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Abstract

We investigate the invariant subspace structure of subalgebras of groupoid C*-algebras that are determined
by automorphism groups implemented by cocycles on the groupoids. The invariant subspace structure is
intimately tied to the asymptotic behavior of the cocycle.

1991 Mathematics subject classification (Amer. Math. Soc): primary 46K50, 46L40, 47D25; secondary
20L99.

1. Introduction

In this paper we continue our investigations in the theory of representations of triangu-
lar subalgebras of groupoid C*-algebras. This study follows the program founded by
Arveson in [2,3] to analyze representations of non-selfadjoint operator algebras. The
idea is to try to associate with each (contractive) representation of an operator algebra
a C*-representation of its enveloping C*-algebra in such a way that properties of the
given representation can be inferred from the C*-representation. Explicitly, given a
contractive representation p of an operator algebra A on a Hilbert space H one would
like to produce another Hilbert space K, such that K 2 H, and a C* -representation
n of C*(A), the enveloping C*-algebra of A, on K, such that

p(a) = PHn(a)\H, a e A,

where PH is the (orthogonal) projection onto H. Such a representation of A is, thus, a
compression of a C*-representation (called a dilation of p) to a subspace H c K. In
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general, a contractive representation need not have a dilation. However, those that do
have been characterized by Arveson loc. cit. as the so-called completely contractive
representations. It can be shown that when the representation p has a dilation, the
Hilbert space H is a semi-invariant subspace for n{A). This means that H may
be written as H = H2 © Hu where Hx c H2 and 7r(A)//, C //,-. That is, H is
the orthogonal difference of two nested invariant subspaces for n(A). The converse
also holds, that is, the compression of n\A to a semi-invariant subspace defines
a completely contractive representation of A. Hence the completely contractive
representation theory of A can be studied by studying the C*-representations of the
C*-envelope C*(A) of A, and their invariant (and semi-invariant) subspaces. Thus
there appears to be an exact analogue of the program initiated by Sz.-Nagy for studying
a contraction operator in terms of its (minimal) unitary dilation.

For subalgebras A of groupoid C*-algebras of the kind we investigate, C*(A), is
the groupoid C*-algebra itself [17]. Moreover, our algebras A have the property that
every contractive representation is completely contractive. Thus the structure of the
contractive representations of A depends entirely on the invariant subspace structure
of the algebras n(A) obtained by letting n run through all the (^-representations of
C*(A). The representation theory of groupoid C*-algebras has been developed by
Renault in [26, 27]. Here we shall use Renault's analysis to describe the lattice of
invariant subspaces for n(A), where n is a C*-representation of C*(A). We identify
a subspace with the orthogonal projection onto it and we write the lattice of all such
projections as Iat7r(i4). Very roughly, our algebras are represented as block upper
triangular matrix algebras and Renault's theory aids us in analyzing how a projection
in lat7r(A) decomposes.

In finite dimensions, the algebras we are studying are simply incidence algebras in
the sense of [5]. We are motivated by the fact that for such algebras, the description
of lat7r(A) is very simple and classical. Suppose, indeed, that n is irreducible: then
it is determined by a column, that is, the Hilbert space for n is the £2-space indexed
by a column. If Hn is the subspace consisting of those functions supported on the
partial order indexing A, then Hn is what algebraists call an indecomposable projective
module over A. It is almost immediate, yet fundamental, that every indecomposable
projective module over A is of this form. Further, the dilation result is tantamount
to the assertion that every module admits a projective cover and this allows one to
analyze, or 'resolve', an arbitrary module in terms of projective modules. Thus, in a
sense, our goal is to see how far the structure of projective modules extends from the
finite to the infinite dimensional setting.

In more detail, our setting is this. Let B be a nuclear C* -algebra that has a diagonal
subalgebra D in the sense of Kumjian [10]; that is, we assume D is a masa in B with
certain properties that allow B to be represented (essentially) in terms of matrices
indexed by an equivalence relation (= a principal groupoid) on the maximal ideal
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space of D. From the spectral theorem for bimodules [12] we may assert that any
(norm closed) subalgebra A of B containing D must consist of all matrices supported
on a transitive, reflexive subrelation of the equivalence relation indexing B. The
algebras we consider here will also be assumed to satisfy: AD A* = D (that is, they
will be triangular) and A + A* is dense in B. This means that the subrelation induces
a total order on each equivalence class.

If B were the n x n matrices, then an A satisfying our hypotheses would be (unitarily
equivalent to) the full algebra of upper triangular matrices. More generally, this class
of non-selfadjoint algebras contains the strongly maximal triangular A F algebras that
have been studied extensively in recent years. (See [19, 21, 23, 22, 15, 8 and 24] to
name a few pertinent references.)

In this paper we shall assume that not only are our algebras triangular in the sense
just described, but also that they are analytic in the sense of [11] and [9] (see Section
2 for details and definitions). This hypothesis is satisfied for the upper triangular
n x n matrices, but not for all strongly maximal triangular AF algebras. Although
a bit restrictive, this hypothesis allows us to apply powerful techniques from ergodic
theory and it puts into evidence phenomena that need further investigation in the
future. Also, to simplify matters, we shall treat only C*-representations n that are
irreducible.

Given such an algebra A and an irreducible representation n of its enveloping
C*-algebra C*(A), we can associate with it a closed subset R^(c) of 1U {oo}. Here fj,
is a measure associated with n and c is a cocycle describing A. (This subset is always
a subgroup of KL together, sometimes, with oo adjoined, and we shall therefore call
such a subset a subgroup of K U {oo}.) We shall first show (Theorem 3.2) that lat n(A)
is a nest (that is, it is totally ordered with respect to the usual order of projections)
and, in fact, if it is not trivial, then every non-trivial projection in lat7r(A) 'generates'
the lattice. Then we examine the order type of this nest. It turns out that it depends
on R^(c). If R^(c) = {0} then (Theorem 5.1) all the projections in lat7r(A) are
in 7t(D)". In the finite dimensional setting, this is always the case. Note, too, that
in general it can be disintegrated over the maximal ideal space X of D. Hence we
can identify the representation space with f® K{u)d^{u) for some measure /x, that is
ergodic because n is irreducible, and Hilbert space fibers K(u), u € X. Therefore,
when R^(c) = {0}, we have for /x-a.e. u, J£?(H) = {F(u) : F e lat;r(A)} = {0, / } .
Again, a little thought shows that in the finite dimensional situation, this recaptures the
fact that the indecomposable projective modules over the algebra of upper triangular
n x n matrices are the 'columns'.

If R^(C) = {0, oo} we find (Theorem 4.1) that latn(A) = {0, / } ; so that there
is no non-trivial invariant subspace for n(A). One can conclude from this that if p
is a representation of A with an irreducible C*-dilation n and if R^(c) = {0, oo},
then p = it, that is, p can be extended to a (^-representation of C*(A). Using
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this we describe all (contractive) representations of a /-analytic subalgebra A, with
irreducible C*-dilation (Corollary 9.2).

The other two possibilities for /?£,(c) are 1 U {oo} and XI U {oo} for some X e R.
In both cases we show (Corollary 6.6 and Theorem 7.1) that either lain (A) = {0,1}
or the order type of J£(u) (the lattice in the fiber over u as above) is the order type of

W-
In Section 8 we present an example of an irreducible representation it of the C AR

algebra B and an analytic subalgebra A of B such that .£?(«) has the order type of
ZU{±oo}.

Representations of triangular AF algebras were studied recently by Orr and Peters
[19]. Most of the algebras they treat are analytic (such as the standard embedding or
the refinement embedding algebras) and our analysis generalizes some of their results
(see, for example, the remark following our Theorem 9.1).

Without further mention, all our Hilbert spaces will be complex and separable. All
operators will be bounded and linear. All C*-algebras will be separable and all locally
compact spaces will be Hausdorff and second countable. The measures will be Radon
measures and positive.

2. Preliminaries

Throughout the paper B will always denote a nuclear C* -algebra having a diagonal
D in the sense of Kumjian [10]. A normalizer of D is simply an element b e B such
that b*db and bdb* are in D whenever d € D. Such a normalizer is called free if
b2 = 0. The set of normalizers and free normalizers of D will be denoted N(D) and
Nf(D), respectively. We say that D is a diagonal in B if D is a masa in B containing
an approximate identity for B, if B is not unital, such that there is a faithful expectation
P from B onto D whose kernel is spanned by the free normalizers of D.

The example to keep in mind is B = Mn(C) and D = Dn the algebra of all diagonal
matrices. P is the obvious map onto D and a normalizer is a matrix that can be written
as a product dc where d e Dn and c is a permutation matrix.

In the general situation, the elements of B can be thought of as 'generalized
matrices' whose coordinates are in some equivalence relation. More precisely,
Kumjian's representation theorem [10] asserts that there is a T-groupoid E over
an r-discrete, locally compact, principal groupoid G, whose unit space G<0) may be
identified with the maximal ideal space of D, such that B is isomorphic to C*ed(G, E).
We shall now explain what all this means.

We assume the reader is familiar with the terminology, notation and basic facts from
[26]. We will use them freely, except that we will use V for the 'domain mapping'
on a groupoid that Renault denotes by 'd'. We fix, once and for all, a locally compact
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r-discrete principal groupoid G. It is in fact an equivalence relation on G(0) but its
topology is usually different from the relative topology inherited from G(0) x G<0).
The equivalence classes of G are countable and we assume that the counting measures
on them give rise to a Haar system, denoted by {A" : u e G(0)}.

A T-groupoid E over G is a (locally compact groupoid) central extension of G
by the trivial circle bundle G(0) x T (which has the obvious structure of a groupoid
with unit space G<0>). Thus we have an exact sequence of continuous groupoid
homomorphisms

G<°> _+ G<0) x T _i> E _4 G

where j is onto. Through / we find it convenient to view £ as a principal T-bundle
with bundle projection j . For t e T and y € E, we write ry for i'((r(y), f))y. The

centrality assumption amounts to assuming that for all {~/\ > Yi) G £<2) a n d all t\,t2 e T,
we have (?,y,, r2y2) e £<2) and (fiy,)(f2y2) = fi?2(yiy2).

