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1. Introduction. Let k be a field and G an Abelian group of finite torsion-free rank.
Jrewer, Costa and Lady [1, Theorem A] showed that if k has characteristic 0 then each
acalization of the group algebra kG at a prime ideal is a regular local ring. They also
howed (in the same theorem) that if k has characteristic p>0 , then kG is locally
Joetherian (i.e. each localization of kG at a prime ideal is a Noetherian ring) if and only
E G is an extension of a finitely generated group by a torsion p'-group. The purpose of
his note is to examine this theorem in a more general setting.

Let R be a ring (with identity) and P a semiprime ideal of R. An element c of R is
egular if cr ̂  0 and re ^ 0 for every non-zero element r of R. Let

«R(P) = {c e R : c + P is a regular element of the ring R/P}.

Ne shall write ^(P) for ^R(P) when there is no ambiguity about the ring R. We shall say
hat P is localizable if R satisfies the right and left Ore conditions with respect to ^(P);
.e. given r in R and c in <<£(P) there exist elements rx, r2 in R and c1; c2 in ^(P) with

rcx = crx and c2r = r2c.

i P is a localizable semiprime ideal of i? let

T(P) = {reR:crd = 0 for some elements c, d in <#(P)}.

Then T= T(P) is an ideal of R and c + T is a regular element of the ring R/T for each
ilement c in ^(P). Moreover, we can form the partial (right and left) quotient ring of R/T
vith respect to {c + T:ce ^"(P)} and we denote it by RP.

Let k be a field and G a group. Let g be the augmentation ideal of the group algebra
kG. We first consider when g is localizable. This is certainly the case if G is locally
lilpotent. For, given any elements r in kG and c in ^(g) there exists a finitely generated
iubgroup H such that rekH and ce^ff)), where h is the augmentation ideal of kH. But
^({^^^(g) and it is well known that b is localizable. Hence g is localizable.

Our first main result is the following one.

THEOREM A. Let kbe a field of characteristic 0, G a poly-(finitely generated Abelian or
locally finite) group and g the augmentation ideal of the group algebra kG. Then the
following statements are equivalent.

(i) g is localizable.
(ii) g has the AR property.

(iii) G is an extension of a locally finite group by a nilpotent group having each upper
central factor of finite torsion-free rank.

Recall that an ideal I of a ring R has the AR property if for any right ideal E and left
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ideal L there exists a positive integer n such that

Enr^EI and LHT^IL.

For any prime p let Qp denote the class of groups G having a finite chain

of normal subgroups Ht of G such that Hi/Hi^1 is finitely generated Abelian or locally
finite-p' for each 1 ̂  i =£ n. A result for fields of non-zero characteristic corresponding to
Theorem A is the following.

THEOREM B. Let k be a field of characteristic p>0 , G an $Qp-group and 9 the
augmentation ideal of the group algebra R = kG. Then the following statements are
equivalent.

(i) g is localizable.
(ii) g has the AR property.

(iii) G centralizes all p-chief factors.

By a p-chief factor of G we mean a chief factor each of whose non-trivial elements has
order a power of p.

We call a ring S with Jacobson radical J quasi-local provided S/J is a simple Artinian
ring. Let P be a localizable prime ideal of a ring R and T=T(P). Then the ideal
PRP = {(JC + T)(c + T)'1: x e P, c e ̂ (P)} of RP is contained in the Jacobson radical of RP

and the ring RP/PRP is isomorphic to the (classical) quotient ring of R/P. Thus, by [2,
Theorems 4.1 and 4.4], RP is a quasi-local ring provided the ring R/P is a (right and left)
Goldie ring; on the other hand if RP is a (right and left) Noetherian ring then so is RP/PRP

and hence R/P is a Goldie ring. (Note that all chain conditions will be assumed to hold on
both sides unless specified otherwise.) We shall call a semiprime ideal Q of R an
annihilator semiprime ideal if R/Q satisfies the ascending chain condition on right
annihilators and on left annihilators. Of course, if R is a commutative ring then all prime
ideals of R are localizable annihilator prime ideals.

