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Let / b e a function on the product space F X IV, where V and IV are 
analyt ic manifolds, both either real or complex. T h e function / is said to 
be analyt ic (or bi-analytic) on V X TV if it is analyt ic in the analyt ic s t ructure 
induced on F X TV by-the corresponding s t ructures on V a n d TV. T h e function 
f is said to be separately analyt ic on F X TV if, for each x in V, the function 
f (x, •) is analyt ic on TV while, for each y in TV, the function / ( • ,y) is analyt ic 
on V. In the case of complex analyt ic manifolds, the classical theorem of 
Har togs (3, chapter v u ) s ta tes t ha t the two notions of analyt ic i ty and separate 
analyt ic i ty are equivalent . For real analyt ic manifolds, it is known t h a t such 
an equivalence does not hold, even if one adds the addit ional hypothesis 
t h a t / is infinitely d i f ferent ia te on V X TV. 

I t is the purpose of the present paper to establish a positive criterion for 
bi-analyticity in terms of the analyt ic properties of / in its separate variables. 
There are several equivalent forms in which we may s ta te this criterion. T h e 
most direct of these is the following: 

(A) Consider V and TV as imbedded in V and IF, their complexifications which 
are complex analytic manifolds* Let K\ and K2 be compact subsets of V and 
W, respectively. Then there exists a neighbourhood U\ of K\ in V and a neigh­
bourhood U2 of K2 in W and a constant M (depending on K\ and K2) such that 
for each x in Ki, the function fix,-) on K2 may be extended to a complex analytic 
function fix, z) on U2for which \f(x, z)\ < M, z Ç U2, while similarly for each 
y in K2, the function f'(• ,y) on K\ may be extended to a complex analytic function 
f(z> j) for z in Ui for which \f(z, y)\ < M, z £ U\. 

Our s tudy of this problem arose from a question raised by de Barros-Neto 
in connection with his investigation (1) of the s t ruc ture of distr ibution kernels 
(in the sense of Schwartz) which are analytical ly very regular; the application 
of our result (Theorem 1 below) to such kernels is carried out in a joint paper 
by Barros and the au thor which appears immediately after the present paper 
in the same issue of this journal . 

T h e criterion (A) is of local character , as follows easily from the e lementary 
properties of holomorphic functions. We therefore may give another equiva­
lent form if we assume tha t F and TV each lie in a single co-ordinate patch, 
and therefore wi thout loss of generality, t ha t V and TV are En and En', 
respectively. 

Received August 3, 1960. The author is a Sloan Fellow. 
*As defined, for example, by Bruhat and Whitney, Comm. Helv., 83 (1959), 132-60. 
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(B) There exists a constant Co such that for all x in V, 

and for all y in W, 

uyuy.c 
\dxi/ \dxi/ \ 

*rj fix'y) 

^ ^ (Say) 

^ ^ (Say) 
^ Co (s.,)! 

THEOREM 1. Letf(x, y) be a Borel measurable function on the product V X W 
of two real analytical manifolds V and W such that f is separately analytic on 
V X W and satisfies condition (A) above. Then f is analytic on V X W. 

Proof of Theorem 1. Since analyticity is a local property, we may assume 
without loss of generality that V and W are open subsets of Euclidean spaces. 
Introducing dummy variables into the space of lower dimension, we may 
suppose that both V and W lie in En for some integer n, and that they both 
contain the origin 0. We need only prove t h a t / is analytic at (0, 0). 

We introduce the usual notation for partial derivatives, setting 

for 1 < j < n, 

J dxj 

Da= f[ D ; 
3=1 

for any n-tuple a — (ah . . . , an) of non-negative integers, 
n n 

a = J2 aJ>a]- = EC (<**)! 
j=l 3=1 

If h is a function of two variables x and y in En, we indicate derivatives with 
respect to the x-variables by Dx

a and derivatives with respect to the ^-vari­
ables by Dyfi. 

If condition (A) holds, it follows immediately from the Cauchy integral 
formula for polycylinders that on some neighbourhood of (0, 0) we have 
inequalities similar to those of condition (B), that is, 

(C) There exists a constant c0 such that for all a and /3, 

\D%(x;y)\ < dala\ < Cloal\a\\ 

\Dtf(x,y)\ <c[0lfi\<C^\p\l 
Since / is Borel measurable on V X W and uniformly bounded on the 

neighbourhood N for which the bounds of (C) hold, it follows easily that 
its distribution derivatives Dx

af and DyPf coincide with the derivatives of / 
taken as a function of x with y held fixed and of y with x held fixed. It follows 
then from the bounds of condition (C) that on a fixed neighbourhood of 
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(0, 0), all the derivatives Dx
af and D/f are bounded functions. In particular, 

we know that {(Ax)
r-\- (Ay)

r}f is bounded for every positive integer r, 
(A = — J^jDj2). It follows from the standard regularity theorems for solutions 
of elliptic partial differential equations that Dx

aD/f lies in Lï0C
2iN) f° r every 

a and /S, and hence by the Sobolev Imbedding Theorem (Schwartz (4), vol. 2) 
/ is infinitely differentiate in N. 