Let CC(G, E) denote the space of continuous complex valued, compactly supported
functions f on E (that is, the closure of the support of the function is compact), such
that f(ty) = tf(y), t e T, y € E. These, of course, are just the continuous,
compactly supported cross sections of the line bundle determined by E. Then with
respect to pointwise addition, scalar multiplication, and inductive limit topology,
CC(G, E) becomes a topological *-algebra under the operations:

and

where a = j(a). (This notation for j(a) will be used frequently.) Note that the
integrand is a T-invariant function of a, so / * g makes sense.

A representation of CC(G, E) is simply a *-homomorphism n from CC(G, E) into
the algebra B{H) of all bounded operators on a Hilbert space H that is continuous with
respect to the inductive limit topology of CC(G, E) and the weak operator topology
on B{H). Renault [27] proves that the quantity

sup{||7r(/)|| : n is a representation}

is finite for each / e CC(G, E) and defines a C*-norm on CC(G, E). The completion
of CC(G, E) with respect to this norm is denoted C*(G, E). The quotient of C*(G, E)
by the common kernel of all the representations induced off the unit space is denoted
C*ed(G, E). We will not need these here because when C*ed{G, E) is nuclear, which
is one of our hypotheses, C*ed(G, E) = C*(G, E) ([12]). Kumjian's theorem then,
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under the assumption that B is nuclear, asserts that we may represent B as C*(G, E)
for a suitable T-groupoid E over an /--discrete principal groupoid G on the maximal
ideal space of D. Henceforth, we make no distinction between B and C*(G, E).

The bundle E is trivial over G<0>, which is closed and open in G. Therefore, we
may view C0(G

(0)) c C*{G, E) in the obvious way. This containment identifies D
with C0(G

(0)). In this situation, a normalizer b has the property that y(supp(b)) is
an open G-set in G. That is, )(supp(fe)) is an open subset r of G such that r and
s, when restricted to T, are one-to-one. Thus we may view r as a partially defined
homeomorphism on G(0) mapping the open set r(r) onto the open set s(r). (Strictly
speaking, x is the graph of this homeomorphism, but we will not distinguish between
the two.) Hence, we have in this general situation an analogy with what happens for
Mn(C): Every normalizer can be written as a diagonal element times a permutation
'element'. The essential difference, really, is that the permutation 'element' is not
really in C*(G, E), but only in some sort of Borel completion of C*(G, E). It would
be in C*(G, E) if r were compact as well as open and if E were the trivial extension.
In this case, C*(G, E) = C*(G) and the permutation 'element' would be Xr, the
characteristic function of r.

We turn now to the representations of the objects we have been discussing,
C*(G, E), G and E. The key philosophical point that needs to be made is that
while groups act on sets, groupoids act on fibered sets. So, while groups are often
represented by unitary operators on Hilbert space, groupoids have unitary represent-
ations on Hilbert bundles. There is nothing fundamentally mysterious here, although
the technicalities can be somewhat daunting. What we will be describing are infin-
ite dimensional analogues of the elementary fact that finite dimensional incidence
algebras have (block) matrix representations.

We begin with some measure theory. Given a measure /x on G(0>, we obtain a
measure v on G simply by integrating: v(F) = f X.u(F)d^i(u). The measure /i is
called quasi-invariant if v and v~l are mutually absolutely continuous, where u"1

is simply the image of v under the map y ->• y"1. If n is quasi-invariant and if
A is defined to be the Radon-Nikodym derivative, dv~l/dv, then there is a conull
Borel set F c G<0) such that the restriction of A to G\F is a homomorphism from
G\F into the multiplicative positive reals. (The groupoid G\F is called an inessential
contraction or reduction of G.) It is customary to call A the modular function of fi.
This fundamental fact has a long history. The form in which we are stating it may be
attributed to Ramsay [25].

The groupoid E has the same unit space G(0) as G, and a Haar system of its own,
denoted {CT"}H6G«», given by the formula o"{F) = fG fTlF(t • y) dtdk"(y), where dt
is Haar measure on T. It is easy to see that a measure /x on G(0> is quasi-invariant
relative to E if and only if it is so relative to G. Moreover, the modular functions on
G and E, AG and A£ respectively, are related by the formula AE(y) — Ac(y) for all
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y € E\F, where F is the /x-conull set in G(0> used to produce AG.
We adopt the notation of Ramsay in [25] and write G(0) * JJC for a Hilbert bundle

over G(0). This means that we are given a family of Hilbert spaces {Jif(u)}u€Gm
and G(0> * Jf7 is defined to be {(«, $): § € <#"(«)}, that is, G(0) * J f is the union
of the J(f(u) made disjoint by identifying Jf?(u) with {«} x ^ ( M ) . The natural
projection from G<0) * Jt? to G(0) is denoted n. It is assumed that there is an analytic
Borel structure on G<0) * Jf defined by n and a countable number of sections (see
[25] for details). The space of square integrable sections (with respect to some
measure /i) is a Hilbert space denoted by L2(n, Jf) or / Jf(u)d^,{u). The set
End(G<0) * Jf) := {(«, S, v) | 5 : Jt?(v) -> Jf(u) is linear and bounded} has
a natural Borel structure denned using the sections denning G<0) * Jtf. It contains
the subgroupoid Iso(G<0) * H) consisting of those («, 5, v) such that 5 is a Hilbert
space isomorphism. It is not hard to see that Iso(G<0) * J^) is a Borel subset of
End(G(0) * JP).

DEFINITION 2.1. A {unitary) representation of (G, E) is a triple (/x, G(0) * J f , £/)
where fi is a quasi-invariant measure on G<0), G(0) * Jf is a Hilbert bundle, and
U is a Bore/ homomorphism from E\F, for some inessential reduction of E, to
Iso(G(0) * Jff\F), where G<0) * J f | F is the restriction of G(0) * J ^ to F, such that

=W(Y),t €T,y e E.

A bit more explicitly, U(y) really is a triple (r(y), U~(y), s(y)) where U~(y) is a
Hilbert space isomorphism from Jf(s(y)) onto Jf?(r(y)). However, we will blur the
distinction between U(y) and U~(y). It is important to note that for representations
{H, G(0) * je, U) of (G, E), the support of G(0) * J f ( = ( « € G(0) | J^(u) ^ {0}})
is invariant for G\F.

Two representations (/x,, G(0) * J0-, f/,), of (G, £ ) , / = 1, 2, are equivalent in case
there is a reduction £ | F of E, which is inessential for both ^ and (u,2, and a bundle
isomorphism

V : G ( 0 ) * J ^ | F - • G(0>*

given by a Borel field {V(M)}M £ F of Hilbert space isomorphisms, such that on F, fil

is equivalent to /j.2 and such that

V(r(y))UdY) = U2(y)V(Hy))

for v-almost all y e E, where v is either the integral of {<r"}ueG<0) with respect to ̂ i
or with respect to fi2-

A representation (fi, G(0) * Jff, U) of (G, £ ) can be integrated to give a represent-
ation n of CC(G, E) defined by the formula

= /" "(y),
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/ € CC(G, E), i- e fe Jf?(u)dn(u). Here, A is the modular function of \x on E.
Note that the integrand is T-invariant and so the integral makes sense. Note, too, that
if a e N(C0(G

(0))) with y(supp(a)) = r, then

for any y e E such that y (y) = (M, T(M)). Henceforth, we shall view G explicitly as
a subset of G(0) x G(0) and we shall write elements of G both as ordered pairs and as
lower case Greek letters, whichever is convenient. Renault's disintegration theorem
[27] asserts, conversely, that every representation of CC(G, E) is the integrated form
of some (necessarily unique) representation of (G, E). Passing to completions, then,
the same bijective correspondence exists between C*-representations of C*(G, E) and
representations of (G, E). Furthermore, equivalent unitary representations of (G, E)
integrate to unitarily equivalent C*-representations of C*{G, E) and conversely, a
unitary equivalence between (^-representations of C*(G, E) is implemented by an
equivalence between their disintegrated forms.

DEFINITION 2.2. AsubalgebraA c B = C*(G, E) is called triangular if it is norm
closed and A D A* = D. It is said to be a strongly maximal triangular algebra if A is
triangular and A + A* is dense in B.

The assumption that B is nuclear implies that the spectral theorem for bimodules
is valid [12]. Thus, if A is a norm closed subalgebra of B that contains D, then
there is an open subset P c G such that G(0) c P, P o P c P (where P o P =
{afi : (a, j8) 6 G(2) n P x P}), and such that A is the closure in C*(G, E) of
{/ e CC(G, E) : supp(/) c j~\P)} [12, Theorem 4.1]. We call this closure
A(P). The algebra A = A{P) is triangular if and only if P D P"1 = G(0) (where
P~' = { a r 1 : a e P } ) and it is strongly maximal triangular if and only if, in addition,
we have P U P~x = G. In this case P totally orders every equivalence class. When
P is given, we write u < v if (a, v) e P.

A class of strongly maximal triangular algebras arises as follows. Let c : G —>• R
be a continuous homomorphism, that is, c(a/3) = c(a) + c(/J) whenever (a, fi) e
G(2). Such a c is called a cocycle on G and we write Z[(G, K) for the set of all
cocycles. If c~l ({0}) = G(0) the cocycle is called faithful. For a faithful cocycle write
P{c) = {a e G | c(a) > 0}. Then P = P(c) is open and satisfies P o P <z P,
P n />-' = G(0) and P U P"1 = G. Hence A = A(P(c)) is a strongly maximal
triangular algebra. Such an algebra is called an analytic subalgebra of B.

The reason for the terminology is the following. With any cocycle c we can
associate a group of automorphisms a = {a,},eR of B by defining

al(f)(y)=eilcmf(y), feC*(G,E).
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Then the elements of A = A(P(c)) are precisely the elements of B with non-negative
Arveson spectrum. In other words, for a € B, a lies in A{P{c)) if and only if, for
every bounded linear functional / on B, the function t ->• f(a,(a)) can be extended
to a bounded analytic function in the open upper half plane.

We shall now cite some terminology and basic facts from the spectral theory of
automorphism groups. (For more details see [1,11 and 18]). Given an automorphism
group a = (a, : I e R} that is strongly continuous (that is, / —> / (a , (a)) is continuous
for every a e B and / in the dual of B) and given a € B, we define spa(a) = {s e
R : f(s) = 0 whenever / e Ll(R) and af(a) = 0}. Here or,(a) = f f(t)a,(a)dt
and f(s) = f eilsf(t) dt. For every subset E c R the spectral subspace is B"(E) =
[a e B : spa(a) c E} (where the closure is in the norm topology). If E is closed in
R, B"(E) — {a € B : spa(a) c E}. In general, if E, and E2 are subsets of R, we
have

6a(E,)Ba(E2) c B«(E! + E2).