A ring R is called a regular local ring if R is Noetherian quasi-local with Jacobson
radical M such that there exists a finite chain

M = M o > M 1 > . . . > M t = 0

of ideals Mi of R such that Mi_1/Mi is generated by a central regular element of R/Mt for
each 1 =£ i =s t. In this case, Walker [12, Theorem 2.7] proved that R is prime and t is the
global dimension of R, the Krull dimension of R, the homological dimension of the
R -module R/M and the supremum of the lengths of chains of prime ideals of R, and we
call t the dimension of R.

If G is a group and p a prime or zero then by OP(G) we mean the intersection of all
the normal subgroups N of G for which G/N has no non-trivial finite-p' normal subgroup.
By a finite-O' group we shall mean an arbitrary finite group. Let yip denote the class of
groups G such that G/OP'(G) is a nilpotent group each of whose upper central factors is
an extension of a finitely generated group by a torsion p'-group. For such a group G let
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h(G) denote the sum of the torsion-free ranks of the upper central factors of G/OP(G). It
is not hard to prove that h(G) is an invariant for G.

THEOREM C. Let k be a field of characteristic 0, G an %lo-gmup and P an annihilator
prime ideal of the group algebra R = kG. Then P is localizable and RP is a regular local ring
of dimension at most h(G).

The situation for fields of non-zero characteristic is rather different. Firstly we have:

THEOREM Dl. Let k be a field of characteristic p>0 , G an %lp-group and P an
annihilator prime ideal of the group algebra R = kG. Then P is localizable and RP is a
Noetherian ring.

If p is a prime let 91?* denote the class of 9fp-groups G such that each upper central
factor of G/OP(G) is an extension of a free Abelian group of finite rank by a torsion
p'-group. For 3^^-groups we have the following result.

THEOREM D2. Let k be a field of characteristic p>0 , G an 9f*-group and P an
annihilator prime ideal of the group algebra R = kG. Then RP is a regular local ring of
dimension at most h(G).

Note that Theorems C and D2 generalize not only [1, Theorem A] but also [9,
Theorem B].

2. Proofs of Theorems A and B. Let R be a ring and I an ideal of R. Define a chain
of ideals

where, for all ordinals a,

and

r= n
3<

if a is a limit ordinal. There exists an ordinal p such that I" = Ip+l, and for the least such
ordinal p write

*(/) = /".

Now let R be a Noetherian ring and let / be the Jacobson radical of R. Then

K(J) = K(J)J + JK(J)

and since K(J) is finitely generated both as a right ideal and as a left ideal it follows, by
Nakayama's Lemma, that

K(J) = 0.
This fact has a simple consequence for localizations of prime ideals. Let P be a localizable
prime ideal of R such that JRP is a Noetherian ring. If T = T(P) then PRP =
{(p + T)(c + T)'1 :peP, c e^(P)} is the Jacobson radical of RP and so

K(PRP) = 0.
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This gives immediately

LEMMA 2.1. Let P be a localizable prime ideal of a ring R such that RP is a Noetherian
ring. Then K(P)^T(P).

We wish to push this lemma somewhat further. If P is a localizable prime ideal of R
we define

Tr(P) = {rsR:rc = 0 for some c in <<?(P)},
and

Ti(P) = {r e R : cr = 0 for some c in ^(P)}.

Recall the following well-known result.

LEMMA 2.2. Let R be a ring which satisfies the ascending chain condition on right
annihilators and let P be a localizable prime ideal of R. Then T(P)=Tr(P).

Proof. Let reR and ce ^(P) with cr = 0. If r(x) denotes the right annihilator of the
element x of R then

r ( c )^ r ( c 2 ) ^ . . .

and there exists a positive integer n such that

There exist elements s in R and d in ^(P) such that cns = rd. Then cr = 0 implies rd = 0. It
follows that T(P)=Tr(P).

A non-empty subset S of a ring R will be called an Ore set if
(i) S is multiplicatively closed,
(ii) for all elements r of R and f of S there exist elements rl5 r2 of i? and ^, t2 of S

such that rt1 = trx and f2r = r2t, and
(iii) {r € R : rt = 0 for some t in S} = {r e JR : tr = 0 for some f in S}.