We now remark that to prove that / is analytic at (0, 0), it suffices to 
show the following: 

(C;) There exists a constant C\ such that for all a and j3, 

\(Da
xD°f)(P,0)\<c[al+m(\a\ + \fi\)l 

Indeed, suppose that (C) holds. Then we may form the power series 

M*,y) = Z (a\r1m-\Da
xD"yf)(010)xa/1 

where 

*"= ri xa'\/= ri y . 
If the inequalities (C) hold, the power series for f\ may be majorized by 

the series 

E («!r108!r1ci'o,+""(i«i+ii8i)!|xrbifl, 
where 

\x\a = n k-p'-
3 

The majorizing series is the expansion of the function 

( i - Z ) ci\x\3+ci\y\j) 

which converges for x and y sufficiently small. It follows that /i(x, y) is an 
analytic function of (x, y) on a suitably small neighbourhood of the origin 
(0, 0). On the other hand, for every a and /3, 

(D°XD'J)(0,0) = (2£Dfri)(O,'0). 

The functions /(• ,y) and/i(-,3/) are both analytic on a neighbourhood of 0 
and have the same x-derivatives at 0. Hence fix, 0) = f\(x, 0) for \x\ < do. 
Similarly, D/fix, 0) = (Z^//i) (x, 0) for |x| < do. Finally, for x held fixed, 
fix,-) and fiix,-) are both analytic in a neighbourhood of the origin and 
have the same derivatives at y = 0. Hence fix, y) = / i(x, y). for all (x, y) 
near (0, 0). Thus in order to show that / is analytic near (0, 0) it clearly 
suffices to prove the inequalities (Cr) for some value of the constant c\. 

To carry through the latter proof, we may assume after making a linear 
change of variables (which will only affect the constant Co in condition (C)) 
that the inequalities of (C) hold on the cube 
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2 2 = { | x , | < l , b , | < 1, Kj<n). 

We define the function of a single real variable 

[0, \s\>l 
Us) = 1, \s\<i 

[2-2s, è < M < 1. 

The function f 0 is clearly continuous and piecewise continuously differentiable. 
Using f0. we define the auxiliary function f (x, y) on £" X £" by 

n n 

r(x, y) = n fo(^). n fo(^). 
For each positive integer r, we let 

?r(x,y) = (f(*,:y))r+2. 

For each r, the function fr(x, ;y) is (r + 1)-times continuously differentiable 
on En X £w and has its support contained in R. 

As another piece of auxiliary equipment, we consider for each sufficiently 
large integer m, the partial differential operator with constant coefficients on 
En X En defined by 

A2m = ( - Ax)
m+ ( - A , r + 1, 

We construct an elementary solution for A2m on En X En by a Fourier 
transform. Let 

\X, ç/ / v XJÇJ 

3 

for x and £ in E71. Then we define the function ^2m(̂ , 3>) on En X £w for 
2m > 2n by 

(1) e2m(x, y) = f f exp(*<*, f) + t<y, E'»(lE| ta + Ifl*" + D - 1 ^ ' . 

The integral converges uniformly on En X £w. We verify immediately by 
taking Fourier transforms (in the sense of tempered distributions of Schwartz 
(4)) that for every function v in C2m(En X En) with support in R, we have 

(2) v(x, y) = e2m(x - xh y - yi)(A2mv)(xh yi)dxidyù ( 0 , y) € R)). 
•J R 

Let a and ft be two indices of differentiation with |a| + \@\ < 2m — 2n. We 
verify by inspection that we can differentiate the integral defining e2m in 
equation (1), (\a\ + |/3|)-times obtaining 

(3) (Da
xD"ye2m)(*, y) = f f £*(£')"exp(i<*, ?) + i<y, {'»(IfI2" 

+ iri^ + ir1^^'. 
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It follows from (3) that (Dx
aDy^e2m) is continuous and bounded for \a\ + \j3\ 

< 2m — 2n, with 

(4) \D°xD&m(x,y)\ < f f \t\lalw\wlm2m+ w\2m + i ) - ^ r = *(»»,») 
where, by the inequality 

(5) If| |£ | < -+^ l? l + ^ ^ l ? l 

we know that 

(6) K(m,n)< f f (M""1 + l l ^ ^ 1 + l K I ^ + l ^ + l ) - 1 ^ ' , 

and the integral on the right side of the inequality (6) is bounded by 

(7) s f f m2n+i+ I É ' I ^ + I ) - 1 ^ ' , 

which is independent of m. Thus we have for all (x, 3;) in £w X En, 

(8) . | Z ) ^ 2 w ( ^ y ) | < ^ ( » ) 

for \a\ + \P\ <2m - 2n. 
Differentiating the equation (2) under the integral sign \a\ + \{3\ times, we 

obtain for \a\ + \/3\ < 2m — 2n, 

(9) Da
xDyv(x, y) = I (D"D%e2m)(x — xu y — y1)A2mv(xlf yj dxidyi, 

*J R 

which yields, since the measure of R is exactly 1, the inequality 

(10) \D"Dyv(x, y)\ < K(n) sup(xityl)eR\A2mv(xu yi)| 

for (x, y) in R and |a| + \3\ < 2m — 2n. 
We apply the inequality (10) to the given function f(x, y) by setting 

v(x,y) = f(x, y)Ï2m(x,y). 

