in so much as possible, decreases as the ‘height’ of F increases. To accomplish
this, we introduce the following more geometric ‘height’, one which has no arithmetic encumbrances
and which is closely connected to the volume V (F ). Define

m(F ) = inf{H(F ◦ T )},
where the infimum is over all T ∈ GLn(R) with |det(T )| = 1. In [Thu01] the quantity a(F ) plays an
important role. Here we use a quantity a′(F ) � a(F ) which will play an analogous role. Like a(F ),
the precise definition of a′(F ) is somewhat complicated (we give the definition after Lemma 4 below).
For the present, we simply note that it satisfies the same inequalities as a(F ): 1 � a′(F ) � d/n,
and if it is smaller than d/n, then

a′(F ) � d

n
− 1

n(n − 1)
.

Further, a′(F ) < d/n if n and d are relatively prime and V (F ) is finite.
By [Thu01, Proposition], V (F ) is finite if a(F ) < d/n. It turns out that V (F ) is controlled by

the height m(F ) if a′(F ) < d/n. Further, we can estimate NF (m) more precisely when a′(F ) < d/n.
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Theorem 1. Let F (X) ∈ R[X] be a decomposable form of degree d in n variables and suppose V (F )
is finite. Then m(F ) is an attained positive minimum and V (F ) � (2/n)nm(F )−n/d. If F (X) ∈ Z[X]
and F does not vanish at any non-trivial rational point, then m(F ) � n−d(n+ 1

2
)/n. If a′(F ) < d/n

(in particular, if n and d are relatively prime), then V (F ) << m(F )−n/d, where the implicit constant
depends only on n and d.

By Theorem 1, one does not expect as many integer solutions to (1) when m(F ) is large in terms
of m. Specifically, if a′(F ) < d/n and m(F ) � m1/n, then mn/dV (F ) << m(n−1)/d. Yet it is possible
to have N solutions in a proper subspace with N >> m(n−1)/d, hence one can only expect a useful
asymptotic estimate when mn/dV (F ) is larger than m(n−1)/d; in particular, when m(F ) � m1/n

(if a′(F ) < d/n). This explains the hypotheses for our asymptotic estimate of NF (m) below.

Theorem 2. Let F (X) ∈ Z[X] be a decomposable form of finite type of degree d in n variables
and suppose m(F ) � m1/n. If a′(F ) < d/n (in particular, if n and d are relatively prime) then

1 � a′(F ) � d

n
− 1

n(n − 1)

and

|NF (m) − mn/dV (F )| <<

(
m

m(F )na′(F )/d

)(n−1)/[d−a′(F )]

(1 + log m)n−2.

The implicit constant here depends only on n and d. In particular,

|NF (m) − mn/dV (F )| <<

(
m

m(F )1−1/[d(n−1)]

)[n(n−1)2]/[d(n−1)2+1]

(1 + log m)n−2.

We note that the main term is (almost) larger than the error term in Theorem 2 when
m(F ) � m1/n (the ‘almost’ being due to the logarithmic term). We can improve our estimate
for NF (m) when m(F ) is close to or larger than m1/n by abandoning our goal of an asymptotic one
and instead striving for a simple upper bound.

Theorem 3. Let F (X) ∈ Z[X] be a decomposable form of degree d in n variables of finite type.
If a′(F ) < d/n (in particular, if n and d are relatively prime), then

NF (m) <<

(
m

m(F )

)n/d

+ m(n−1)/d,

where the implicit constant depends only on n and d.

By Theorem 3, NF (m) << m(n−1)/d if m(F ) � m1/n. When a′(F ) < d/n, this improves on
[Thu03, Theorem 4], and (up to the implicit constants) [Győ01, Theorem 2] in the case n = 2; it is
the best one can say in general.

Combining Theorems 1–3 gives the following asymptotic estimate.

Corollary. Let F (X) ∈ Z[X] be a decomposable form of degree d in n variables of finite type.
If n and d are relatively prime, then

|NF (m) − mn/dV (F )| << mn/[d+1/(n−1)2](1 + log m)n−2,

where the implicit constant depends only on n and d.

Note that we have NF (m) << mn/dV (F ) + m(n−1)/d for F (X) ∈ Z[X] of finite type, provided
that a′(F ) < d/n. We would like to remove the hypothesis on a′(F ) here. Unfortunately, the
volume V (F ) is not controlled solely by m(F ) in general; see the examples in § 5 below. However,
a simple modification of the proof of [Thu03, Theorem 1] yields the following theorem.
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Theorem 4. Let F (X) ∈ Z[X] be a decomposable form of degree d in n variables. If V (F ) is finite
and F does not vanish at any non-trivial rational point, then

V (F ) << m(F )−n/d(1 + |log m(F )|)n−1,

where the implicit constant depends only on n and d.

In view of Theorem 1, this result would only be useful in the case a′(F ) = d/n.

Theorem 5. Let F (X) ∈ Z[X] be a decomposable form of degree d in n variables of finite type.
Suppose a′(F ) = d/n and m(F ) � 1. If

m(F )−n/d(1 + log m(F ))n−1 � m−1/d,

then

NF (m) << m(n−1)/d.

The implicit constant here depends only on n and d.

Theorem 5 sharpens [Thu03, Theorem 4] and [Győ01, Theorem 2] (for the n = 2 case). In these
results, the hypothesis was M(F )1−ε � mn for some positive ε and the conclusion was that the
solutions are contained in N proper subspaces where N << ε1−n. We shall show that M(F ) <<
m(F )n (see Lemma 7); thus Theorem 5 represents a true improvement on these results. A reasonable
conjecture, in view of our results here, is that NF (m) << m(n−1)/d whenever V (F ) << m−1/d and
F is of finite type.

It is possible to determine bounds explicitly for the implicit constants in the above results.
Frankly, they would not be very ‘good’, as our proofs ultimately rely on quantitative versions of the
subspace theorem. We have attempted to keep some track of constants depending on n and d in the
following two sections and, to the extent where relatively painless, in the proofs of our theorems.
In general, very little effort has been expended trying to get good bounds for these constants. For the
remainder of this paper, all implicit constants depend only on n and d.

1. Preparatory lemmas

Throughout this section, F (X) ∈ R[X] is assumed to be a decomposable form of degree d in n
variables. Also, all vectors are assumed to be row vectors.

Lemma 1. Let a > 0 and T ∈ GLn(R). Then

H(aF ) = aH(F ), m(aF ) = am(F ), and m(F ◦ T ) = |det(T )|d/nm(F ).

Further, if V (F ) is finite, then

V (aF ) = a−n/dV (F ) and V (F ◦ T ) = |det(T )|−1V (F ).

Proof. The first two equations are clear from the definitions. As for the third, write T = DS,
where D is the diagonal matrix with entries a = |det(T )|1/n and S ∈ GLn(R) with |det(S)| = 1.
Then F ◦ D = adF and m(F ◦ T ) = m(adF ◦ S) = m(adF ) = adm(F ). For the last equation, let S
be the set of all x ∈ Rn with |F (x)| � 1, so that V (F ) is the volume of S. Then V (F ◦ T ) is the
volume of T−1(S), which is |det(T )|−1V (F ). Finally, the fourth equation can be viewed as a special
case of the last (write T as we did above), or as a simple consequence of the homogeneity of F .

Lemma 2. Suppose V (F ) is finite. Then m(F ) is an attained positive minimum and V (F ) �
(2/n)nm(F )−n/d.
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Proof. For a T ∈ GLn(R) with |detT | = 1, let P (T ) be the parallelepiped defined by

P (T ) = {a1x1 + · · · + anxn : |aj| � 1 for all 1 � j � n},
where xtr

1 , . . . ,xtr
n are the columns of T . Note that the volume of P (T ) is 2n and that

d∏
i=1

max
1�j�n

{|Li(xj)|} � H(F ◦ T ).