In this case let T(S) = {r e i? : rt = 0 for some t in S}. The partial quotient ring of JR with
respect to S will be denoted by Rs.

LEMMA 2.3. Let P be a localizable prime ideal of a ring R such that there exists an Ore
set S with S=s:<$(P) and Rs Noetherian. Then ic(P)«Tr(P).

Proof. By Lemmas 2.1 and 2.2,

K(PRs)^Tr(PRs),

where PRS = {(p + T(S))(f + T(S))-1: p e P, t e S}. If r e K (P) then there exist c in <£(P) and
t in S such that rct = 0. Since f e ^ P ) it follows that reTt(P). Hence fc(P)ssTr(P).

Let fc be a field and G a group. Then the augmentation ideal of the group algebra kG
will be denoted by gk or simply g when there is no ambiguity about k.

LEMMA 2.4. Let k be a field and G a group such that gk is localizable. If H is any
subgroup of G then hk is localizable.
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Proof. Let r e kH and c e^(h). Then c e ^ g ) and there exist elements s, d in fcG with
d in ^(g) such that rd = cs. Let T be a transversal to the right cosets of H in G. Then
kG= © (fcH)f. It follows that there exist elements s', d' in kH with d! in <#(h) such that

teT

rd'= cs'. It follows that h is localizable.

Proo/ o/ Theorem A. The equivalence of (ii) and (iii) is proved in [11, Theorem D].
Also (ii) implies (i) by [10, Lemma 2.2]. Thus it is sufficient to prove that (i) implies (iii).
Let

l = H 0 ^H 1 *s . . .*£H n = G (1)

be a finite chain of subgroups Ht of G such that Hi_1 is normal in Ht and Hi/Hi_1 is
finitely generated Abelian or locally finite for each ls£js£n. We prove the result by
induction on n. If n = 1 then g has the AR property by [10, Theorem C]. So suppose n > 1
and let H = Hn^x. By Lemma 2.4 we can suppose that h has the AR property and G/H is
either finitely generated Abelian or locally finite.

Suppose that GIH is finitely generated Abelian. Since h has the AR property it
follows that S = {1 - a : a e h} is an Ore set in kH and the ring (kH)s is Noetherian (see
[10, Lemma 2.2 and Corollary Cl]). Because S is G-invariant, S is an Ore set in R, where
R = kG (see the proof of [6, Lemma 13.3.5 (ii)]), and by [6, Theorem 10.2.6] Rs is a
Noetherian ring. Since S =s ^(g) we can apply Lemma 2.3 to obtain

On the other hand, suppose that G/H is locally finite. By [11, proof of Theorem E], for
every finitely generated right ideal E of R there exists a positive integer m such that

and by [10, Lemma 2.1] we conclude

<r= n
m = l

Thus, in any case,
K(g)

Returning to the chain (1) we note that G has a finite series

of subgroups Kt such that Ki_1 is normal in JQ and KJKi^ is infinite cyclic or locally finite
for 1 s; i =s q. If G = Gt 5* G2 s=... is the lower central series of G then, arguing as in the
proof of [11, Theorem D], Gq+1/Gq+2 is a torsion group. It follows that if U= Gq+1 then

Suppose that u =s g" for some ordinal a. If u e U and x e G then

1 - [u, x] = u- 'x^Kl - x)(l - u) - (1 - H)(1 - x)} £ go+1.
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Since Gq+1/Gq+2 is a torsion group it follows that u^g a + 1 . Thus u=s «(g)=£ Tr(g). Now it is
easy to prove that U is a locally finite group (see the proof of [11, Theorem D]). This
proves (iii).

Theorem A has the following consequence.

COROLLARY A. Let k be a field of characteristic 0 and G a hyper-(Abelian or locally
finite) group and let g be the augmentation ideal of the group algebra R = kG. Then the
following statements are equivalent.

(i) g is localizable, T1(g)= Tr(g) and Rg is a Noetherian ring.
(ii) g has the AR property.

(iii) G is an extension of a locally finite group by a nilpotent group with each upper
central factor of finite torsion-free rank.