When B = C*(G, £), a is defined by a cocycle c, and a € B, then spa(<a) may be
alternately described using the following equation:

spa(a) = ( s e l : f(s) = 0 when / e Ll(K) and Vy € E, [eilc(:i')a(y)f(t)dt = 0}

= ( s e l : /(*) = 0 when / e L'(R) and Vy 6 £, a(y)/(c(y)) = 0}

= c(y(supp(a))) (here supp(a) = {y e £ : a(y) # 0}).

Hence the spectral subspace B"(E) is {a e B : c(y (supp(a))) c E}, and if E is
closed, then Ba(E) = {a e B : ;(supp(a)) C c"'(E)}. In particular,

A(P(c)) = {aeB: y(supp(a)) c ^ ' ( [0 , oo))} = fl°([0, oo)).

We can also define the spectrum of the automorphism group a by

sp(«) = U { s p » : a e B}.

This is a closed subset of D& but in general it has no algebraic properties that are
useful to us. One can modify this set to get the Connes spectrum T{a) of a, which
is a closed subgroup of R (see [20, 8.8.2] for the definition). For an automorphism
group a given by a cocycle c it turns out ([26, p. 112]) that T(a) = Roo(c), where
Roo(c) = fl{c(G n (U x U)) : U c G(0) is open}. In [29] it was shown that, when
G is minimal, /?oo(c) (more precisely, /?<x>(cX which is what one gets if the closure of
c(G C\(U x £/)) above is taken in R U {oo}) is an isometric isomorphism invariant
for the algebra A(P(c)). Here we shall need a 'measure-theoretic' version of Roo(c).
Recall that a Borel measure /x on G(0> is ergodic if, whenever we have a Borel subset
F c G(0) with /i(r(j-1(F))AF) = 0 (that is, F is almost invariant) then F is either
null or conull.
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DEFINITION 2.3. (see [28, Definition 3.1]). Let / i b e a given ergodic measure on
G(0). Let c : G —> K be a Borel homomorphism (that is, a Borel cocycle).

(1) V?£,(c) is the set of all t e K with the property that for every e > 0 and every
Borel set B c G(0) with /z(£) > 0 we have v{{B x B) n c"1 (f - e, t + e)) > 0.

(2) We say that oo e )?£,(c) if for every M > 0 and every Borel set B c G<0) with
jii(fi) > 0 we have v((B x B) n c~l[M, oo)) > 0.

(3) We write R^{c) for R^(c) if oo i R^(c) and rt£,(c) = R^(c) U {oo} otherwise.

Some basic properties are given in the following proposition. The proofs can be
found in [28].

PROPOSITION 2.4. Let /x be an ergodic Borel measure on G(0) and let c : G —*• IR
be a Borel cocycle. Then

(1) #£,(c) is a closed subgroup of R; that is, it is either {0} or R or kHfor some
UK.

(2) R^(c) is either {0}, {0, oo}, IR U {oo} or XT U {oo} for some A e K .
(3) Ifa<b<oo and [a, b] n R^(c) = 0, then every Borel subset of G(0) with

positive measure has a subset F, with positive measure, satisfying (F x F) D
c-'([a,6]) = 0.

(4) c is a Bore/ coboundary {that is, there is a Borel function g : G<0) ->• IR suc/i f/iaf
c(x, j ) = g{y) - g{x)for v - a.e. (x, y) e G) if and only if' R^{c) = {0}.

(5) If R%o{c) = XZ, then there is a coboundary a such that c(u, v) + a{u, v) e kZ
for all {u, v) in G.

3. The lattice of invariant projections of n(A(P))

We now assume that B = C*{G, E) as above, A — A{P) is an analytic triangular
subalgebra of B associated with a faithful cocycle c on G; that is, P = P(c) =
{(x, y) € G : c(x, y) > 0}. Also we fix an irreducible representation n of B. As we
saw above, there is a (unitary) representation {(i, G<0) * K, U) of (G, E) such that n
is its integrated form; that is,

= f f{y)A1/2{y)U{y)i-(s{y))dku{y), feCc{G,E)

and the space on which n acts can be identified with / e K(u)d^i{u). We write K =
/ffi K(u)dn{u). Fora e C0{G(0)) and§ e f9 K(u)dfi{u), {n{a)^)(u) = a{u)^{u).
Hence every projection Q in B{K) whose range is invariant for n{A) is decomposable
(since it commutes with n(A) n n(A)* = 7r(C0(G

(0)))); that is, Q = / e Q{u)dfi{u).
As was noted above, for every a e Af(C0(G

(0))) with )(supp(a)) = r, a G-set, we
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have(7r(a)£)(w) = A1/2(y)a(y)U (y)^(T(u)) for any y e E such that y = (M, T(W)).

Thus n(a)Q(K) c Q(tf) if and only if f/(y)j2(r(«))f/(y)* < <2(«) for v-a.e.
y = (M,T(M)).

LEMMA 3.1. Mf/i r/ie assumptions above we have the following:

(1) /x is ergodic.
(2) Every projection Q 6 B(K) whose range is n(A)-invariant can be written as

Q = f® Q(u)dfx, where U(y)Q(v)U(y)* < Q(u) for a -almost every y e E
with j(y) = (u, V) e P.

PROOF. (1) Suppose F c G<0) is a Borel subset satisfying (j,(FAs(r-l(F))) = 0.
Write Q = /® Q(u)dfi(u) e B(/O where Q(u) = XF(U)IKM. Then for <7-a.e.
y e £ and y'(y) = (M, U) we have £/(y)(2(u)£/(y)* < G(M) because this fails only
if v e F and u £ F. Therefore, for every a e N(C0(G

(0))) that is supported on a
G-set, we have n{a)Q{K) c Q(AT); hence QCA") e 7r(B)' = O . Thus F is either
null or conull.

(2) This follows from the discussion preceding the lemma, since the supports of all
a € W(C0(G

<0))) n A cover j~\P) (see [12]).

Since /x is ergodic it must be either concentrated on a single orbit [w] in G(0)

([«] = {v : (M, I>) e G}) or JU([M]) = 0 for all u € G(0). In the latter case /* is said to
be properly ergodic.

We recall that lat ;r(A) is the lattice of all projections Q e B(K) whose range is
left invariant by every n(f), f e A.

We shall use the notation [M], where M c K is a subset of the Hilbert space K, to
denote the (closed) linear space spanned by M. Also, when an automorphism group
a of our C*-algebra B is fixed, we write B(E) for the spectral subspace determined
by a and the set E in place of B"(E).

The following is the main result of this section.

THEOREM 3.2. Let n be an irreducible representation of B = C*(G; E) and let
(li,G(0) * K,U) be the associated representation of E. Then

(1) lat7r(A(P)) is a nest {that is, it is totally ordered).
(2) Ifn is properly ergodic, then lat7i(A(P)) is either {0, /} or a continuous nest.

Furthermore, \atn(A(P)) = {Q, : t e R] U {0, /} where Q, is the projection
onto [B[t, oo)Q(K)] and Q is any non-trivial projection in lat7r(A(P)).

(3) If /x is supported on an orbit, then n is equivalent to Indeu for some u e G(0).

PROOF. Let c e Z\G, R) be a cocycle satisfying P = {{x, y) e G : c(x, y) > 0}
and let a = [a,] be the corresponding automorphism group; that is, a,(f)(y) =
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), / G C*{G; E). Let n be an irreducible representation of C*{G; E) and
let P and Q be projections in latn(A(P)). For such a projection P we write

Ejf = / \ [n(B[t, oo))P(K)],
t<k

where fi = C*(G; E). When X, < k2, Ep
t > E[2 and

Ep = /\[n(B[k, oo))P(K)] = /\ /\[n(B[t, oo))P(K)] = /\ Ep.

Also n(B[t, oo))Ep(K) c Ep
+t(K), as B[t, oo)B[s, oo) c B[t + s, oo). Hence

w(B[/, oo)) \ / E[(K) < \ / EP{K)

(and S[r, 00) / \ £/"(*") c / \ E[(K)). Since this holds for all t, we conclude that
\/ Ef G TT(B)' = C/, and therefore that \J E{ = I, provided P ^ 0, while
f\E£ = 0 in any case. It follows that there is a spectral measure Ep(-) defined on
the Borel sets of R such that E*"[A, 00) = E[. If we write V,p = - / eitsdEp(s),we
have

7t(oc,(a)) = Vt
pn(a)Vt

p' for a e B, t e R,

by Forelli's Spectral-Commutation Principle (see Scholium 2.8 and Theorem 2.13 of

[11]).
The same argument applies to the projection Q e latn(A(P)) and so we may write

n(oc,(a)) = V,Q7z(a)V,Q' = Vpn(a)V,<".

This, of course, implies that VPV,Q lies in n{B)' = £1. Hence we may write
Vp = k{t)V,Q where k is a character of R, that is, X(t) = eitr for some r e R. We
then find that

fe"sdEp(s)= f eitseilrdEQ{s)= I e"sdEQ(s - r).

Thus Ep[s, 00) = £G[s - r, 00), for all 5 e 1. This, however, implies that P
and Q are comparable. Suppose, indeed, that r > 0 and take 0 < e < r. Then
e - r < 0 and {2(/Q < E?_r(K) = EP(K) c />(£), so that G < P. Similarly,
if r < 0, <2 > P. So we may assume that r = 0. Then £''(•) = £ e ( ) . Write
£r = Ep[t, 00) and £( = V(<J

 £ / > ^ ' co), and let F, = E, - £,. For every 5 > 0
we have [n(B[s, oo)E,(K)] c [TT(B[5, oo))7r(fl[f - s/2, oo))/*^)] c [n{B[t +
s/2, oo))P(K)] c E,. Hence F,n-(B[s, oo))F, = 0, Vs > 0. If / € CC(G; E)
then we may write / = /i + /2 + /3, where / , G A(P) n CC(G; £) c B[s, 00)
(for some s > 0), /2 e A(P)* n CC(G; £) c fi[.$, 00)* and /3 € C0(G

(0)). Hence
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F,jt(f)F, 6 F,7T(C0(G0))F,. Since TT(CC(G; E)) is CT-weakly dense in B(K) (as it
is irreducible), we have

FtB{K)Ft c F(7r(C0(G
(0)))"F,.