In particular, |F (x)| � ndH(F ◦ T ) for all x in P (T ).
Let C be the set of all T ∈ GLn(R) with |det(T )| = 1 and H(F ◦ T ) � 2m(F ). Suppose C is

unbounded (viewed as a subset of Rn2
in the usual way). Then for some 1 � j0 � n there is an infinite

sequence T1, . . . ∈ C where, letting xtr
i,1, . . . ,x

tr
i,n denote the columns of Ti, we have ‖xi+1,j0‖ �

2‖xi,j0‖ for all i � 1. But this implies the existence of an infinite sequence of parallelepipeds
P (T1), . . . , all of which are contained in the set

{x ∈ Rn |F (x)| � nd2m(F )},
and also satisfying

Vol
(

P (Ti+1)
∖⋃

l�i

P (Tl)
)

� 2−1 Vol(P (Ti+1)) = 2n−1.

This contradicts the hypothesis that V (F ) is finite, thus C is bounded.
The map T �→ H(F ◦ T ) is clearly continuous. Since C is bounded (and certainly closed), m(F )

is an attained minimum. Let m(F ) = H(F ◦ T ) for some T ∈ C. Then |F (x)| � ndm(F ) for all x
in P (T ), which implies that V (n−dm(F )−1F ) � 2n and V (F ) � (2/n)nm(F )−n/d by Lemma 1.

Lemma 3. Suppose V (F ) is finite. Write F (X) =
∏d

i=1 Li(X) where the Li(X) are real linear forms
for i � r and complex for i = r + 1, . . . , d = r + 2s, with Li+s = Li for i = r + 1, . . . , r + s. Suppose
a1, . . . , ad are positive real numbers whose product is 1, so that F (X) =

∏d
i=1 aiLi(X). Then∑

1�i1,...,in�d

|det(ai1L
tr
i1 · · · ainL

tr
in)|2 � n!

nn
dnm(F )2n/d.

Proof. Let σ be the permutation of {1, . . . , d} induced by complex conjugation, i.e.

σ(i) =




i, if i � r,
i + s, if r < i � r + s,

i − s, if r + s < i � d.

Let bi be the geometric mean of ai and aσ(i). Then the product
∏d

i=1 bi =
∏d

i=1 ai and for any
n-tuple (i1, . . . , in) we have (ai1 · · · ain)2 + (aσ(i1) · · · aσ(in))2 � 2(bi1 · · · bin)2. Since

|det(Ltr
i1 · · ·Ltr

in)|2 = |det(Ltr
σ(i1) · · ·Ltr

σ(in))|2,
we see that

2
∑

1�i1,...,in�d

|det(ai1L
tr
i1 · · · ainL

tr
in)|2 =

∑
1�i1,...,in�d

(ai1 · · · ain)2|det(Ltr
i1 · · ·Ltr

in)|2

+
∑

1�i1,...,in�d

(aσ(i1) · · · aσ(in))
2|det(Ltr

i1 · · ·Ltr
in)|2

� 2
∑

1�i1,...,in�d

|det(bi1L
tr
i1 · · · binL

tr
in)|2.
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The outcome is that we may replace ai and aσ(i) with bi, i.e. we may assume ai = aσ(i). But if this
is the case, then it suffices to prove the lemma under the assumption that ai = 1 for all i.

Let Ed ⊂ Rr ⊕C2s be the set of x = (x1, . . . , xd) where xi+s = xi for r + 1 � i � r + s. Then Ed

is d-dimensional Euclidean space via the usual hermitian inner product on Cd. If M is the d × n
matrix with rows L1, . . . ,Ld, then the columns of M are in Ed. Moreover, the rank of M must be
n since V (F ) is finite (see [Thu03]). Applying Gram–Schmidt to the matrix M , we see that there
is an upper triangular T ∈ GLn(R) such that MT is a matrix with orthonormal columns (in Ed).
Denote the rows of MT by L′

1, . . . ,L
′
d and the columns by mtr

1 , . . . ,mtr
n .

Using the inequality between the arithmetic and geometric means and also Lemma 1, we have

n

d
=

1
d

n∑
j=1

‖mj‖2 =
1
d

d∑
i=1

‖L′
i‖2

=
1
d

d∑
i=1

‖LiT‖2

�
( d∏

i=1

‖LiT‖2

)1/d

= H(F ◦ T )2/d

� m(F ◦ T )2/d

= m(F )2/d|det T |2/n.

Hence |det T |2 � (n/d)nm(F )−2n/d. On the other hand, since the mj are orthonormal,

1 = ‖m1 ∧ · · · ∧ mn‖ =
∑

1�i1<···<in�d

|det((L′
i1)

tr · · · (L′
in)tr)|2

=
∑

1�i1<···<in�d

|det(Ltr
i1 · · ·Ltr

in)|2|det T |2

�
∑

1�i1<···<in�d

|det(Ltr
i1 · · ·Ltr

in)|2
(n

d

)n
m(F )−2n/d.

This inequality suffices to prove the lemma.

Let

c1 =
(d/n)n(d

n

) .

Lemma 4. Suppose V (F ) is finite and H(F ) = m(F ). Let A < 1 and 1 � j < n and suppose there
is an S ⊂ {1, . . . , d} with cardinality |S| = [jd/n] + 1 such that

‖Li1 ∧ · · · ∧ Lij+1‖
‖Li1‖ · · · ‖Lij+1‖

� A

for all i1, . . . , ij+1 ∈ S. Then there is a factorization F (X) =
∏d

i=1 aiLi(X) as in Lemma 3 with∑
1�i1,...,in�d

|det(ai1L
tr
i1 · · · ainL

tr
in)|2 � n!

(
d

n

)
A{n([jd/n]+1)−jd}/((n−j)d)m(F )2n/d.

In particular,

A � c
(n−j)d/{n([jd/n]+1)−jd}
1 .
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Proof. Without loss of generality we may assume m(F ) = 1 and ‖Li‖ = 1 for all i = 1, . . . , d.
Let a = A{[jd/n]+1−d}/((n−j)d), which is greater than 1 since A < 1. Let b = a(−[jd/n]−1)/(d−[jd/n]−1),

so that b < 1 < a and a[jd/n]+1bd−[jd/n]−1 = 1. We note that ajbn−j = anA = A{n([jd/n]+1)−jd}/((n−j)d).
For our factorization, let ai = a if i ∈ S and ai = b otherwise. Given an n-tuple (i1, . . . , in) with

l of the indices in S, we have

|det(ai1L
tr
i1 · · · ainL

tr
in)| � albn−l � ajbn−j if l < j + 1,

and

|det(ai1L
tr
i1 · · · ainL

tr
in)| � albn−lA � anA if l � j + 1.

Lemma 4 follows from this and Lemma 3.

We can now state with more clarity exactly what the quantity a′(F ) is. Suppose m(F ) = H(F ).
For 1 � j � n − 1, let sj(F ) be the cardinality of the largest subset S ⊂ {1, . . . , d} where

‖Li1 ∧ · · · ∧ Lij+1‖
‖Li1‖ · · · ‖Lij+1‖

< c
(n−j)d/{n([jd/n]+1)−jd}
1

for all i1, . . . , ij+1 ∈ S. Note that we do not demand that the ij be distinct, so any set with just
one element will vacuously satisfy this criterion. By Lemma 4, sj(F ) � [jd/n]. Let s(F ) be the
maximum of sj(F )/j over all 1 � j � n − 1. Then 1 � s(F ) � d/n. Moreover,

s(F ) � d

n
− 1

n(n − 1)

if s(F ) < d/n.
For an arbitrary F , we define

a′(F ) := max{s(F ◦ T )},
where the maximum is over all T ∈ GLn(R) with |det(T )| = 1 and m(F ) = H(F ◦ T ). Then
1 � a′(F ) � d/n, and

a′(F ) � d

n
− 1

n(n − 1)
if a′(F ) < d/n. Moreover, a′(F ) < d/n if n � jd for all j = 1, . . . , d, i.e. if n and d are relatively
prime.