To prove Corollary A, by the theorem we need show only that (i) and (ii) are
equivalent. By [10, Lemmas 2.1 and 2.2 and Corollary Cl], (ii) implies (i). In order to
prove that (i) implies (ii) we require some notation.

Let P be a localizable prime ideal of a ring R. If E is a right ideal of R then the
P-closure of E is

clpE = {reR:rceE for some c in ^ (P)}.

Then clPE is a right ideal containing E. We call E P-closed provided E = clpE. There are
similar definitions for left ideals. The next lemma is elementary.

LEMMA 2.5. Let Pbe a localizable prime ideal of a ring R such that T(P) = Tr(P). Then
the ring RP is right Noetherian if and only if R satisfies the ascending chain condition on
P-closed right ideals.

To complete the proof of Corollary A, suppose that (i) holds. By Lemma 2.5, R = kG
satisfies the ascending chain condition on g-closed right ideals. By [11, Lemma B and the
proof of Lemma A], G is poly-(locally finite or finitely generated Abelian) and so (iii)
follows by Theorem A. This completes the proof of Corollary A.

We now turn our attention to Theorem B.

Proof of Theorem B. (ii) and (iii) are equivalent by [11, Theorem E]. Moreover, (ii)
implies (i) by [10, Lemma 2.2]. It remains to prove that (i) implies (iii).

Suppose that (i) holds. In order to prove (iii) it is sufficient to prove that if A is a
minimal normal subgroup of G and a p -group then A is central. There exists a chain

of normal subgroups Ht of G such that Hi/Hi_1 is finitely generated Abelian or locally
finite-p' for each 1 =£ i =£ n. The result is proved by induction on n. The case n = 0 is clear
since A is finite. So suppose n >0 and let H = Hn_1. By induction we can suppose that i)
has the AR property in kH. Then following the argument used in the proof of Theorem A
we obtain
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If A is not central then A = [A, G] and it follows that

so that A is a p'-group, a contradiction. (The argument is very like that in the proof of
Theorem A and so the details are left to the reader.)

In the same way that Theorem A gives Corollary A, Theorem B gives the following
result. The proof is virtually identical to that of Corollary A and so is omitted.

COROLLARY B. Let k be a field of characteristic p > 0 , G a hyper-(finitely generated
Abelian or locally finite-p') group and g the augmentation ideal of the group algebra
R = kG. Then the following statements are equivalent.

(i) g is localizable, T\(g) = Tr(g) and Rs is a Noetherian ring.
(ii) g has the AR property.

(iii) G is an &p-group and G centralizes all p-chief factors.

Corollaries A and B should be compared with [11, Theorem C], where it is proved
that if k is any field, G a locally nilpotent group and g the augmentation ideal of R = kG
then statements (i) and (ii) of Corollary B are equivalent. In fact, for any group G, (ii)
implies (i) (see [10, Lemmas 2.1 and 2.2 and Corollary Cl]). This leaves the question of
whether (i) always implies (ii).

3. Proofs of Theorems C, D l and D2. The key result required is an old result of D.
G. Higman (see [6, Lemma 7.2.2]). We call a ring R a Higman extension of a ring S if S is
a subring of R with the same identity and there exists a finite collection of units ut

(l=si=£n) in R such that
(i) n is a unit in R,
(ii) UiS^Sut (lssissn), u^^^S (l^i^j^n),

(iii) {Su^ : 1 =£ / =£ n} = {SUJ : 1 =s / =s n} (1 =s i =s n), and
(iv) R = uxS+ . .. + unS.

Higman's Lemma can be expressed in the following form.

LEMMA 3.1. Any Higman extension of a semiprime Artinian ring is semiprime Arti-
nian.

COROLLARY 3.2. Let R be a Higman extension of a semiprime Goldie ring S. Let I be
an ideal of R such that * s (0 )«^ R ( I ) . Then 7c = 0 for some element c of ^ ( 7 ) .