Hence F, is an abelian projection in B(K) and therefore it is a projection of rank 1.
Since F, G 7r(C0(G

(0)))', it corresponds to an atom of /x. As \x is ergodic we conclude
that either /x is supported on an orbit or E, = E,. However, observe that we always
have Eo < P < Eo and Eo < Q < Eo. Hence, if /x is properly ergodic, then P = Q.
On the other hand, if /x is supported on an orbit, Eo and Eo differ by at most one
dimension. So again, in this case, either P < Q or Q < P.

We have just seen that lat it (A (P)) is always a nest and that if /x is properly ergodic,
then the nest is continuous. Also we have seen that for every P e latn(A(P)),
lat(A(P)) = {Ff : A. e K] U {0, /} if /x is properly ergodic, and latjr(A(/>)) =
{E[, E[ : A G R] U {0, /} if /x is supported on an orbit. In fact, if /x is properly
ergodic and P e \atn(A(P)), then £,+,(#) c [n(B[t, oo))P(K)] c EfiK) for
every e > 0. From continuity we conclude that £/" = [it{B[t, oo))P(K)]. Hence
latn(A(P)) = {[it(B[t, oo))P(K)] : t e R) U {0, /} in this case, as stated. On
the other hand, if /x is supported on the orbit [u], then K = X *̂e[«] K(w) and» by
ergodicity dim K{w) = 1. We can then identify K with €2([M]) and U(wu w2) = 1.
It follows that the integrated representation 7T is equivalent to Indeu.

Theorem 3.2 tells us that latir(A) consists of a nest of decomposable projections
that is continuous if the measure /x is properly ergodic. To get further information
about lat7r(A) and, in particular, to make use of tools from ergodic theory, we have to
'get inside' each projection Q e lat7r(A) and analyze the components Q(u). Scrutiny
of the proof of Theorem 3.2 leads to the following somewhat technical result that will
be useful to us in this analysis. Here again, we let n be an irreducible representation
of C*(G; E) and we assume that (/x, G(0) * K, U) is the triple associated with it.
Fix some Q e lat7r(A(f)) and assume Q <£ {0, / } . Then Q = fm Q(u)dn(u),
Q(u) e B(K(u)). The fact that Q G lat7r(A(P)) is equivalent to the inequality:

U(u, w)Q(w)U(w, u) < Q(u) for v-a.e.(«, w) in P.

(Here v is the measure obtained on G by integrating over /x.) We write Q, for the
projection onto [B[t, oo)Q(K)]. Then Q, = /® Qt{u)dyL{u) where

(1) Qt(u) = \/l<c(UiW)U(u,w)Q(w)U(w,u) /x-a.e. u. It follows that for v-a.e.
(u, w),

(2) Qc(U,u,)(u) = U(u, w)Q{w)U(w, ii), and

(3) Qt+C(u,w)(u) = V,<c(u,,«) ^C". v)Q(v)U(v, u) = U(u, w)Q,(w)U(w, u).

We shall need the following proposition.
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PROPOSITION 3.3. Suppose n is properly ergodic, Q e \atn(A(P)), Q £ {0, /}
and A c X(= G(0)) is a Borel subset with n(A) > 0. Define for u e X,

d(u) = sup{f : Q,(u) = Q(u)}\ b(A, u) = inf{c(«, w) : u < w e A};

t(A) = essinf{J(M) : u e A}.

Then Ql{A)(u) = Qt(A)+b(A,u)(u) ix-a.e. u.

PROOF. Note that both d and b{A, •) are Borel functions. Consider [7T(A(P))JT(XA)

Q(K)]. (Here TT(XA)Q(K) is the space/® Q(u)(K(u))dfi(u)). Itliesinlatw(A(P)),
and thus, there is some t such that

[n(A(P))7i{XA)Q{K)} = [n(B[t,oo))Q(K)].

Hence, for /z-a.e. u,

Q,(u)= \ / U(u,w)Q(w)U(w,u).
u<weA

For ueAwe get

Gr(«) = G(«)-

Thus / < d{u) for a.e. u e A. Hence t < t{A). Also, for u < w e A,

U(u, w)Q(w)U(w, u) = U(u, w)Q,(A)(w)U(w, u) < Q,w{u)

(as Qt{A) G lat7t(A(P)) and u < w). Therefore Q,(u) < QnA)(u) < Q,(u) (the last
inequality follows from t < t(A)). We conclude that

= V U{u,w)Q(w)U(w,u).
u<weA

Now, for u < w e A, Q(w) = Q,(A)(w). Hence

G/(A>(«)= V U(u,w)Q(w)U(w,u)= \J U(u,w)Q,(A)(w)U(u,w)
U<W£A U<W€A

= \f Qt(A)+c(u,w)(u) =
u<weA

The last equality follows from the definition of b(A, u) and the continuity of {(?,}.
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4. R^(c) = {0, oo}

We keep the assumptions and notation of Section 3. In particular, n is assumed
to be irreducible, so the measure /x is ergodic. Our objective is to understand the
structure of latn(A(P)) in terms of the 'asymptotic distribution' of the cocycle c.

THEOREM 4.1. IfR^c) = {0, oo}, then\atn(A(P)) = {0, / } .

PROOF. Since R^(c) = {0, oo}, /x is not supported on an orbit, but is properly
ergodic. Assume lat7r(A(P)) ^ {0, /} and choose Q e latn(A(P))\{0, / } . For this
Q, letd(-), b(-, •) and/() be as defined in Proposition 3.3. Write a = essinfuexd(w).
We claim that a = 0. Assume that this is not the case; that is, assume that a ^ 0. For
a given u assume that there is some w e X such that d{u) < c(u, w) < d{u) + a/2.
If u < v < w and d(u) < c(u, v), then

a a d(v)
c(v, w) = c{u, w) — c(u, v) < d(u) -\ d(u) = — < ——.

Hence, Q(v) = QC(V,w)(v) and Qc(u,v)(u) = Qciu,w)(u). Thus Q(u) = QdW(u) =
\/u<v<w Qc(u,v)(u) = Qau.w)(u). But then c(u, w) < d(u). Since we assumed that
d(u) < c(u, w), we arrive at a contradiction showing that no such w exists. But
then Q(u) = Qd(U){u) = Qdw+a/iiu), contradicting the definition of d(u) and the
assumption a > 0. This proves that a = 0, as claimed.

Our next goal is to produce a set B of positive measure such that the restriction of
c to G fl (B x B) is bounded. To this end, we write, for every n > 1,

Bn = {ueX\ d(u) < l /«} .

Since a = 0, ix(Bn) > 0 for every n > 1. Fix numbers 8 and L, with 0 < 8 < L.
Using part (3) of Proposition 2.4 and the fact that R^ic) = {0, oo}, we can find, for
every n > 1, a subset An c Bn, with

(1) n{An) > 0;
(2) (Anx An)nc-l[S,L] = 0;
(3) If n(C\Bn) > 0 we require that An = Am for all n, m and write Aoo for An; that

is, Ax c P ^ , Bn. Using Proposition 3.3 we then have, for every n > 1,

G»(A,)(«) = Qt(An)+HAn,U)iu), u e X and t(An) < \/n.

Write fioo for HBn and consider first the case when B^ has positive measure and then
the case when it has measure zero.

Case I : If ^{B^) > 0, then An c B^ for every n. Consequently, d(u) = 0 for
every u e B^ and thus tiA^) = 0. Hence, for u e Bx, Q{u) = QbtA^^iu). Since
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d(u) = 0, 6(Aoo, M) = 0. If Mi, u2 are both in Bx, then there are w\, w2 e A^ such
thatO < c(Ui, Wj) < 8, i = 1, 2. But (w\, w2) e Ax x A,*,, so either \c(wu w2)\ < 8
or \c(wi, w2)\ > L. It follows that either |c(«!, u2)\ < 35 or \c(uu u2)\ > L — 28.
With 8 fixed and letting L -*• oo, we conclude that for every (MI, U2) e BM x BOT,
|c(«i, M2)| < 35. Hence c|BooXfloo is bounded.

Case I I : Suppose JU(^OO) = 0. For u £ B^, d(u) > 0. Suppose \/n < d(u). Then
u £ Bn. Also b(Bn, u) > 0 because if it equals 0, then for 0 < € < d(u) - \/n, we
have w e Bn such that 0 < c{u, w) < e < d(u); hence QC(U,W)(u) = Q(u). But also
Qd(u) = (?(«); hence <2C(M,W)(M) = Gd(«)(«)- It follows that 2(w) = Qdw-ciu^iw)-
Hence d(u) — c(u, w) < d(w) < \/n and

d(u) < c(u, w)+ -<€ + - < - + (d(u) - - ) = d{u).
n n n \ n)

This contradiction shows that b(Bn, u) > 0 for n > l/d(u). Now write M(u) =
[l/d(u)] + 1, c(u) = BM(U), and N(u) = max(M(u), [l/b(c(u),u)] + 1). Then
b(c(u),u) > 0 (as was shown above) and in fact l/N(u) < b(c(u),u). Also
c(u) = BMW 2 BN(u); hence b(c(u), u) < b(BN(u), u). Thus l/N(u) < b(BN(u), u).
Write N for N(u). Then, for n > N,

t{AN) <^< b(BN, u) < b{Bn, u) < b(An, u) + t{An)

and thus Q,(Afl)(
u) ^ Qb(An,u)+t(A,){u)- Using Proposition 3.3 we get Q,(AN)+HAN,U){U)

> Qt(An){u), for a.e. u. Since t(An) < \/n —> 0 (as n —• oo), we have Q(u) <
Qt(AN)+b(AN,u)(u).

But the reverse inequality is valid since t(AN) + b(An, u) > 0. Hence Q(u) =
Qt(AN)+b(,AN,u)(u)- We thus find that t(AN) + b(AN, u) < d(u). Hence b{AN, u) <
d(u), and so we can find some w € AN with 0 < c(u, w) < d{u) + 5. Clearly this
can also be done for every n > N(u) in place of N(u) (and for every u £ Bx). Given
Mi, «2 in X\BX, we write N — max(iV(Mi), N(u2)) and then we can find w\, w2 in
AN such that 0 < C(M,, wt) < d{ut) + 8. We now argue as in Case I to get

\c{uuu2)\ <d(Ul)+d(u2) + 38.