Lemma 5a. Let M,N � 1 and fix K1, . . . ,KN ∈ CM . Then for any L1, . . . ,LN+1 ∈ CM with
‖Li‖ = 1 for all i, we have

N+1∑
j=1

‖K1 ∧ · · · ∧ Kn ∧ Lj‖2 � ‖K1 ∧ · · · ∧ KN‖2 · ‖L1 ∧ · · · ∧ LN+1‖2.

Proof. This is trivial if the Li are linearly dependent, so assume otherwise. After possibly applying
a unitary transformation, we may assume that the span of L1, . . . Lj is equal to the span of the first
j canonical basis vectors e1, . . . , ej for j = 1, . . . , N + 1. Let aj = Lj · ej for j = 1, . . . , N + 1 and
write Ki =

∑M
l=1 ki,lel for i = 1, . . . , N .

By [Sch91, ch. I, Lemma 5A], we see that

‖K1 ∧ · · · ∧ KN ∧ Lj‖2 �
∑

σ

∣∣∣∣∣∣ det
1�i�N

l∈σ

(ki,l)

∣∣∣∣∣∣
2

· |aj |2
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for all j = 1, . . . , N + 1, where the sum is over all N -tuples σ = (i1, . . . , iN ) with i1 < · · · < iN and
j 
∈ σ. On the other hand

‖K1 ∧ · · · ∧ KN‖2 · ‖L1 ∧ · · · ∧ LN+1‖2 =
∑
σ

∣∣∣∣∣∣ det
1�i�N

l∈σ

(ki,l)

∣∣∣∣∣∣
2

|a1|2 · · · |aN+1|2,

where the sum is over all N -tuples σ = (i1, . . . , iN ) with i1 < · · · < iN . But for any such σ, there is
a j ∈ {1, . . . , N + 1} with j 
∈ σ. Further, since ‖Lj‖ = 1 for all j, |aj |2 � |a1|2 · · · |aN+1|2 for all j.
This proves the lemma.

Lemma 5b. Suppose V (F ) is finite and m(F ) = H(F ). Let B > 1, 1 � j < n, and fix linearly
independent Li1 , . . . ,Lij . Suppose S ⊂ {1, . . . , d} with cardinality |S| = [jd/n] + 1 such that

‖Li1 ∧ · · · ∧ Lij ∧ Ll‖
‖Li1 ∧ · · · ∧ Lij‖ · ‖Ll‖ � B

for all l ∈ S. Then √
j + 1 B � c

(n−j)d/{n([jd/n]+1)−jd}
1 .

Proof. Without loss of generality, we may assume m(F ) = 1 and ‖Li‖ = 1 for all i. Let l1, . . . ,
lj+1 ∈ S. Then by Lemma 5a and the hypotheses,

‖Ll1 ∧ · · · ∧ Llj+1
‖2 �

j+1∑
k=1

‖Li1 ∧ · · · ∧ Lij ∧ Llk‖2

‖Li1 ∧ · · · ∧ Lij‖2
� (j + 1)B2.

Lemma 5b follows from this and Lemma 4.

We now come to our fundamental inequality. This result will be used as an alternative to
[Thu01, Lemma 5]. (It can also be used in place of [Thu01, Lemma 6] in the case when a′(F ) = d/n.)

Lemma 6. Suppose V (F ) is finite and m(F ) = H(F ). Then for any x ∈ Rn, there are n linearly
independent linear factors Li1(X), . . . , Lin(X) of F (X) satisfying( ∏n

j=1 |Lij (x)|
|det(Ltr

i1
· · ·Ltr

in
)|

)a′(F )

� c2
|F (x)|

‖x‖d−na′(F )m(F )
,

where

c2 = nn(d−na′(F ))/2

(
(n!)1/2

n−1∏
j=1

c
(j−n)d/{n([jd/n]+1)−jd}
1

)d−(n−1)a′(F )

.

If V (F ) is finite and T ∈ GLn(R) satisfies |det T | = 1 and m(F ) = H(F ◦ T ), then for any
x ∈ Rn, there are n linearly independent linear factors Li1(X), . . . , Lin(X) of F (X) satisfying( ∏n

j=1 |Lij (x)|
|det(Ltr

i1
· · ·Ltr

in
)|

)a′(F )

� c2
|F (x)|

‖T−1(x)‖d−na′(F )m(F )
.

Proof. We first note how the second part follows directly from the first. Given such a T and x,
F ◦T (T−1(x)) = F (x), and similarly for each linear factor Li(x). Apply the first part of the lemma
to F ◦ T and T−1(x) to obtain the second part.

As remarked in the proof of Lemma 3, there are n linearly independent factors of F if V (F ) is
finite. So if F (x) = 0, the lemma is trivially true. Suppose now that F (x) 
= 0. By homogeneity and
Lemma 1, we may assume without loss of generality that H(F ) = 1, and further that ‖Li‖ = 1 for
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all i = 1, . . . , d. For notational convenience, set

c1,j =
c
(n−j)d/{n([jd/n]+1)−jd}
1 √

j + 1

for j = 1, . . . , n − 1.
Let |Li1(x)| = min1�i�d{|Li(x)|} and let S1 ⊂ {1, . . . , d} be the subset of indices l such that

‖Li1 ∧ Ll‖ < c1,1.

Continue recursively in the following manner: for j > 1 let |Lij (x)| be the minimum of |Li(x)| over
all i not in Sj−1 and let Sj ⊂ {1, . . . , d} be the subset of indices l with

‖Li1 ∧ · · · ∧ Lij ∧ Ll‖
‖Li1 ∧ · · · ∧ Lij‖

< c1,j .

By definition, |Sj| � ja′(F ) � [jd/n] < d for each j = 1, . . . , n − 1, allowing us to continue up to a
choice for Lin(x). Note that |Sn| = d.

By construction, we have |Li1(x)| � · · · � |Lin(x)| and

|F (x)| =
d∏

i=1

|Li(x)| �
n∏

j=1

|Lij (x)|aj ,

where a1 = |S1| and aj = |Sj |−|Sj−1| for j > 1. Note in particular that a1 + · · ·+aj = |Sj | � ja′(F )
for all j < n. Letting s = (n − 1)a′(F ) − |Sn−1|, we have

|F (x)| � |Li1(x)|a1 · · · |Lin−2(x)|an−2 · |Lin−1(x)|an−1+s · |Lin(x)|an−s.

Since a1 + · · ·+an−2+an−1 +s = (n−1)a′(F ) and an−s = d−(n−1)a′(F ), then [Thu01, Lemma 1]
implies that

|F (x)| �
n∏

j=1

|Lij (x)|a′(F ) · |Lin(x)|d−na′(F ).

By [Thu01, Lemma 4],

|Lin(x)| � n−n/2‖x‖ |det(Ltr
i1 · · ·Ltr

in)|,
so that ( ∏n

j=1 |Lij (x)|
|det(Ltr

i1
· · ·Ltr

in
)|

)a′(F )

� nn(d−na′(F ))/2|F (x)|
‖x‖d−na′(F )|det(Ltr

i1
· · ·Ltr

in
)|d−(n−1)a′(F )

.

Finally, we have
‖Li1 ∧ · · · ∧ Lin‖ � c1,n−1‖Li1 ∧ · · · ∧ Lin−1‖

� c1,n−1c1,n−2‖L11 ∧ · · · ∧ Lin−2‖
...
� c1,n−1 · · · c1,1.

The lemma follows.