Proof. By [2, Theorems 4.1 and 4.4], S has a semiprime Artinian quotient ring Q. By
[6, Lemma 13.3.5], ^s(0) is an Ore set in the ring R and we denote the partial quotient
ring of R with respect to ^(O) by Qj. Clearly Qt is a Higman extension of Q and so, by
the lemma, Q1 is semiprime Artinian. Because ^5 (0 )^^ (7 ) , it follows that 70! =
{ac~1:ael, ce^s(0)} is an ideal of QX and so is generated by a central idempotent
element bd'1 (say) with b in I and d in ^(O). Then 7(d-b) = 0 and d -be^ R (7 ) .

An ideal 7 of a ring R has a weak centralizing set of generators if there exists a finite
chain of ideals
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such that, for each 1 =£/ ^ n, Ij/Ij-i is generated by a finite collection of central elements of
R/Ij-! or is <#(7)-torsion (i.e. for all a in 2, there exist cx and c2 in <#(7) such that ac1e7,_1

and c2a e Ij-i). If each of the factors 7,/7J_1 (1 =£/ =£ n) is generated by a finite collection of
central elements of i?/ij_i then we say that I has a centralizing set of generators.

We extend these definitions in the following way. Let R be a ring and G a group of
automorphisms of R. If r e R and g e G then

will denote the action of g on r. An element c of JR will be called G-central if c is central
in R and

c& = c

for all g in G. Then G-invariant ideals having a wcafc G-centralizing set of generators or a
G-centra/izing set of generators will have the obvious meaning.

We say that an ideal 7 of a ring R has the right fAR property if for every finitely
generated right ideal E there exists a positive integer n such that E fl I" =£ El. The ideal 7
will be said to have the right fAR property locally if for every finitely generated right ideal
E there exists a positive integer n such that

i.e. for each element r in E D I " there exists c in ^(7) such that reeE7.
Suppose that 7 is an ideal of R such that I has the right fAR property locally. Let E

be a finitely generated right ideal of R and suppose

xefl clI(E + 7n).
n = l

If F = E + xR then there exists a positive integer m such that

Fn7m«cl r (F7) .

There exist c in ^(7) and e in E such that x c - e e F f l T and so (xc-e)deF7 =sE + xlfor
some element d of "#(7). It follows that xecl rE. Hence

n clI(E + 7") = clIE (2)
n = \

for all finitely generated right ideals E of R. We require this fact in the proof of the next
result.

LEMMA 3.3. Let Q be a localizable annihilator semiprime ideal of a ring R such that Q
has a weak centralizing set of generators and Q has the right fAR property locally. Then RQ
is a right Noetherian ring.

Proof. Let Y be a right ideal of 7?Q and Y1 = {rsR:r+TeY}, where T=T(Q).
Then Yx is a Q -closed right ideal of 7?. Moreover, Y is a finitely generated right ideal of
RQ if and only if there exists a finitely generated right ideal Y2 of R such that Yx = clQ Y2.
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Suppose there exists a Q-closed right ideal of R which is not the Q-closure of a finitely
generated right ideal. By Zorn's Lemma there exists a Q-closed right ideal E maximal
with respect to not being the Q-closure of a finitely generated right ideal. Suppose that
Q^E. Since Q has a weak centralizing set of generators it follows that QRQ is a finitely
generated right ideal of the ring RQ. But the ring RQ/QRQ is isomorphic to the classical
right quotient ring B of the ring R/Q and, by [4, Theorem], B is semiprime Artinian. It
follows that (E/T)RQ is a finitely generated right ideal of RQ. This implies that E is the
Q-closure of a finitely generated right ideal of R, a contradiction.

Thus Q^E. Because Q has a weak centralizing set of generators there exists a
finitely generated right ideal X1; an ideal X and an element c of Q such that clQ X1 = X*£
E, c is central modulo X and c£E. Let F = {reR:ereE}. Then F is a Q-closed right
ideal of R and E^F. Let G = E + cR. The choice of E entails that there exist a positive
integer n and elements g; (l=£i=sn) of G such that

For each 1 =s i« n let
& = et + crt

with et in E and rt in J?. Let H= etR + ... +enR.
Suppose Ej= F. Then by the choice of E there exists a finitely generated right ideal M

such that F = c l Q M Let eeE. Then e e G and hence there exists an element d in ^(Q)
such that

n

ed= Y. eA + cu

i = l

for some elements S i ( l ^ i^n ) and u in i?. It follows that ueF and hence ee
clQ(H+cM). But this implies that E = clQ(H + cM) and, because H+cM is a finitely
generated right ideal, we have a contradiction. Thus E = F. In this case E^c l Q (H + cE).
Using the fact that c is central modulo X = C1QXJ, it follows that

by (2). Hence E = clQ(H+X1), another contradiction. The result follows.