If Mi, u2 are in Bx, then c|B,xBl is bounded by 2 + 35.
We conclude that in both cases there is a set B of positive measure \i such that c\BxB

is bounded. It follows that c\BxB is a coboundary; hence there is a Borel function
g : B -+ K such that

C(JC, v) =

But then we can find a Borel subset A Q B with:
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(1) n(A) > 0, n(B\A) > 0;
(2) u e A, u < v e B implies v e A.

So writing Y = [u e X : 3w e A such that w < u}, we have:

(i) Y is increasing in X (that is, if u € Y and v > u then v G Y);
(ii) Y is Borel; and

(iii) fi(Y) > 0 and M ( X \ K ) > 0 (as B\A c X\y).

But then it follows ([13, Lemma 3.8]) that c is a Borel coboundary on all of X
contradicting the assumption that R^{c) = {0, oo}.

5. /?£(c) = {0}

In this case, c is a coboundary, so c may be written as c(u, v) = g(v) — g(u) v a.e.
where g : X —> K is a Borel function. It follows that there is a subset F C X that is
decreasing; that is, if z < y e F, then z e 7 and ix(Y)/x(X\Y) ^ 0. Let £> be n(xr)-
Then 2 e \atn(A(P)) and g ^ {0, 1}. Given an a e C*(G, E) whose support is an
open G-set r c P , and / e C0(G(0)), we have,

(af)(y) = a(y)f(s(y)) = f(r(r(y))a(y) = ((/ o x)a){y).

Hence also
n(a)n(xy) = n(xy° r)n(a) = Tt(Xz

and

In fact [K(a)n(a*)(K)] = [7t(XrWKK)] and

Jt(Xr-HY))(K) = Jt(Xr'<.Y))jt(Xr(r))(K) = [it (Xr-.(y))jT {d)n (a*) K]

c

Hence [7r(a)<2(*0] = n(Xr-<(.Y))(K). Since [7r(fi[r, oo))Q(K)] can be written as a
supremum of a countable family {[n(an)Q(K)]} where each an is supported on an
open G-set (and these supports have c~' [t, oo) as their union), we conclude that there
is a Borel set Z, c X with 7r(xz,)(£) = [n(B[t, oo))Q(K)]; that is, Gr = n(xz,)-
From Theorem 3.2 it now follows that latn(A(P)) = {n{xz,))i^ and, in particular,
lat7r(A(/>)) c 7r(C0(G

<0)))". We conclude:

THEOREM 5.1. //J£,(c) = {0} rA««latw(A(P)) c jr(C0(G(0)))".

REMARK. Note that if fi is concentrated on an orbit [M], then c is a coboundary and
so J?£(c) = {0}. Hence, in this case, latn(A(P)) c 7r(C0(G

<0)))".
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6. *£(c) = kZ

In order to discuss the case where R^(c) = XI we shall have to 'manipulate'
c in a measure theoretic way, sometimes replacing it with a Borel cocycle c{ that
is cohomologous to c. The set Pt := c^'([0, oo)), then, is a Borel partial order in
G that no longer need be open. This fact is a nuisance, but causes us no material
difficulty. The way to handle this additional complexity is suggested in [12] and
we digress momentarily to deal with it. Our representation n of C*(G, E) will be
fixed, as will the associated representation O, G(0> * K, U) of (G, E). We also let
v = f \udn.(u) and v — f o"dfA,(u), as is customary. Then (G, v) is an ergodic
measured equivalence relation in the sense of Feldman and Moore [6,7]. We write M
for the algebra generated by the functions in L°°(v) that are supported on the inverse
images under j of non-singular Borel G-sets in the sense of Renault [26] and that
transform under the action of T in the same way that functions in CC(G, E) transform.
(The algebra operations are the same ones used to define C, (G, E).) Thus M is a bit
larger than BC(G, E), the bounded Borel functions with compact support on E that
transform appropriately, if X fails to be compact, but it is not much larger. In any
event, it is evident from the fact that n can be expressed in integrated form that n
may be extended to M using Lebesgue's dominated convergence theorem and the fact
that the image of M under n lies in the strong closure of 7r(C*(G, £)). It should be
emphasized that M is not a von Neumann algebra, in general; in particular it is not the
von Neumann algebra that Feldman and Moore associate to (G, v) (and a 2-cocycle
on G). While it is related to such a von Neumann algebra, we believe it will cause no
confusion to use this notation; in fact, we believe that it will be helpfully suggestive.

It may also be helpful to note that because our C*-algebra C*{G, E) is assumed
to be nuclear, the measured equivalence relation (G, v) is hyperfinite [12]. This
allows us to assert (after taking an inessential contraction, if necessary) that there is
a multiplicative cross section a : G i—> E to the map j . Using a we obtain, by
composition, an isomorphism between M and the space of functions in L°°(v) that
are supported on non-singular Borel G-sets: For / e M, f o a is in the latter space,
and the map / i—> f o a is an algebra isomorphism. As a result, we shall pass from
one algebra to the other with little more than a brief acknowledgment.

Given a Borel set Q c G of positive v measure, we let S'(Q) be the set of functions
in M that are supported on j ' 1 (Q). It is then evident that the map Q i—> 5r(2)isone-
to-one (modulo v-null sets). (It is perhaps worthwhile to insert here that this assertion
is not the spectral theorem for bimodules in its measure theoretic form [13]. It is a much
weaker statement. No topologies on or closures of the space 2?{Q) are mentioned,
and the range of the map is not claimed to be all the bi-modules over si := ^"(A).)
Note in particular that if P is a Borel subset of G containing A that is transitive,
meaning that P o P c. P, then &(P) is an algebra containing si', which in turn may
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be viewed as L°°(X, (i). In fact, one only needs to assume that v(P\P o P) = 0 and
v{P\A) = 0, by arguments similar to those in Theorem 3.2 of [13]. If, moreover,
P U />"' = G, then £^(P) + ^(P)* - M because every non-singular Borel G-set
may be expressed as the union of such sets, one contained in P and the other contained
in P~l. Note, in particular, that if c is a Borel cocycle and if P is c~l([0, oo)), then
2?{P) + £?{P)* — M. The cocycle is faithful in the same sense used with continuous
cocycles if and only if S?(P) fl ^(P)* = s/. The cocycle induces a one-parameter
automorphism group of M in the same way as a continuous cocycle induces one on
CC(G, E) and C*(G, E): Namely, a,(f)(y) = eitc^f(y), f e M. Observe that
when this automorphism group is spatially implemented in the representation space of
n by a unitary group, say {£/,},eR, then, writing /J, for Ad(£/,), sp^(7r(/)) is contained
in a set F if / is supported on c~l(F), for any / in M. Given a Borel cocycle c, and
i e l , w e write M[t, oo) or Mc[t, oo) for the space of those / e M that are supported
a.e. v on c~\[t, oo)).

We require the following measure theoretic version of Theorem 3.2.

THEOREM 6.1. Letn be an irreducible representation ofC*(G, E) and let (fi, G<0)*
K, U) be the associated representation of (G, E). Further, let M be the algebra
associated with n and /x above and extend n to M using the fact that n is the integrated
form of (M, G(0) * K, U). Let c be a Borel cocycle on G, let P = c"'([0, oo)), let
^(P) be the associated subalgebra of M. Then

(1) \2Xn(^{P))isanest.
(2) Ifn is properly ergodic and if\atn(^(P)) is not trivial, then it is a continuous

nest and, given a non-trivial Q e l a t^ ( r ( f ) ) , we have

{Q,:teR}U {0, /}

where Q, is the projection onto [Mc[t, oo)Q(K)].

PROOF. The proof is essentially the same as the proof of Theorem 3.2. The only
change is in the proof of the fact that for / e M, F,7t(f)F, e F,n{srf)"Ft. For
this, note that, as was shown there, F,rt(M[s, oo))F, = 0, Vs > 0. Let a be in M
with support contained in j'l(r), where r c P is a non-singular Borel G-set. So a
is an element of ^(P). Let bs e L°°(X, n) be the characteristic function of the set
[x e X : c(x, r(x)) > s}. Then bs • a is in M[s, oo), where bs-a(y) := bs(r(y))a(y).
Therefore F,n(bs • a)F, = 0, s > 0. But then n(bs)F,n(a)F, = 0 for all 5 > 0. It
follows that n(b)F,7t(a)F, = 0, where b is the characteristic function of r(r) . But
b • a — a; hence F,n{a)F, = 0. By taking adjoints this holds also for every element
supported on j~l(z), for any non-singular Borel G-set r c P~l. It follows that
for every / e M, F,n(f)F, e F,n(^/)F,. From irreducibility it now follows that
F,B(K)F, c
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REMARK. We observe in passing that Theorem 6.1 may have all reference to the
topological structures on G and E removed. What is at issue really is the Borel
structure. In fact, it applies to the context where (G, v) is a measured equivalence
relation with countable equivalence classes in the sense of Feldman and Moore [6,7]
determined by a quasi-invariant measure /x (so v is obtained by integrating counting
measures against /x) and where M is the algebra generated by the functions in L°°{y)
that are supported on non-singular Borel G-sets. If P is given by a Borel cocycle and
if it is an irreducible representation of M that may be expressed in terms of a Borel
representation (/x, G(0) * K, U) of G, then the assertions (1) and (2) in Theorem 6.1
about lat n(^(P)) remain valid. In our application of this generalization of Theorem
6.1 there is no need to mention E because, as we noted above, our (G, v) is hyperflnite,
so E is measure theoretically trivial.

We now turn our attention to the case where R^(c) = A.2. To simplify the writing,
we may assume without loss of generality that A. = 1. Using Proposition 2.4(5), there
is a Borel function g : X —>• D& such that c(u, v) + g(v) — g(u) e Z for all (u,v)eG.
In fact we can assume 0 < g(x) < 1 (simply replace g(x) by g(x) — [g(x)]). Write

d(u, v) = c(u, v) + g(v) - g(u).

Then d is a cocycle with values in 1. Write G\ — d~\0). Then G{ is a Borel
subgroupoid of G containing A. The restriction c\Gl is a coboundary (for (w, v) e Gu

c(u,v) = g(u) -

LEMMA 6.2. Ifc(u, v) > 0, then d(u, v) > 0.

PROOF. Suppose c(u, v) > 0 and d(u, v) < 0; then d(u, v) < - 1 and g(v) -
g(u) =d(u, v)-c(u,v) < - 1 . ButO < g(u),g(v) < 1, and thus g(v) -g(u) < -1
is impossible.