Lemma 7. Suppose F (X) ∈ Z[X] and that F does not vanish on Zn \ {0}. Let H(F ◦ T ) = m(F )
with T ∈ GLn(R), |det(T )| = 1. Then there is an S ∈ GLn(Z) with H(F ◦ S) � nd(n+1/2)m(F )n

such that

m(F )−1/dn−3/2(n!)−2‖y‖ � ‖T−1S(y)‖ � nn+1/2m(F )(n−1)/d‖y‖
for all y ∈ Rn. For such an F , M(F ) � nd(n+1/2)m(F )n, and in particular m(F ) � n−(n+1/2)d/n.
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Proof. Let xtr
1 , . . . ,xtr

n denote the columns of T and let P (T ) be the parallelepiped defined in the
proof of Lemma 2 above. Let λ1 � · · · � λn be the successive minima of P (T ) with respect to
the integer lattice Zn. Since the volume of P (T ) is 2n, Minkowski’s theorem says that

(n!)−1 � λ1 · · · λn � 1. (2)

Choose a basis z1, . . . , zn for Zn satisfying zi ∈ iλiP for 1 � i � n and let S be the matrix with
columns ztr

1 , . . . , ztr
n . Write

T−1S =




a1,1 . . . a1,n
...

. . .
...

an,1 . . . an,n


 ,

so that
∑n

i=1 ai,jxtr
i = ztr

j for all 1 � j � n. In particular, since zj ∈ jλjP , we have

|ai,j | � jλj , 1 � i, j � n. (3)

Similarly, writing S−1T = (bi,j) and using Cramer’s rule, we see that

|bi,j| � (n − 1)!
∏
l �=i

lλl < n!
∏
l �=i

lλl, 1 � i, j � n. (3′)

As before, write F (X) =
∏d

i=1 Li(X). By (3),

‖LiS‖2 = ‖LiTT−1S‖2 � n(nλn)2‖LiT‖2,

which implies that
H(F ◦ S) � n3d/2λd

nm(F ). (4)
Also by (3), for any y ∈ Rn,

‖T−1S(y)‖2 � n(nλn)2‖y‖2. (5)
Using (3′) in a similar manner yields

‖T−1S(y)‖2n(n!)2 (2λ2 · · ·nλn)2 � ‖y‖2. (5′)

As seen in the proof of Lemma 2, |F (y)| � ndm(F ) for all y ∈ P , and by homogeneity |F (z1)| �
(nλ1)dm(F ). But since F (X) ∈ Z[X] and since F does not vanish on Zn \ {0}, we conclude that
|F (z1)| � 1. Hence λ1 � n−1m(F )−1/d. By (2), this implies that λ2 · · ·λn � nm(F )1/d and λn �
nn−1m(F )(n−1)/d. Lemma 7 follows from these estimates, (4), (5), (5′) and [Thu01, Lemma 2] (where
it is shown that M(F ) � 1 if F (X) ∈ Z[X]).

We will also need the following result from [Thu01].

Lemma 8 [Thu01, Lemma 7]. Let K1(X), . . . ,Kn(X) ∈ C[X] be n linearly independent linear forms
in n variables. Denote the corresponding coefficient vectors by K1, . . . ,Kn. Let A,B,C > 0 with
C > B and let D > 1. Consider the set of x ∈ Rn satisfying∏n

i=1 |Ki(x)|
|det(Ktr

1 · · ·Ktr
n )| � A

and also B � ‖x‖ � C. If BCn−1 � Dn−1n!nn/2A, then this set lies in the union of fewer than

n3[logD(BCn−1/n!nn/2A)]n−2

convex sets of the form
{y ∈ Rn |K ′

i(y)| � ai for i = 1, . . . , n},
|det((K′

1)
tr · · · (K′

n)tr)| = 1,
‖K′

i‖ = 1, i = 1, . . . , n,

(6)
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with
n∏

i=1

ai < Dnn!nn/2 CA

B
.

If BCn−1 < Dn−1n!nn/2A, then this set lies in the union of no more than n! convex sets of this form.

2. Intermediate results

Proposition 1. Let F (X) ∈ R[X] be a decomposable form of degree d in n variables with V (F )
finite. Suppose that H(F ) = m(F ). Let 1 � B < C and D > 1 and let Λ be a lattice of rank n.
Then the x ∈ Rn with (

m

m(F )

)1/d

B � ‖x‖ �
(

m

m(F )

)1/d

C

satisfying (1) lie in no more than(
d

n

)
max{n!, n3[logD(B{d−(n−1)a′(F )}/a′(F )Cn−1)]n−2}

convex sets of the form (6) with

n∏
i=1

ai < c3n
n/2n!

(
m

m(F )

)n/d

Dn C

B{d−(n−1)a′(F )}/a′(F )
,

where c3 = max{1, c1/a′(F )
2 }. Further, such a set has volume no greater than

c32nnn/2(n!)2
(

m

m(F )

)n/d

Dn C

B{d−(n−1)a′(F )}/a′(F )

and either all lattice points in such a set lie in a sublattice of smaller rank, or the convex set contains
no more than

c33n2n(n−1)/2nn/2(n!)2

det Λ

(
m

m(F )

)n/d

Dn C

B{d−(n−1)a′(F )}/a′(F )

lattice points.

Proof. First assume m = m(F ) = 1. By Lemma 6, if |F (x)| � 1 and ‖x‖ � 1, then there are
n linearly independent linear factors Li1(X), . . . , Lin(X) of F (X) such that∏n

j=1 |Lij (x)|
|det(Ltr

i1
· · ·Ltr

in
)| � c3‖x‖{−d+na′(F )}/a′(F ).

In particular, if ‖x‖ � B, then∏n
j=1 |Lij (x)|

|det(Ltr
i1
· · ·Ltr

in
)| � c3B

{−d+na′(F )}/a′(F ). (7)

We now invoke Lemma 8, using A = c3B
{−d+na′(F )}/a′(F ). Accordingly, the x ∈ Rn with B �

‖x‖ � C and satisfying (7) lie in the union of no more than

max{n!, n3[logD(BCn−1/n!nn/2A)]n−2}
= max{n!, n3[logD(B{d−(n−1)a′(F )}/a′(F )Cn−1/n!nn/2c3)]n−2}
� max{n!, n3[logD(B{d−(n−1)a′(F )}/a′(F )Cn−1)]n−2}
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convex sets of the form (6) with
n∏

i=1

ai < n!nn/2Dn CA

B
= c3n!nn/2Dn C

B{d−(n−1)a′(F )}/a′(F )
.

By [Thu01, Lemma 9], the volume of such a convex set is no greater than 2nn!
∏n

i=1 ai and the
number of lattice points in such a set is no more than [3n2n(n−1)/2n!/det(Λ)]

∏n
i=1 ai if there are n

linearly independent lattice points in the set.
Since there are at most

(
d
n

)
possible n-tuples Li1, . . . , Lin to consider above, this proves

Proposition 1 when m = m(F ) = 1. For the general case, let G = m(F )−1F . Then m(G) = 1
by Lemma 1 and |F (x)| � m if and only if |G(x)| � m/m(F ). But this is true if and only if
|G(y)| � 1, where x = (m/m(F ))1/dy. In this way, we see that the general case follows from the
case m = m(F ) = 1 via a dilation by (m/m(F ))1/d.