LEMMA 3.4. Let k be a field of characteristic p5*0 and G an ^lp-group. Let P be an
annihilator prime ideal of the group algebra R = kG. Then P is localizable, P has a weak
centralizing set of generators and RP is a Noetherian ring.

Proof. There exists an infinite chain

of normal subgroups Ha of G such that for all ordinals a,
(i) Ha+1/Ha is an infinite cyclic group or a finite-p group and [Ha+1, G]^Ha, or
(ii) Ha+1/Ha is a finite-p' group,

and
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if a is a limit ordinal. Moreover, all but a finite number of the factors HOL+1/Ha are
finite-p' groups. For each ordinal a with 0=£a=Sp let RM = kHa and P(Q° = P D kHa.
Then P(Q° is a G-invariant annihilator semiprime ideal of R(a) for each ordinal a with
0 «£ a =s p. To see that R(ot)/p(°° satisfies the ascending chain condition on right annihilators
one need merely note that for any non-empty subset X of Ria\

If N is the ideal of RCa) containing P(<x) such that JV/P(a) is the sum of all nilpotent ideals
of R(a>/PM then N is G-invariant and, by [3, Theorem 1], N/PM is nilpotent. It follows
that NR is an ideal of R and (NR)S =sP for some positive integer s. Hence NR^P and it
follows that P(o° is semiprime.

Next we claim that, for each ordinal a with 0 «£ a =s p,

P(a) is a localizable ideal of RM such that P(a) has a weak . .
G-centralizing set of generators and R̂ 2> is a Noetherian ring.

The action of G on the ring RM is by conjugation.

Suppose that (3) is false and let a be the least ordinal for which it fails to be true.
Clearly a > 0. Suppose first that a is not a limit ordinal. Let A = Ha_x, B = Ha,
p1 = p(«-i)) P2 = p(<*\ s = RCa~1) and T=R(a). Then P1 = P2DS. By hypothesis, P1 is
localizable in S. Hence T satisfies the right and left Ore conditions with respect to ^s(Pi)
(see [6, Lemma 13.3.5]). Let U = CGS{PX) and

K = {t e T: tu e P2 for some u in U}.

Then K is a G-invariant ideal of T and P2^K. By [7, Lemma 7], P2<K implies the
existence of an element t of K which is central in kG modulo P. But tu e P2 for some u in
U and hence « e P 2 n S = P1, a contradiction. Thus K = P2 and it follows that

A similar argument shows that T,(P1)= Tr(Pj).
Now suppose that B/A is a finite-p' group. By [4, Theorem], S/Pi has a semiprime

Artinian quotient ring and, by [2, Theorem 4.4], S/Pt is a Goldie ring. Thus we can apply
Corollary 3.2 to obtain that P2IPXT is ^xCPa)-torsion. It follows that P2 has a weak
G-centralizing set of generators. By hypothesis Sv is a Noetherian ring and hence Tv,
being a finitely generated Su-module, is a Noetherian ring. Hence, by [8, Theorem 2.2
Corollary 1], P2TU is localizable and it follows that P2 is localizable and Tp2 is Noetherian.

Next suppose that B/A is infinite cyclic. By [9, Lemma 2.1], either P2 = PtT or there
exists an element c of P2 which is G-central and regular modulo PXT (and hence regular
modulo PXR) such that PJiP^+cT) is «T(P2)-torsion. As before, P2 has a weak
G-centralizing set of generators, P2 is localizable and Tp2 is a Noetherian ring.