Let it and M be as in our discussion preceding Theorem 6.1. Write Md[n, oo) for
&(d-l[n, oo)) and Px = d~l[0, oo). Fix a Q € latn(A(P)) and assume that Q is
different from 0 and / . Let Fn be the projection with range [n{Md[n, oo))Q(K)].
From Lemma 6.2 it follows that Pc/>, ,and clearly, ^'(Pl)M

d[n, oo) c Md[n, oo).
Hence each Fn e lat7r(^(P)). In fact, we have,

• • • c F, c Q c Fo c F_! c • • • .

Using Theorem 6.1(2) we can find {tk} c R, tk < tk+l such that Fn = Qtn. Write
Ln = Fn — Fn+1. The algebra M] := £f{G\) is a *—subalgebra of M containing
A that may be viewed to be of the kind discussed in the remark following the proof
of Theorem 6.1. We define, for every n, a representation nn of M\ on Ln(K) by
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* « ( / ) M = n(f)L£, f € M L Since G, orf-'tn.oo) = d~l(0) o d~l[n, oo) c
d~l[n,oo), n(Mi)Fn(K) c FB(tf). Hence Ln, Fn e 7r(M,)'. In fact we claim Ln is a
minimal projection in n{M\)' because if Ln = £, + £2, where each £, is a projection
injrCM,)', then first of all, n(Md[\,oo))El{K) c 7r(Md[l, oo))Fn(K) c Fn+i(/O c
AT0£2(/i:). Similarly, <7r(a)£>,§i) = Ofor£ € F,;(AT)anda € Md[l, oo). Therefore,
(^2,n(a*)^) = 0 and we conclude that 7t(Md(-oo, -l])Ei(K) c / / 0 £2(AT).
Finally, ^(M^O^f.C/i:) = n{Mx)Ex(K) c fi^AT) c AT 0 £ 2 (^) . Since the
cocycle d takes its values in the integers, this shows that n(M)El(AT) c K © E2(K).
Since 7r is an irreducible representation of M, this shows that one of E{ and E2 is
zero. We thus arrive at the following

COROLLARY 6.3. Each nn is an irreducible representation of M\.

In fact, we may assert that the representation nn satisfies the conditions in the
remark amending Theorem 6.1. The representation Vn of Gi whose integral gives 7tn

is simply given by the formula Vn(y) = [Fn{r(y)) - Fn+i(r(y))]U(y)[Fn(s(y)) -
Fn+i(s(y))], y € G\. Moreover, since c\Gl is a Borel coboundary, we can modify
Theorem5.1togetlat7rn(^(PDGi)) c nn(srf)". The following lemma, then, allows
us to interpolate the Fn with elements of lat7rn(^(P n GO).

LEMMA6.4. {F e lat7r(^(P)) : Fn+1 < F < Fn] = [Fn+i + L : L e

^ ^ C f n G , ) ) } .

PROOF. If fn+1 < F < Fn, then F - Fn+X e B{Ln{K)). For every | e Ln{K) and

= (F. - Fn+1)n{f)F$ e LnF{K) = (F - F«

Hence, F - Fn+1 e lat7rn(^(/) n d ) ) . Conversely, if F - Fn+l e latJtn(^(P D
GO) and if / e *T{P), then T T ( / ) F £ = w(/)(F - F,,+1)| + n(f)Fn+l!=. Since
Fn+1 e lat7r(<^(/>)), n(f)Fn+£ e Fn+1(A") c F(AT). It remains to show that
x(f)(F — Fn+i)% e F(K). We can write / 0 for the restriction of / to G-\ and then
/ - /o € M"[l, oo). Hence TT(/ - /0)(F - F.+O^ = TT(/ - fo)Fn(F - Fn+l)!- e
FH+i(K) c F(AT) as7r(Mdtl,oo))Fn(A:) C Fn+1(AT) c F(AT). Also TT(/0)(F -
F-+i)? = w«(/o)(^ - ^+1)1 c (F - F)1+1)(A') (as F - FB+1 € lat7rn(^(P D GO).
This completes the proof.

COROLLARY 6.5. IfR^ic) = 2, then either

(a) latn(A(P)) c {Fn+1 + n(xY)(Fn - Fn+l) :nel, Y c X Sore/ correction}, or
(b) la t ; r (A(P)) = { 0 , / } .
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REMARK. Note that if Q is a projection in lat7t(A(P)), different from 0 and /
and if the Fn are as above, then we cannot have Fo = 0 and Fx = I (implying that
each Fn is 0 or /) because then, by the Corollary, \a\.n{A(P)) would be contained in
n(C0(G

0))" and this would imply the existence of a Borel decreasing subset of G(0).
This, in turn, would imply that c is a Borel coboundary ([14, Lemma 3.8]).

If R^(c) = Z then \A is properly ergodic and latn(A(P)) is either trivial or a
continuous nest by Theorem 3.2. The following corollary shows that in the latter
case, the nest is 'uniformly distributed' in a certain sense and has uniform infinite
multiplicity.

COROLLARY 6.6. ///?£, (c) = 1, then,forn-a.e. u e X, {F(u) : F e lat7r(A(P))}
is either trivial or order isomorphic to Z U {±00}.

PROOF. We can assume lat7r(A(/>)) ^ {0, /} and then lat7r((P)) c {Fn+1 +
Tt(xr)(Fn - Fn+i)\n el, Y c X Borel}. If F e \atn{{P)), then

F(u) = Fn+l(u) + XY(u)(Fn(u) - Fn+i(u))

= iFn+l(u) u i Y
\Fn{u) ueY.

Hence {F(u)\F e latn(A(P))} = {Fn(u)}. It remains to show that, for m ^ n,
Fn(u) ^ Fm(u) for /j,-a.e. u e X. Write Zn = {u e X\Fn(u) = Fn+i(u)} and assume
that for some m e 1, /i(Zm) > 0. For u e X, Fn{u) = \/{U(u, w)Q(w)U(w, u)
I d(u,w) > n} as Fn(K) = [n(Md[n,oo))Q(K)]. Hence, for v-a.e. (u,v) in
d-\{l}), Fn+i(u) = Fn(v) and, for («, u) e (Zm x Zm) nrf- 'ai}), we get

Fm(«) = Fm+i(«) = Fm(u) = Fm+1(u) = Fm+2{u).

Hence, for a.e. M e r((Zm x Zm) n J-'({1})) we have Fm(u) = Fm+2(u). But
1 e R^(d) and that implies that r((Zm x Zm) n J"1 ({!})) = Zm (up to a set of /x
measure zero). We conclude that for a.e. u € Zm, Fm{u) = Fm+2(u). We can apply
this argument repeatedly to show that for every k € Z, Fm(H) = Fm+t(w) for a.e.
u e Zm. But this implies that for a.e. w e X and u € Zm, t/(w, w)(2(u;){/(u;, u) <
Fo(«) < <2(«). By irreducibility, Q(M) = / for a.e. u e Zm and thus, for a.e. M e X;
contradicting the fact that Q was chosen to be non-trivial.

7. R^(c) = R

Our objective in this section is to prove a 'continuous' analogue of Corollary 6.6.
That is, we shall show in Theorem 7.1 that if R^(c) = R and if latn(A(P)) is
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different from {0, /} , then the nest, which then is lat7r(A(P)) and is decomposable,
has the property that (almost) each component is continuous. This again means that
the nest is 'uniformly distributed' in a very strong sense and that it has infinite uniform
multiplicity.

We begin by noting that when R^(c) = R, given a < b and subsets Y and Z of
G(0) of positive /z-measure, then

v((Y x Z)Dc-l(a,b)) > 0.

To see this take e < (b - a)/2 and fix some t e K such that v((Y x Z) n c~\t —
€,t + €)) > 0 (by ergodicity this can be done). Since

(YxZ)Dc~1(a,b) 2 ((Y x Y)r\c~x{a-t +€, b-t-e))o((Y xZ)nc" ' ( ( - e , t+e))

we are done. This will be used in Lemma 7.3 and Lemma 7.5 below, which lie at the
heart of the proof of

THEOREM 7.1. Suppose R^(c) = Rand lat n(A(P)) ^ {0, /} , so that latn(A(P))
= {Q, :t € R}for some fixed Q in latn(A(P)). Then for ^-almost all u € G<0> and
every t ^ s in Dt, Q,(u) # Qs(u).

P R O O F . The proof will use four l emmas . Throughout , a g e lat n(A(P)) different

from 0 and / will be fixed.

LEMMA 7.2. Write J(Q) = {(u,v) e P : U(u,v)Q(v)U(v,u) ^ Q(u)}. Then
P o J(Q) o P ^ J(Q) (up to a set of v-measure zero).

Thus J (Q) is a Bore I ideal subset of P, meaning that in the notation of the previous
section, &(J(Q)) is a 2-sided ideal in

PROOF. For almost every {w, z) e P we have U(w, z)Q(z)U(z, w) < Q(w).
Hence the lemma is obvious.

LEMMA 7.3. For every ideal set J of positive measure there is a t with 0 < t such
that c~l(t, oo) c / c c~' [t, oo) (up to a set ofv measure zero).

PROOF. Write t = essinf c\}. Clearly / c c~l[t, oo). Suppose / 2 c~\t, oo).
Then there is a Borel G-set r c P of positive measure such that x c c~l(t, oo), and
v(J n T) = 0. In fact, by making r smaller if necessary, we can find some t < t\ such
that r c c~l(tu oo) and v(J n T) = 0. Take t < t2 < ty. Since t2 > t = essinf c\j,
we can find a Borel G-set ti c / of positive measure such that for almost every
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(u, v) e xu t < c(u, v) < t2. Consider [r(x) x r(xx)] n G. Since R^(c) = R, we
have

v (c-'tO, h ~ h) n (r(x) x r(Ti))) > 0.

If (wx,w2) ec-'tO.r, - ? 2 ) n ( r ( r ) x r(ri)),then

c(wuxx (u;2)) = c(iui, w2) + c(w2, xx (w2)) < tx - t2 + t2 = tx,

while c(wu r(wi)) > tx. Hence (xx(w2), x{wx)) e P and

(WUT(WX)) = (wuw2) o (w2, Ti, (u>2)) o (ri(u;2), r(wi)) ePoJoPQ

We then get v{r D / ) > 0 - a contradiction.