Proposition 2. Let F (X) ∈ R[X] be a decomposable form of degree d in n variables with V (F )
finite. Suppose a′(F ) < d/n and H(F ) = m(F ). Let B0 � 1 and D > 1, and let Λ be a lattice of
rank n. Then the volume of all x satisfying (1) and with ‖x‖ � B0(m/m(F ))1/d is smaller than

c4

(
m

m(F )

)n/d (1 + logD B0)n−2

B
{d−na′(F )}/a′(F )
0

Dn+1
∞∑
l=0

(l + 1)n−2D{−dl+nla′(F )}/a′(F ),

where c4 =
(

d
n

)
c32nnn/2(n!)3n3dn−2. For any l1 � 0, the lattice points z ∈ Λ with

B0D
l1+1(m/m(F ))1/d � ‖z‖ � B0(m/m(F ))1/d

and satisfying (1) lie in the union of a set of cardinality less than

c5

(
m

m(F )

)n/d (1 + logD B0)n−2

B
{d−na′(F )}/a′(F )
0 detΛ

Dn+1
l1∑

l=0

(l + 1)n−2D{−dl+nla′(F )}/a′(F ),

where c5 =
(d
n

)
c33n2n(n−1)nn/2(n!)3n3dn−2, and fewer than(

d

n

)
n!n3dn−2(1 + logD B0)n−2(l1 + 1)n−1

sublattices of smaller rank.

Proof. For a given index l � 0 let Bl = DlB0 and Cl = DBl. According to Proposition 1, the
x ∈ Rn with Bl(m/m(F ))1/d � ‖x‖ � Cl(m/m(F ))1/d and satisfying (1) lie in no more than(d
n

)
max{n!, n3[logD(B{d−(n−1)a′(F )}/a′(F )

l Cn−1
l )]n−2} convex sets of the form (6) with volume no

greater than

c32nnn/2(n!)2
(

m

m(F )

)n/d

Dn Cl

B
{d−(n−1)a′(F )}/a′(F )
l

= c32nnn/2(n!)2
(

m

m(F )

)n/d

Dn+1B
{−d+na′(F )}/a′(F )
l

= c32nnn/2(n!)2
(

m

m(F )

)n/d

B
{−d+na′(F )}/a′(F )
0 Dn+1D{−dl+nla′(F )}/a′(F ).

A quick estimate shows that

logD(B{d−(n−1)a′(F )}/a′(F )
l Cn−1

l ) = logD[(B0D
l)d/a′(F )Dn−1]

� logD[(B0D
l)dDn−1]

< d(l + 1)(1 + logD B0).
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Thus, the volume of all solutions x to (1) with B0(m/m(F ))1/d � ‖x‖ is smaller than(
d

n

)
c32nnn/2(n!)2n3dn−2

(
m

m(F )

)n/d (1 + logD B0)n−2

B
{d−na′(F )}/a′(F )
0

Dn+1
∞∑
l=0

(l + 1)n−2D{−dl−nla′(F )}/a′(F ).

For the statement about the lattice points, we have fewer than(
d

n

)
n!n3dn−2(1 + logD B0)n−2

l1∑
l=0

(l + 1)n−2 �
(

d

n

)
n!n3dn−2(1 + logD B0)n−2(l1 + 1)n−1

convex sets of the form (6), and for those containing n linearly independent lattice points, together
they contain fewer than

c5

(
m

m(F )

)n/d (1 + logD B0)n−2

B
{d−na′(F )}/a′(F )
0 detΛ

Dn+1
l1∑

l=0

(l + 1)n−2D{−dl+nla′(F )}/a′(F )

lattice points by Proposition 1.

Proposition 3. Let F (X) ∈ Z[X] be a decomposable form of finite type in n variables and
degree d. Suppose a′(F ) < d/n. Then for any D � e, the integral solutions to (1) lie in the
union of a set of cardinality no greater than c6D

n+1(m/m(F ))n/d and c7 proper subspaces, where
c6 = 3n2n(n−1)/2n! + c5

∑∞
l=0(l + 1)n−2e−ln/d and c7 << (1 + logD m + logD m(F ))n−1.

Proof. Let T ∈ GLn(R) and S ∈ GLn(Z) be as in the statement of Lemma 7, and write T = S−1T ′.
Consider the equivalent form G = F ◦ S. Then NG(m) = NF (m), V (G) = V (F ) and m(G) =
m(F ) = H(G ◦ T ′). By Lemma 7, H(G) � nd(n+1/2)m(G)n and, for every x ∈ Rn,

m(G)−1/dn−3/2(n!)−2‖x‖ � ‖(T ′)−1(x)‖ � nn+1/2m(G)(n−1)/d‖x‖.
In other words, we may assume without loss of generality that

c8m(F )−1/d‖x‖ � ‖T−1(x)‖ � c9m(F )(n−1)/d‖x‖,
m(F ) = H(F ◦ T ), (8)

H(F ) � cd
9m(F )n,

where c8 = n−3/2(n!)−2 and c9 = nn+1/2.

We will apply Proposition 2 to the lattice Λ = T−1(Zn) of determinant 1, using B0 = 1.
Let l1 be minimal such that

[Dl1+1(m/m(F ))1/d]1/2 � max{(c9m(F )(n−1)/d)1/2c−1
8 m(F )1/d,

(c9m(F )(n−1)/d)1/2c
(d/2)
9 m1/(2d)m(F )n/2,

(c2m/m(F ))1/(d−na′(F ))}.
Clearly l1 << 1 + logD m + logD m(F ), where the implicit constant depends only on n and d.
Moreover, if ‖T−1(z)‖ � Dl1+1(m/m(F ))1/d, then by (8) we have

‖z‖1/2 � max{c−1
8 m(F )1/d, c

d/2
9 m1/(2d)m(F )n/2},

and using (8) once more,

m1/dH(F ) � ‖z‖ � ‖T−1(z)‖2. (9)

By Lemma 1, (8), (9) and our choice for l1, if z ∈ Zn is a solution to (1) with ‖T−1(z)‖ �
Dl1+1(m/m(F ))1/d, then there are n linearly independent factors Li1(X), . . . , Lin(X) of F (X) such
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that ( ∏n
j=1 |Lij (z)|

|det(Ltr
i1
· · ·Ltr

in
)|

)a′(F )

� c2m

‖T−1(z)‖d−na′(F )m(F )

� 1
‖T−1(z)‖(d−na′(F ))/2

� 1
‖z‖(d−na′(F ))/4

.

In particular, ∏n
j=1 |Lij (z)|

|det(Ltr
i1
· · ·Ltr

in
)| < ‖z‖{−d+na′(F )}/4a′(F ) < ‖z‖−1/4d. (10)

Here we used {d − na′(F )}/a′(F ) > 1/d.
Take such a z and write it as a multiple of a primitive point z′; say z = gz′, for some positive

integer g. Since |F (z′)| � 1, we see that g � m1/d, so that ‖z′‖ � H(F ) by (9). Moreover, we may
replace z in (10) with z′. By [Eve96, Corollary] and [Thu01, Lemma 2], such primitive z′ lie in c′7
proper subspaces, where c′7 depends only on n and d.

We thus see that all lattice points T−1(z) with ‖T−1(z)‖ � Dl1+1(m/m(F ))1/d lie in c′7 proper
subspaces. By Proposition 2, those with (m/m(F ))1/d � ‖T−1(z)‖ � Dl1+1(m/m(F ))1/d lie in the
union of a set of cardinality no greater than Dn+1(m/m(F ))n/dc5

∑∞
l=0(l + 1)n−2eln/d and no more

than
(

d
n

)
n!n3dn−2(l1 + 1)n−1 proper subspaces. (Here we used {d− na′(F )/a′(F )} > n/d again and

D � e.)
It remains to deal with those lattice points with ‖T−1(z)‖ � (m/m(F ))1/d. It is simpler instead to

estimate the number of lattice points with supnorm no greater than (m/m(F ))1/d. Such lattice points
will be in a convex set of the form (6) with

∏n
i=1 ai = (m/m(F ))n/d. By [Thu01, Lemma 9], either all

such lattice points lie in a proper subspace, or their number is fewer than 3n2n(n−1)n!(m/m(F ))n/d.
The proposition follows.