The other possibility is that B/A is a finite-p group. Then P2/P{T has a G-
centralizing set of generators (see [7, Lemma 7]) and again P2 has the desired properties.
Thus a is a limit ordinal.
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Let |3 < a. Since P(0> is localizable it follows that R(o° satisfies the right and left Ore
conditions with respect to

(see [6, Lemma 13.3.5]) and as above

It follows that

Consequently, P(o° is localizable.
Since only a finite number of the factors HP+1IHP are not finite-p' groups, there exists

an ordinal y with 0=sy < a such that Hp+l/H0 is a finite-p' group for each ordinal /3 with
y s£ |3 < a. Thus HJHy is a locally finite-p' group and by the argument used earlier in the
proof, p^/pMR^i is <g(P(oi))-torsion. It follows that P(o° has a weak G-centralizing set of
generators.

Let X=RM, Y=R(y) and V = <S(Piy}). Since PMYV has a centralizing set of
generators it follows that PMYV has the AR property in Yv (see [5,2.7]). By adapting
the proof of [11, Theorem E], we conclude that for each finitely generated right ideal E of
X there exists a positive integer m such that for each element r of E D X(Piy))m there
exists an element c of V such that rceEP(y). Since p<-a^>/XP(y) is a right ^(P^-torsion
module it follows that P(a) has the right fAR property locally in X. Hence by Lemma 3.3,
Xpfa) is a right Noetherian ring. Similarly it is a left Noetherian ring as well. This
contradicts the choice of a and completes the proof of Lemma 3.5.

Theorem Dl follows at once from Lemma 3.4. Now let k be a field of characteristic
p5=0 and G an SVgroup (if p = 0) or an 9f*-group (if p ^ 0). If P is an annihilator prime
ideal of the ring R = kG then by the proof of Lemma 3.5 we see that there exists a finite
chain

of ideals Pt of R such that Pj/P^i is generated by a central regular element of R/P^i or
Pj/Pj-i is "to (P)-torsion for all 1 =£ i =£ n. Moreover, P is localizable and it follows that RP is
a regular local ring. By examining the proof of Lemma 3.5 we see that the dimension of
RP is at most h(G). This completes the proof of Theorems C and D2.

Finally we mention an analogous result for integral group rings. Let H denote the
class of Abelian groups G which contain a free Abelian subgroup F of finite rank such
that GIF is a torsion group with finite p-primary component for each prime p.

THEOREM 3.5. Let G be a nilpotent group each of whose upper central factors is an
di-group and let R be the integral group ring ZG. If P is an annihilator prime ideal of R then
P is localizable and RP is a Noetherian ring.
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Proof. If P n Z = O then the non-zero elements of Z belong to <€R{P). If Q is the
rational field then P' = PQ is an annihilator prime ideal of S = QG and, by Theorem C,
jRp = SP' is a regular local ring. If P D Z ^ 0 then there exists a prime p such that p € P. By
Theorem Dl, P = P/pR is localizable and, if R = R/pR, Rp is Noetherian. It can easily be
checked that pR has the right f AR property and P/p"R is localizable for all integers n 5* 1.
Let reR, ce^iP). There exists a positive integer m such that

(rR + cR)D pmR s= (rR + cR)p.

There exist elements s in R and d in ^(P) such that rd-cse.pmR and, hence,

rd-cs = (ra + cb)p

for some a, b in R. Thus

r(d-ap) = c(s + bp)

and d — ape^(P). It follows that P is localizable. Also RP/pRP is a right Noetherian ring.
By adapting the proof of Lemma 3.3, RP is a right Noetherian ring. Similarly RP is a left
Noetherian ring.

Finally we can combine Corollaries A and B and Theorems C and Dl to characterize,
for hypercentral groups G, those group algebras R = kG such that every annihilator prime
ideal P is localizable with RP a Noetherian ring. Note that for such a prime ideal P, we
have, by [7, Theorem A],

THEOREM 3.6. Let k be a field of characteristic p=*0 and G a hypercentral group. Then
a necessary and sufficient condition for every annihilator prime ideal P of the group algebra
R = kG to be localizable with RP a Noetherian ring is that G be an %lp-group.
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