LEMMA 7.4. Let t > 0 and F £ P satisfy F o F Q F and c~][0, t) c F.
v(P\F) = 0 .

PROOF. We may assume that F is the minimal set satisfying these conditions; that
is, we may assume that

F = {(>!, w2) e P : there are xu ... , xn e G<0) such that

(io!,^i), (jrB,io2), (jf.-.^+i) e c"'(0, 0 for all/ = l , . . . , n - 1}.

Suppose that (w ,̂ w2) e F and that X\,...,xn are as above; suppose, too, that
(u>i, u) e P and (u, w2) e P. Then if (u,v) e F, we can find & k < j such
that x,t < u < xt+i and x} < v < xJ+l, implying that (u, v) e F. It follows
that P o Fc o P c Fc; that is, Fc is an ideal set (here Fc = P\F). Hence, if
v(P\F) > 0, then there is a b > 0 such that c"1 (6, oo) c P \ F c c~x[b, oo). In fact,
P\F c c"'[r, oo); so v(c~\b, t)) = 0. But since /?£,(c) = R, this can happen only
if b > t; that is, only if b > t > 0. Now choose a Borel G-set rx c F with positive
measure such that xx c c-'[2ft/3,6). Also note that u(c"'[2/7/3, 6)n(s(T,)xX)) > 0
and we can find a Borel G- set r2 c c"'[2^/3, ft) n is{x\) x X) having a positive
measure. But then the G-set t\ o r2 has a positive measure and is contained in
c-1 [46/3,26) c c - ' (6 , oo) c P\F. But r, c c"1 [26/3, 6) c c~l[0,b) c F, so
X\ox2<ZFoFC.F. This contradicts the assumption that v(P\F) > 0.

LEMMA 7.5. Le? / ( 0 6e as in Lemma 7.2. 77KTZ V(P\(J(Q) U A)) = 0.

PROOF. J(Q) is an ideal set and, applying Lemma 7.3, we may find a t > 0 such
that c-1(f, oo) C / (Q) c c"'[?, oo). (Note that v(J(Q)) > 0 because Q is not
reducing.) Hence F = P\J(Q) contains c"1 [0, t) and clearly F o F c F. Therefore
f = 0 by Lemma 7.4 and thus J(Q) = P\A, up to a set of measure zero.
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COMPLETION OF THE PROOF OF THEOREM 7.1 We conclude from the definition of
J(Q) and Lemma 7.5 that for v-a.e. (M, V) e P\A,

(1) U(u,v)Q(v)U(v,u)<Q(u).

Hence, we can find a /it-null set N c X such that for every u £ N and every
v > u, (1) holds. Now, for every pair of rational numbers q < p we write Y —
r (c"1 (q, p) n (X x (X\A0). If fi(X\Y) > 0, then v([(X\y) x f l f l c"1 (<?, /?)) > 0
(as R^(c) = K). But then we can find a Borel G-set x of positive measure contained
in [(X\F) x X] n c'](q, p). For every u e r(r) we have u <£ Y but (M, r(«)) e
c~'(?. P)- From the definition of K, it follows that (M, T(M)) ^ X X (X\N) (otherwise
(u, r(«)) e c"1^, p) n (X x (X\N)) and w e 7). Hence T(M) e N. Since this holds
for every u e r(r), we have S(T) C N. But this is impossible since N is null and
v(r) > 0. This shows that v(X\Y) = 0. We now write No = N L> {Uq<P(x\Yg.P))
where Yqp is the Y associated with q, p as above. Then ix(N0) = 0. For every
pair of real numbers, t, s, with t < s, we can find rational numbers q < p such
that t < q < p < s. Hence, for every u £ No and every pair t, s, with t < s,
u £ r ( r ' ( ( , s ) n ( X x (X\N))).

Now, fix u £ NQ and 0 < t < s. Let q e K satisfy t < q < s. Then
M € r(<?"'('» <?) fl (X x (X\N))). Hence we can find wx such that t < c(u, u^) < q
and u>] ^ N. Similarly we can find w2 such that (7 < c(u, w2) < 5 and w2 £ N.
Using (1) and the fact that u and w2 are not in N, we get

i, w2)U(w2, Wi)Q(wi)U(wi, w2)U(w2, u)

= U(u, wx)Q{wx)U{wuu) < Q(u) .

Now, for every w with c(u, w) > s we have w2 < w, and thus,

Q,(u) — y U(u,v)Q(v)U(v,u) > U(u,wi)Q(wl)U(wi,u)
c(u,v)>t

> U(u, w2)Q(w2)U(w2, u) > U(u, w2)U(w2, w)Q(w)U(w, w2)U(w2, u)

= U(u,w)Q(w)U(w,u)

since Qs(u) = \/c{UiW)>s U(u, w)Q(w)U(w, u), Qs{u) < Q,(u). This completes the
proof of the theorem.

8. An example

We shall construct an example where n is an irreducible representation of the C*-
algebra and latn(A(P)) ^ {0, / } . This requires /?£(c) ^ {0, oo}. In the case where
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R^(c) = {0} this can easily be done, since then c is a coboundary Proposition 2.4(4).
For an explicit example, take n = Indeu. In the following example we shall find
that R^(c) = Z. Using Corollary 6.6, then, we see that the multiplicity of the nest
latn(A(P)) is infinite.

The C*-algebra is the CAR algebra. So let X be {0, 1}°° and G c X x X be
defined as follows: (x, y) e G, where x = (x,)~0, (v,)°i0, if there is some 7V such
that Xj = y, for every i > N. Then B = C*(G) can be identified with the closure
of I J ^ j M2k, where M2t is a subalgebra of B isomorphic to the 2* x 2k matrices.
We write {ef/ : 1 < i, j < 2k] for the matrix units of M2*. In fact ef/ is the
characteristic function of r-^ which, in turn, is composed of all pairs (x, y) e G, such
that xm = ym for m > k and i = 1 + £ « = o * « 2 ( \ while j = 1 + T,km=0ym2m. We
have G = \J.JJt r//' and G<0) = \J. r,.f for every k.

We shall now define representations nk of M2*. The representation space for each
is H = L2(X, ix, l\T)) = /® H(u)d/x(u), where H{u) = £2(Z) and n = Yl7=o^k>
Hk({0}) = iik([l}) = 1\2. (Note that /z is quasi-invariant. Indeed, [i is invariant.)

We let

where U e B{12(T)) is the shift (t/a), = ai+x. Now let

and (7r2(e)p/)(Jc) = /(^)xr«>(^), where V e B(^2(Z)) is defined by the diag-

onal matrix, whose jj element is e27"ja, where a is a fixed irrational number.
Noting that e\]l = e^\ + efA and, in fact, efl = ef\e^2 and efA = e2

2
2e(^,

we define n2(ef\) = n2(e\l\)7zl(ef)
2) and n2(efA) = n2(ef2)n{(e\X)

2). Finally, let

and 7r(e,-2y) = n{ef])* if / > j . This defines a representation n2 of M4 that extends
7Ti. (Note that A/2'C M4.)

For7T3 we define (^(ejf ) / ) U ) = xr»>(*)/(*), and

Using similar arguments as above, we see that this defines n3 on M8, extending n2.
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We continue inductively and get [jtk] by defining

|
10 otherwise; and

\
10 otherwise,

where w = 1, 2, 3 , . . . . We also write

10 otherwise,

and, for an operator W e B{t2(T)) we write (W7)(;c) = W/C*), / e L2(X, €
Then, it is clear that for every /, j , k there is a unitary uf^ e B(i2(I)) such that

For example, M ^ = ^> Mi22 = ^ ^ and» in fact,

"1,2 —

/ k = 0

U k = 2m - 1, m > 1

k = 2m, m > 1.

In general, we have uf/uf,' = M-f> and uf]+2m — uf^l where / = [(j +1)/2] (because
nk extends nk_\).

LEMMA 8.1. For k odd and 0 < m < 2k~2 - 1, each M2+4m,3+4m is a scalar multiple
ofV, that is,

M2+4m,3+4m ^ C v .

PROOF. We fix odd k and use induction on m. For m = 0 we have

U2,l = U2,\U\ 3 = (Ml 2/ Ml,2 = ^ *^^-

But U*VU = A"1 V where k = e2*"*; hence the claim holds for m = 0. Now we
have

(it) (k) (*) (*)
M2+4(m + l),3+4(m + l) — M6+4m,2+4m"2+4m,3+4mM3+4m,7+4m

_ (i-2) (*) (t-2)
^2+m,l+m^2+4m,3+4m"l+m,2+/n-
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But, by induction, i4+4m,3+4m 6 CV and, by construction, H2*+m
2>

1+m = (u(££2+my
and H(

1+~m
2)

2+m is a product of powers oft/, V, U* and V*. Since U*VU, UVU*, V*VV
and VVV* are all in CV, we are done.

LEMMA 8.2. Fork odd and 0 < /n < 2*"1 - 1, K(i+2m,2+2m e €U.

PROOF. We fix k and use induction on m. For m = Owe have, uf2 = U by
definition. For the induction step, we write

„<*) _ „(*) ./*> „<*>
Ml+2(m+l),2+2(m+l) ~ "3+2m,l+2m"l+2m,2+2m"2+2m.4+2m

— (u(k-l) Yu(k) ,j(k~l) a CI1
— vMl+m,2+m/ "l+2m,2+2mMl+m.2+m fc ^ - u

because ufl2m 2+2m e Cf/ (induction) and uf+J,]2+m is a product of powers of U, U*, V,
V*. However! UUU*, U*UU, V*UV = V*UVU*U = XV*VU = W and VUV*
are all in Cf/.

LEMMA 8.3. In the weak operator topology,

2*-'-i !

/ , P(e\+2m,2+2m) ̂ ^ 2
m=0

PROOF. Write Wt = Sk + Tk, where

2*- ' - l 2*- ' -2

m=0 m=0

Then Wk is a unitary operator corresponding to a translation by 1/2* (mod 1) when
we think of x € X as a number in [0, 1] (given by X^= 0*m/2m + 1) . It is clear, then,
that Wk —> I in the strong operator topology. It is easy to check that for every
*, W*SkWk = Tk.

Since || Sk || < 1 for all k we can find a subsequence Skn —• S in the weak operator
topology. But then Tkn = Wk* Skn Wkn —>• 5 in the weak operator topology (as Wkn -> /
strongly). We have-S + 5 = limn Skn + Tkn = lim Wkn = / ; hence 5 = 7/2. Since this
is the case for every weakly converging subsequence, Sk -> 7/2 in the weak operator
topology.