Suppose W ⊆ Rn is a subspace defined over Q. Let TW ∈ GLn(Z) be such that T−1
W (W ) is the

subspace spanned by the first dimW canonical basis vectors of Rn. We will denote by F |W the
decomposable form of degree d in dim W variables obtained by restricting F ◦ TW to the subspace
spanned by the first dimW canonical basis vectors of Rn. Note that the solutions x to the inequality
|F |W (x)| � m are in one-to-one correspondence to the solutions to (1) lying in W . Further, the
same holds when we consider integral solutions.

Proposition 4. Suppose F (X) ∈ Z[X] is a decomposable form of degree d in n variables of
finite type. Let W be a subspace of Rn defined over Q of dimension n − 1. There are positive
constants c10, c11, c12 and c13, depending only on n and d, such that NF |W (m) � c10m

(n−1)/d, and
if M(F |W ) � mc11 , then

c12m
(n−1)/dV (F |W ) � NF |W (m) � c13m

(n−1)/dV (F |W ).

Proof. This follows directly from [Thu01, Theorem 3], Lemma 7 and [Thu03, Theorem 2] applied
to the form F |W when n > 2, i.e. when n− 1 � 2. In the case n = 2, the form F |W is a form in one
variable and the result is trivially valid.

Corollary. Suppose F (X) ∈ Z[X] is a decomposable form of degree d in n variables of finite type
and a′(F ) < d/n. If m(F ) � m2/n, then NF (m) << m(n−1)/d.

Proof. Set D = m(F )n/{2d(n+1)} in Proposition 3. The integral solutions to (1) then lie in a set of
cardinality no greater than

c6D
n+1(m/m(F ))n/d = c6(m/m(F )1/2)n/d � c6m

(n−1)/d
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and in
c7 << (1 + logD m + logD m(F ))n−1 << 1

proper subspaces. The corollary follows from Proposition 4.

Proposition 5. Suppose F (X) ∈ Z[X] is a decomposable form of degree d in n variables of finite
type. Let B,m � 1. Suppose W1, . . . ,WS are distinct subspaces of dimension n − 1 defined over Q
satisfying M(F |Wi) � B for all i and( m

Bn−1

)1/d
� c14(S − 1),

where

c14 =
2c10

c12

(
n − 1

2

)n−1

.

Then the number of integer solutions x ∈ ⋃S
i=1 Wi to (1) is at least 1

2

∑S
i=1 NF |Wi

(m). In particular,
we have

2NF (m) �
S∑

i=1

NF |Wi
(m).

Proof. A simple induction argument on S shows that the number of integer solutions x ∈ ⋃S
i=1 Wi

to (1) is at least
S∑

i=1

NF |Wi
(m) −

S−1∑
i=1

( S∑
j=i+1

NF |Wi∩Wj
(m)

)
.

By Proposition 4 (since dim(Wi ∩ Wj) = n − 2),
S∑

j=i+1

NF |Wi∩Wj
(m) � (S − 1)c10m

(n−2)/d

for all i, so that the number of integer solutions we are considering is at least
S∑

i=1

(NF |Wi
(m) − c10(S − 1)m(n−2)/d).

By Proposition 4 and Lemma 2 (applied to F |Wi),

NF |Wi
(m) � c12m

(n−1)/dV (F |Wi)

� c12m
(n−1)/d

(
2

n − 1

)n−1

m(F |Wi)
−(n−1)/d

� c12m
(n−1)/d

(
2

n − 1

)n−1

M(F |Wi)
−(n−1)/d

� c12m
(n−1)/d

(
2

n − 1

)n−1

B−(n−1)/d

� c12m
(n−2)/d

(
2

n − 1

)n−1 ( m

Bn−1

)1/d

� 2c10(S − 1)m(n−2)/d

for all i. This together with the above estimate completes the proof.

Proposition 6. Suppose F (X) ∈ Z[X] is a decomposable form of degree d in n variables of
finite type. Let S be a set of subspaces of dimension n − 1 defined over Q of cardinality S.
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Suppose m1/2d � M(F )1/4nd � c14(S − 1). Then there is a positive constant c15, depending only on
n and d, such that∑

W∈S
NF |W (m) << m(n−1)/d + S(m(n−1)/dM(F )−c15 + m(n−2)/d(1 + log m)n−1).

Proof. Set B = M(F )c
′
11 , where c′11 is the minimum of c11/2n and 1/4n(n−1). Write S as the union

of three disjoint subsets, S1 ∪S2 ∪S3, where S1 consists of the subspaces W with M(F |W ) � B, S2

consists of the subspaces W with B < M(F |W ) � m2n, and S3 consists of the remaining subspaces.
For the moment, set m = M(F )1/2n. Then since B � M(F )1/4n(n−1), (m/Bn−1)1/d �

M(F )1/4nd � c14(S − 1). But B � M(F )c11/2n � mc11 also, so by Propositions 4 and 5,

2NF (m) �
∑

W∈S1

NF |W (m) � c12m
(n−1)/d

∑
W∈S1

V (F |W ).

But by [Thu03, Theorem 4], the integer solutions to (1) lie in the union of c16 proper subspaces,
where c16 << 1 if m � M(F )1/2n. By Proposition 4, there are no more than c10m

(n−1)/d solutions
in a proper subspace, so that NF (m) << m(n−1)/d. Thus,∑

W∈S1

V (F |W ) << 1.

Now let m be as in the statement of Proposition 6. Since B � M(F )c11/2n � mc11 , Proposition 4
and the above inequality give∑

W∈S1

NF |W (m) � c13m
(n−1)/d

∑
W∈S1

V (F |W ) << m(n−1)/d. (11)

By [Thu03, Theorem 3], for any W ∈ S2 we have

NF |W (m) << m(n−1)/dM(F |W )−1/d{1 + (logM(F |W ))n−1}
+ m(n−2)/d{1 + (log m)n−1 + (logM(F |W ))n−1}

<< m(n−1)/dB−1/2d + m(n−2)/d(1 + log m)n−1.

Thus, ∑
W∈S2

NF |W (m) << S(m(n−1)/dB−1/2d + m(n−2)/d(1 + log m)n−1). (12)

Finally, NF |W (m) << m(n−2)/d for all W ∈ S3 by [Thu03, Theorem 4] and Proposition 4. Thus∑
W∈S3

NF |W (m) << Sm(n−2)/d. (13)

Proposition 6 follows from (11)–(13), setting c15 = c′11/2d.

3. Proofs of Theorems 1, 2 and 3

Proof of Theorem 1. The lower bounds for V (F ) and m(F ) in Theorem 1 are contained in Lemmas 2
and 7.

Suppose a′(F ) < d/n. By Lemma 1, we may assume without loss of generality that H(F ) =
m(F ) = 1. Set D = e and m = B0 = 1 in Proposition 2. Then we see that the volume of all solutions
x ∈ Rn to (1) with ‖x‖ � 1 is smaller than

c4e
n+1

∞∑
l=0

(l + 1)n−2e{−ld+lna′(F )}/a′(F ) << 1.

286

https://doi.org/10.1112/S0010437X04001265 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04001265


Asymptotic estimates

Of course, the set of all x ∈ Rn with ‖x‖ � 1 is no more than the volume of the unit ball in Rn.
This shows that V (F ) << m−n/d when a′(F ) < d/n, and completes the proof of Theorem 1.

Proof of Theorem 2. As in the proof of Proposition 3, we will assume (8). Fix a B0 � 1. Let N0

denote the cardinality of the set of integral solutions to (1) with supnorm no greater than c−1
8 m1/dB0

and let V0 denote the volume of all real solutions to (1) with supnorm no greater than c−1
8 m1/dB0.