We put (x, y) = (0, 0) on the left-hand side of the inequality (10) and 
obtain, since f2m is identically equal to 1 on a neighbourhood of (0, 0), that 

(11) \(Da
xD*f)(0,0)\ <K(n)sup(x,yUR\A2m(Ï2m(x,y) .f(xfy))\. 

Let us examine the term on the right of the last inequality. It follows from 
the définition of A2m that 

A2m{UJ) = { ( - A,)- + ( - Ay)
m + 1}GW) = fa» 

{ ( - Ax)
m+ ( - Ay)

m + l}f + Rll 

where the remainder term Ri is of the form 

(12) &= £ Ca0D
a
x^2m)D^ + £ CaPDa

v^2m)D^f 
| a | + l / 3 | = 2 m , | a | > 0 |a |+| /3 |=2m, |a | > 0 
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The derivatives of Çim are considered only on the set where fam is equal 
neither to 0 nor to 1. On this set lim is a polynomial of degree (2m + 2) in 
each variable. It follows from an easy application of a well-known theorem 
of Bernstein that for all (x, y) in R, \a\ > 0, 

(13) \(Dad2m)(x,y)\ < (2m + 2)lal2la\ 

and 

(14) \(D;^m)(x,y)\ < (2m + 2)M2lal. 

We now estimate Ri. The expansion of (— Ax)
m in elementary differential 

operators has nm terms with coefficient 1. Each of these terms applied to a 
product WiW2 can be written as the sum of 22m terms of the form Daw1D

l3W2 
with coefficient 1. Hence the sum of the coefficeints 

/ > Cas 

in equation (12) is less than 22mnm. By the condition (C) and inequalities 
(13) and (14), it follows therefore that (assuming c0 > 1) 

(15) \R^ < 2(2n)2mClm(2m + 2)2m2?m. 

A similar, but sharper, estimate holds for the term Ç<imA<imj. Combining these 
estimates, we obtain finally for \a\ + \$\ < 2m — 2n 

(16) | ( Z # # ) ( 0 , 0)| < £0(4«Co)2m(2m)2m(l + A j "'. 

By Stirling's formula, however, we know that 

(2m) ! ~ (±Trm)h(2m)ime-2m. 

Hence there exists an absolute constant k such that 

(2m)2m < ke2m(2m)\ 

We obtain, 

(17) | iPVOlf) (0, 0)\<k koe\±nCoe)2m(2m) ! < (±nC0e)2m 7 ^ — ^ ^ - T T T 
\Zm — n — 1 )l 

(2m - n - l\)c\m-2n~l(2m - n - l)i 

if \a\ + |/3| = 2m — 2n — 1, and similarly, 

(18) I (Da
xDlf) (0, 0) I < c2rn~2(2m - n - 2) ! 

if \a\ + |/3| = 2m - 2n - 2. 
In particular, for any given a and /3, we may choose m such that either 

2m = \a\ + |/3| + 2n + 1, or 2m = |a| + \fi\ + 2n + 2. Since the inequalities 
(17) and (18) are therefore equivalent to the inequalities of condition (C) 
for various a and /3, the proof of Theorem 1 is therefore complete. 
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THEOREM 2. Let f be an infinitely differentiate, separately analytic function 
on V X W, where V and W are real analytic manifolds. Then there exists an 
everywhere dense open subset G of V X W such that f is analytic on G. 

Proof of Theorem 2. It clearly suffices to suppose that V and W are both 
cubes with centre at the origin in En and to show that / is analytic in some 
open subset of V X W = R. 

For each positive integer M, let 

SM = {(*, 30: (*, y) 6 R, \Da
xf(x, y)\ < Mlala\ for a l ia) , 

S'M = {(x, y) : (x, y) € R, \Da
yf(x, y) \ < Mlala\ for all a.} 

By the separate analyticity of the function / , each point (x, y) of R belongs 
to at least one of the sets SM and at least one of the sets SMl

r. By the con­
tinuity of the derivatives of / , each SM is the intersection of closed sets and 
hence closed. Similarly each SMl' is closed, and so is 

R is the union of the sets 

and by the Baire category theorem, one of these closed sets must have an 
interior. Let R' be a disk in 

Then if Af2 is the larger of M and Mi, we have for all points of R' and all a, 

\Da
xf(x,y)\ <Mt

Ma\ 

\DaJ(x,y)\ KM^al 

It follows by the proof of Theorem 1 that / is then analytic at each interior 
point of R', and the proof of Theorem 2 is complete. 
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