LEMMA 8.4. 7n ?/ie weak operator topology,

m=0
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The proof of this lemma is very similar to the proof of Lemma 8.3 and is omitted.

LEMMA 8.5. ( / , V e I ( J nk(M2*) 1 .
U=i

PROOF. Write 9/ = (\J?=l nk{M2k))". For each k odd and 0 < m < 2*"2 - 1,
"2̂ m,3+4m is in CV (Lemma 8.1); hence Vp(4+4m,3+4m) is amultiple of n^e^^J.
Thus Vp(e(

2l4m 3+4m) e *% for every such k, m. Since

/ , ' P\e2+4m,3+4m) ""^ 7
m=0

in the weak operator topology (Lemma 8.4), F e ^ . The proof that U e ^ is similar
(using Lemma 8.2 and Lemma 8.3) and is omitted.

Having denned the sequence {nk} of representations of M2* with the property
that nk+i extends nk, we get a representation n of B = C*(G) and from Lemma
8.5 we conclude that U, V e n(B)". Since U and V generate B(12(Z)) as a von
Neumann algebra, it is clear that for every T e B{12{T)), f e n{B)". But B(H) =
B(f® H(u)d^i{u)) is generated, as a von Neumann algebra, by L°°(X, fi) and {T :
T e B(H(u)) = B(i2(l))}. Thus n(B)" = B(H). We conclude

COROLLARY 8.6. n is an irreducible representation.

We now turn to the partial order P. The partial order we define here is the same as
in [29, Example 7.5]. We define a cocycle c : G —> R as follows:

c(x,y) =

where c, is a cocycle on {0, 1 }2 defined by c, (0, 1) = 1+2"'(andc,(0,0) = c,(l, 1) =
0, c,(l, 0) = -c,(0, 1)). We let P = {(x, y) e G : c(x, y) > 0}. It is not hard to
check that the partial order defined by P is the following: Let (x, y) be in G; that is,
Xj = yt for all i > some N. Then x < y if either X ^ o ' ^ ' ~ •*/) > 0 (that is, y has
more l's in the positions from 0 to N — 1 than x has) or YlfJo ( '̂ ~ *') = ^ a n (^x is

smaller than y with respect to the lexicographic order.
Now write F for the projection in B(£2(Z)) with range 12(Z_) where Z_ = [k e

Z : * < 0}. Then {/Ft/* < F and VFV* = F.

LEMMA 8.7. F € latn(A(P)).
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PROOF. Suppose first that (x, y) e G and x, = y, for all i, except that xk =
0, yk = 1. Write L = {i : x,• = 1, i < k} and order L as m, < m2 < • • • <
w p (< jfc). We define x a \ x ( 2 ) , . . . ,x ( p ) in X by: x(/) is x except that x,<0 = 0
for / = mu ... , m,. Similarly we define y(l), . . . , y(p). We get (x, x(1)) € r,'"1',
(x(1),x(2>) e r,(m

2
2\... , ( x ( ' - ' \ x(">) e r,'™'' and (x("\ / ' " ) e r,(*2\ ( / ' > , / ' - ' > ) e

e Tj™1'. But (x, y) e r/*+, for some / and what we have seen here is that for
this /,

e,^!?or!?o...or?or«or]?)o...oC
Since u^l is either U or VU, we see that for such i, uf}+l = WikU for some diagonal
matrix Wi<k.

Now assume that (x, y) e G satisfies ^ / v ~ 1 (y, - x,) > 0 and xt = yt for / > N.
Then (x, y) e r^ and we can find z(0) = x, z(1), z(2\ . . . , z(l?) = y such that for
each /, z(l) and z<1+1) differ only in one coordinate (so that, as we have seen above,
(z(/), z(l+1)) belongs to a G-set r whose corresponding M is a diagonal multiple of U
or of U*) and in most i's, z('+1> > z(l). This shows that w,-;

A| is a diagonal multiple of
a non-negative power of U. Hence, if we write P\ = {(x, y) : E^"1 {y, — x,) > 0 and
x, = yt for / > Af}, then F e Iat7r(a(/>

1))- Since Pt 2 /*, we are done.

In [29, Example 7.5] it was shown that /?oo(c) = 2. We shall now show that, in
fact, R^(c) = Z (with fi as above).

PROPOSITION 8.8. In the example, R^(c) = Z.

PROOF. Firstly, as just noted, /?oo(c) = 1 by [29, Example 7.5], where, we recall,
Roo(c) is defined to be the set of all a e R such that for every e > 0 and every
non-empty open set U c G(0), (£/ x U) n c"'(a - e, a + e) ^ 0. It follows that
Roc(c) 2 R£o(c) (as /u.(£/) > 0 for every non-empty open set U c G(0)). Hence
^ ( c ) c Z. To show that fl£,(c) = Z, then, it suffices to show that 1 € R^(c).

Recall [29, Example 7.5] that c(x, y) = S ( l + 2-")(% - x j where x = (xn),
3; = (yn). Write rf(jc, >>) = T,(yn - xn). Then d is a cocycle (but rf-'(O) 7̂  G(0))
and c - J is a coboundary. Hence [28, Lemma 3.2] /?^(c) = R^(c) = R^{d) and
it is left to show that 1 e R^(d). For this we have to show that, for every Borel set
Y c G(0) with (j,(Y) > 0, v((Y x 7) n J " ' ( l ) ) > 0. It is enough in fact to assume
that Y is a Gs set; that is, y = p | n [/„ where Un c [/„_, c G(0) is open. Let V be an
open set that is the support of some diagonal matrix unit; that is, there is some m > 1
and v G n r = J 0 ' ! } . u = ( ^ ) L P s u c h t h a t V = {« e G° : «j = «4 V£ < w}. For
u e V there is some u; e V such that d(w, 10) = 1, except when uk = 1 for every
k > m (which is just one point). Since /x is not concentrated on an orbit, for ^-a.e.
u e V there is w e V such that d(u, w) = 1. Thus v ^ T ' O ) n (V x V)) > ix(V).
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Since every open set U c G° can be written as a disjoint unit of such V's, we have
v(d'i(l) n (U x {/)) > n(U) for every open subset U c G<0). For a Ga set 7 as
above,

v(rf-'(i) n (y x y » = v ( ^ ' ( i ) n (nn(/n x c/j) = v(nn(<r'(i) n ({/„ x £/„)))

= limv(J-'(l) n (£/„ x £/„)) > limsup/x(C/n) = / t(r) > 0.

This completes the proof.

9. Z-analytic algebras

Let A = A(P) be an analytic subalgebra of C*(G, E) associated with a faithful
Z-valued cocycle c. Then A is said to be T-analytic. For such algebras we have the
following.

THEOREM9.1. Let A = A{P) be a 2-analytic subalgebra of B = C*(G, E). Then,
for every irreducible representation n of B either latn(A(P)) = {0, /} (in which
case ii is properly ergodic) or latn(A(P)) is a totally atomic nest whose atoms are
ordered as one of the orbits and are of rank 1 (in which case fx is concentrated on an
orbit).

PROOF. First note that for a Z-valued faithful cocycle c, Roo(c) c {0, oo}. Indeed,
assume m e Roo(c) is a positive integer and find (u, v) e G such that c(u, v) = m.
Since c~] ({m}) is a (closed and) open set, we find an open G set, T, containing (u, v)
such that c\x = m. Since a ^ v w e can take r such that r(x) n s ( t ) = 0. Since
m e Roo(c), there is a pair (x, y) in r(z) x r(x) such that c(x, y) — m. But then
c(x, v) = c(x, x(x)) and y ^ x(x) (as y e ' r ( r ) , r(;c) € S ( T ) ) . This is impossible,
since c is faithful.

For every cocycle and every Borel measure [x we have /?£,(<?) c ^ ^ ( c ) ; hence
here /?£,(c) c {0, oo} and there are two possibilities: either R^,(c) = {0} or R^(c) =
{0, oo}. In the latter case we know (Theorem 4.1) that latn(A(P)) = {0, / } . So we
now assume R^,(c) = {0}. Then c is a coboundary. In fact, it is a coboundary as a
Z-valued cocycle and thus, there is a Borel function g : X —> Z such that for v-a.e.
(M, D) € G, C(M, I>) = g(u) - g(H) [28, Theorem 3.9(4)]. Since [g-l([m})}m is a
countable partition of G(0\ there are some m eZ with /z(g-1 ({>«})) > 0. Write F for
g"1 ({w}). Then on G n (F x F) , c = 0, v- a.e., but c is faithful and /z is ergodic so
this can happen only if F is a singleton. Hence /z has an atom and, by ergodicity, [i is
concentrated on an equivalence class, say [«], and/i({u}) > Oforeveryi; e [M] since [i
is quasi-invariant. Hence it is a representation on /G(0) K(w)dfi(w) = X^*e[«
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and the irreducibility of n implies that dim K(w) = 1 for every w = [u]. The
projections in latn(A(P)) are precisely the projections onto subspaces of the form
YlteM K(w) where M c [«] is a decreasing set. This completes the proof.

REMARK. Theorem 9.1 generalizes both Theorem III.2.1 and Proposition III.3.2 of
[19]. Note that, in addition to the fact that we do not assume here that the groupoid is
AF, we also do not assume that n is masa preserving (as in [19, Proposition III.3.2])
and we do not restrict ourselves to the standard embedding algebra (as in [19, Theorem
III.2.1]).

From Theorem 9.1 we conclude:

COROLLARY 9.2. Let A be a 1-analytic subalgebra of B = C*(G, E) and let p
be a representation of A with an irreducible C*-dilation n. Then, either p is the
compression o/Inde« to a subinterval of the equivalence class [u] of some u e G(0)

or p is the restriction of n to A.

If G is the transformation group groupoid determined by an action of Z on a locally
compact space X and if c is the position cocycle of this action, so that c(x, n) = n,
then the Z-analytic subalgebra A of B = C*(G) = C*(X, 1) determined by c is
nothing but the analytic crossed product determined by the action of 1. Our analysis,
then, recaptures, extends, and explains the results in [1] and [4]. In these papers,
ergodicity is used to show that certain special representations of A lead to transitive
algebras. Our results show that for every irreducible representation n of B where the
associated measure is not concentrated on an orbit, the algebra n(A) is transitive.
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