According to [Thu01, Lemma 14],

|N0 − V0| << 1 + (m1/dB0)n−1. (14)

By (8), if x ∈ Rn is a solution to (1) with (sup)norm at least c−1
8 m1/dB0, then T−1(x) is a

solution to |F ◦ T (X)| � m and ‖T−1(x)‖ � B0(m/m(F ))1/d. Setting D = e in Proposition 2, we
see that the total volume of all such T−1(x) is smaller than

c4

(
m

m(F )

)n/d (1 + log B0)n−2

B
{d−na′(F )}a′(F )
0

en+1
∞∑
l=0

(l + 1)n−2e{−ld+lna′(F )}/a′(F )

<<

(
m

m(F )

)n/d (1 + log B0)n−2

B
{d−na′(F )}/a′(F )
0

.

In other words,

mn/dV (F ) − V0 <<

(
m

m(F )

)n/d (1 + log B0)n−2

B
{d−na′(F )}/a′(F )
0

. (15)

Similar to the proof of Proposition 3, let l1 be minimal such that

(el1+1(m/m(F ))1/d)1/2 � max{(c9m(F )(n−1)/d)1/2c−1
8 m(F )1/d,

(c9m(F )(n−1)/d)1/2c
(d/2)
9 m1/(2d)m(F )n/2,

(c2m/m(F ))1/(d−na′(F ))}.
Then l1 << 1+log m+log m(F ) << 1+log m (since m(F ) � m1/n). As in the proof of Proposition 3,
if

‖T−1(z)‖ � B0e
l1+1(m/m(F ))1/d � el1+1(m/m(F ))1/d,

then we have (9) again. Arguing exactly as in the proof of Proposition 3, the integer solutions
z ∈ Zn to (1) with ‖T−1(z)‖ � B0e

l1+1(m/m(F ))1/d lie in the union of c′7 proper subspaces. By
Proposition 2, then, the set of integer solutions to (1) with (sup)norm greater than c−1

8 m1/dB0 lie
in the union of a set of cardinality N satisfying

N < c5

(
m

m(F )

)n/d (1 + log B0)n−2

B
{d−na′(F )}/a′(F )
0

en+1
l1∑

l=0

(l + 1)n−2e{−ld+lna′(F )}/a′(F )

<<

(
m

m(F )

)n/d (1 + log B0)n−2

B
{d−na′(F )}/a′(F )
0

(16)

and S proper subspaces, where S << (1 + log B0)n−2(1 + log m)n−1.

We now choose B0. Set

(B0m
1/d)n−1 =

(
m

m(F )

)n/d

B
{−d+na′(F )}/a′(F )
0 .
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Then

B
{d−a′(F )}/a′(F )
0 =

(
m

m(F )n

)1/d

B0 =
(

m

m(F )n

)a′(F )/{d(d−a′(F ))}

B0m
1/d =

m1/{d−a′(F )}

m(F )na′(F )/{d(d−a′(F ))}

(B0m
1/d)n−1 =

m(n−1)/{d−a′(F )}

m(F )n(n−1)a′(F )/{d(d−a′(F ))} .

(17)

Note that, by the second equation in (15) and since m(F ) � m1/n, we indeed have B0 � 1.

Consider the S subspaces above and let S denote this collection of proper subspaces. Without
loss of generality, we may assume dimW = n − 1 for all W ∈ S.

Suppose first that M(F ) � m1/4n. If m1/2d � M(F )1/4nd � c14(S − 1), then by Proposition 6∑
W∈S

NF |W (m) << m(n−1)/d + S(m(n−1)/dM(F )−c15 + m(n−2)/d(1 + log m)n−1)

<< m(n−1)/d,

since S << (1 + log m)2n−3. If m1/2d < M(F )1/4nd, then by Lemma 7

m < M(F )1/2n << m(F )1/2 � m1/2n,

so m << 1. Also, if M(F )1/4nd < c14(S − 1), then m1/d << (1 + log m)2n−3 and m << 1 again.
Moreover, if m << 1, then S << 1 and by Proposition 4∑

W∈S
NF |W (m) � c10Sm(n−1)/d << m(n−1)/d.

Now suppose M(F ) < m1/4n. Then m(F ) < m1/4n, too. In this case(
m

m(F )na′(F )/d

)(n−1)/{d−a′(F )}
> m(n−1)/dm3a′(F )(n−1)/{4d(d−a′(F ))} >> m(n−1)/d(1 + log m)2n−3.

Again by Proposition 4,∑
W∈S

NF |W (m) � c10Sm(n−1)/d << m(n−1)/d(1 + log m)2n−3.

Thus, in all cases

∑
W∈S

NF |W (m) <<

(
m

m(F )na′(F )/d

)(n−1)/{d−a′(F )}
(1 + log m)n−2. (18)

Theorem 2 follows from (14)–(18).

Proof of Theorem 3. By the corollary to Propositions 3 and 4, we only need to deal with the case
where m(F ) � m2/n. Set D = e in Proposition 3. Since log m(F ) � (2/n) log m, Proposition 3 shows
that the integral solutions to (1) lie in the union of a set of cardinality N and S proper subspaces,
where N << (m/m(F ))n/d and S << (1 + log m)n−1. Without loss of generality we may assume
these S proper subspaces are of dimension n − 1. Denote the number of solutions in these proper
subspaces by N ′.
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If M(F ) � m1/4n, then we argue exactly as in the proof of Theorem 2 above and conclude that
N ′ << m(n−1)/d. If M(F ) < m1/4n, then by Proposition 4, N ′ << m(n−1)/d(1+log m)n−1. But now

m(n−1)/d(1 + log m)n−1 <<
mn/d

m1/4d
�
(

m

M(F )

)n/d

�
(

m

m(F )

)n/d

.

4. Proofs of Theorems 4 and 5

We need some notation from [Thu03]. Let F (X) =
∏d

i=1 Li(X) be a factorization of F as in the
statement of Lemma 3. Consider the dn-dimensional vector with components det(Ltr

i1
· · ·Ltr

in). The
quantity Q(F ) is defined to be the infimum over all such factorizations of the L2 norms of these
vectors. Let NS(F ) denote the normalized semi-discriminant of F :

NS(F ) =
∏′

(i1,...,in)

|det(Ltr
i1
· · ·Ltr

in)|
‖Li1‖ · · · ‖Lin‖

.

Here the restricted product is over those (i1, . . . , in) where Li1, . . . ,Lin are linearly independent.

Proof of Theorem 4. Lemma 3 shows that

Q(F )2 � (d/n)nn!m(F )2n/d. (19)

If F (X) ∈ Z[X], then |NS(F )|−1 � H(F )(
d
n) by [Thu01, Lemma 3]. If we assume H(F ) = M(F ) and

further that F does not vanish at any non-trivial rational point, then this together with Lemma 7
shows that

|logNS(F )| << |log(m(F ))|. (20)

By [Thu03, Theorem 1],

V (F ) << Q(F )−1(1 + |logNS(F )|)n−1.

Theorem 4 follows from this, (19) and (20).

To prove Theorem 5, we note that if a′(F ) = d/n in the proof of Proposition 1, then (7) becomes∏n
j=1 |Lij (x)|

|det(Ltr
i1
· · ·Ltr

in
)| � c3. (7′)

Moreover, the hypothesis H(F ) = m(F ) used to obtain (7) is not necessary here. Thus, the
hypothesis H(F ) = m(F ) in Proposition 1 is unnecessary when a′(F ) = d/n.

Proof of Theorem 5. By [Thu03, Lemma 4], any solution x to (1) satisfies an inequality of the form

∏n
j=1 |Lij (x)|

|det(Ltr
i1
· · ·Ltr

in
)| �

(
c17m

‖x‖d−na(F )H(F )NS(F )d−(n−1)a(F )

)1/a(F )

, (21)

where c17 is a constant which depends only on n and d and a(F ) is the same as in [Thu01, Theorem 3]
above.

We first handle the case where M(F ) � m2.

Choose l1 minimal such that

(el1+1(m/m(F ))1/d)(d−na(F ))/2 � max
{

(m1/dH(F ))(d−na(F ))/2,
c17m

H(F )NS(F )d−(n−1)a(F )

}
.

289

https://doi.org/10.1112/S0010437X04001265 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04001265


J. L. Thunder

By (8) and (20), we see that l1 << 1 + log m(F ) if m(F )−n/d(1 + log m(F ))n−1 � m−1/d. For any
solution x ∈ Rn to (1) which satisfies ‖x‖ > el1+1(m/m(F ))1/d, we have∏n

j=1 |Lij (x)|
|det(Ltr

i1
· · ·Ltr

in
)| < ‖x‖−(d−na(F ))/2a(F )

and also ‖x‖ � m1/dH(F ). As in the proof of Proposition 3, such x ∈ Zn lie in the union of c′7
proper subspaces.

For an index l � 0, set D = e, B = el and C = eB in Proposition 1. Then(
d

n

)
max{n!, n3[logD(BCn−1)]n−2} <

(
d

n

)
nn+1(1 + l)n−2.

All integral solutions x to (1) with (m/m(F ))1/del � ‖x‖ � (m/m(F ))1/del+1 thus lie in the union
of a set of cardinality Nl and Sl proper subspaces, where Nl << (m/m(F ))n/d(1 + l)n−2 and
Sl << (1 + l)n−2.

Let N−1 denote the number of solutions x ∈ Zn to (1) with ‖x‖ � (m/m(F ))1/d. Trivially N−1 is
no greater than the total number of all x ∈ Zn with ‖x‖ � (m/m(F ))1/d, so N−1 << (m/m(F ))n/d.
Since m(F ) � 1 we have m(F )−n/d � m−n/d(1 + log m(F ))n−1 � m−1/d, so that N−1 << m(n−1)/d.

We also have
l1∑

l=0

Nl <<

(
m

m(F )

)n/d l1∑
l=0

(1 + l)n−2 �
(

m

m(F )

)n/d

(1 + l1)n−1

<<

(
m

m(F )

)n/d

(1 + log m(F ))n−1

� m(n−1)/d.

In this way we see that the solutions x ∈ Zn to (1) lie in the union of a set of cardinality N and S
proper subspaces, where N << m(n−1)/d and S << (1 + log m(F ))n−1. As before, we may assume
these S proper subspaces are of dimension n − 1. Denote this collection of subspaces by S.

Recall that we are assuming m � M(F )1/2. If M(F )1/4nd � c14(S − 1), then by Proposition 6∑
W∈S

NF |W (m) << m(n−1)/d.

If M(F )1/4nd < c14(S−1), then M(F ) << 1 and we have S << 1. In this case, Proposition 4 gives∑
W∈S

NF |W (m) << m(n−1)/d.

It remains to deal with the case where M(F ) > m2. In this case, Lemma 7 shows that m(F ) >>
m2/n; we set D = m(F )n/{2d(n+1)} and choose l1 minimal such that

(Dl1+1(m/m(F ))1/d)(d−na(F ))/2 � max
{

(m1/dH(F ))(d−na(F ))/2,
c17m

H(F )NS(F )d−(n−1)a(F )

}
.

Now l1 << 1 and, as above, the solutions x ∈ Zn with ‖x‖ � Dl1+1(m/m(F ))n/d lie in c′7 proper
subspaces.

For an index l � 0 let Bl = Dl and Cl = Dl+1 in Proposition 1. The solutions x ∈ Zn to (1) with
(m/m(F ))1/dBl � ‖x‖ � (m/m(F ))1/dCl lie in the union of a set of cardinality Nl and Sl proper
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subspaces, where Sl << (1 + l)n−1 and

Nl � c33n2n(n−1)/2nn/2(n!)2
(

m

m(F )

)n/d

Dn Cl

Bl
<<

(
m

m(F )

)n/d

Dn+1

=
mn/d

m(F )n/2d

<< m(n−1)/d.

As above, the number N−1 of solutions x ∈ Zn to (1) with ‖x‖ � (m/m(F ))1/d satisfies N−1 <<
m(n−1)/d. Thus, since l1 << 1, the solutions x ∈ Zn to (1) lie in the union of a set of cardinality N
and S proper subspaces, where N << m(n−1)/d and S << 1. Proposition 4 applied to the subspaces
completes the proof of this case, and thus the proof of Theorem 5.

5. Some examples

Fix an even d � 4 and 0 < ε � 1/3. Let

Fε(X,Y ) = (X l − (εY )l)((εX)l − Y l),

where l = d/2. Then

Fε(X,Y ) =
l∏

i=1

(X − ρiεY )(ρiεX − Y ),

where ρ is a primitive lth root of unity.
Suppose 1 � y � (3ε)−1/2 and εy � x � 1/(3y). Then

|x − ρiεy| � x + εy � 2x,

|ρiεx − y| � εx + y � 1/(9y) + y � 10y/9,

for any i. In particular, |Fε(x, y)| � (2x)l(10y/9)l � (2/3)l(10/9)l < 1. From this, we see that

V (Fε) >

∫ (3ε)−1/2

1

∫ (3y)−1

εy
dx dy

=
∫ (3ε)−1/2

1
(3y)−1 − εy dy

>
−log 3 − log ε − 1

6
.

Thus, if ε < (3e)−2 we have

V (Fε) >
−log ε

12
. (22)

Now suppose T ∈ GLn(R) with |det T | = 1 and write Fε(X,Y ) =
∏d

i=1 Li(X,Y ), where

Li(X,Y ) =

{
X − ρiεY, if i � l,
ρd−iεX − Y, if l < i � d.

By Hadamard’s inequality, for 1 � i � l we have

‖LiT‖ · ‖Li+lT‖ � |det(Ltr
i Ltr

i+l)| = 1 − ε2

since |detT | = 1. Thus, H(Fε ◦ T ) � (1 − ε2)l and

(1 + ε2)l = H(Fε) � m(Fε) � (1 − ε2)l. (23)
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Since we may choose ε arbitrarily small, (22) and (23) show that V (F ) cannot be bounded above
by a function of m(F ) in the case where d is even and n = 2.

Now let ε = p−1/l for a large prime p, for example. Then p2Fε(X,Y ) = (pX l − Y l)(X l − pY l) ∈
Z[X,Y ] is of finite type, even. Moreover, by Lemma 1, (22) and (23), we have

p−4/d log p << V (p2Fε),

p−4/d >><< m(p2Fε)−2/d,

with absolute implicit constants. In particular,

V (p2Fε) >> m(p2Fε)−2/d log m(p2Fε).

This shows that the upper bound for V (F ) in Theorem 4 can be attained.
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Győ01 K. Győry, Thue inequalities with a small number of primitive solutions, Period. Math. Hungar. 42
(2001), 199–209.

Sch91 W. M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics, vol. 1467 (Springer,
New York, 1991).

Thu01 J. Thunder, Decomposable form inequalities, Ann. of Math. (2) 53 (2001), 767–804.
Thu03 J. Thunder, Volumes and Diophantine inequalities associated with decomposable forms, J. Number

Theory 101 (2003), 294–309.

Jeffrey Lin Thunder jthunder@math.niu.edu
Department of Mathematics, Northern Illinois University, DeKalb, IL 60115, USA

292

https://doi.org/10.1112/S0010437X04001265 Published online by Cambridge University Press

mailto:jthunder@math.niu.edu
https://doi.org/10.1112/S0010437X04001265

	Introduction
	1 Preparatory lemmas
	2 Intermediate results
	3 Proofs of Theorems 1, 2 and 3
	4 Proofs of Theorems 4 and 5
	5 Some examples
	References

