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1. Introduction. There are a number of theorems which bound d.l.(G), the derived
length of a group G, in terms of the size of the set c.d.(G) of irreducible character
degrees of G assuming that G is in some particular class of solvable groups ([1], [3], [4],
[7]). For instance, Gluck [4] shows that d.l.(G)^2 \c.d.(G)\ for any solvable group,
whereas Berger [1] shows that d.l.(G)^ \c.d.(G)\ if G has odd order. One of the oldest
(and smallest) such bounds is a theorem of Taketa [7] which says that d.l.{G) ^ \c.d.(G)\
if G is an M-group. Most of the existing theorems are an attempt to extend Taketa's
bound to all solvable groups. However, it is not even known for M-groups whether or not
this is the best possible bound. This suggests that given a class of solvable groups one
might try to find the maximum derived length of a group with n character degrees (i.e. the
best possible bound). In fact there might be bounds related to properties of c.d.(G) other
than size hence it seems reasonable to pose the following general goal:

PROBLEM. Given a finite set X of positive integers which occurs as c.d.(G) for some
solvable group G, compute the maximum derived length among solvable groups which
have X as their set of character degrees.

Based on our experience one might also wish to consider this question for particular
classes of solvable groups.

In this paper we will show that within the class of p -groups there are some bounds
which are better than those implied by Taketa's theorem.

THEOREM A. Let n ^ 3 be an integer and G a finite p-group with irreducible character
degrees less than or equal to p". Then d.l.(G) s n.

The only case of real interest here is that of c.d.(G) = {1, p, p2,. . . , p") for which
Taketa's theorem tells us d.l.(G) < n + 1.

While results on co-prime group actions are an important tool in the study of solvable
groups, those techniques are not available within p-groups. Consequently it has been
necessary to develop some theorems about actions of p-groups on p-groups. Theorem A
will be obtained as an immediate corollary of the following theorem on orbit sizes in
p-group actions.

THEOREM B. Let p be an odd prime and n > 3 a « integer and let G be a p-group acting
on an abelian p-group A such that every G-orbit in A has size at most p". Then G(n-1) acts
trivially on A.

As we note in Proposition 2.1, it is easy to show that G(n) acts trivially. The body of
the paper is devoted to the proof of Theorem B which is of interest apart from the
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character theory. We also present some examples which indicate some of the boundaries
around these two theorems.

This paper grew out of an unsuccessful attempt to construct a p -group of derived
length 4 with 4 irreducible character degrees. Based on previous experience, it seemed
most likely that such an example would be found with degrees 1, p,p2, and p3. Since the
example does not exist in this case, the author believes that any p-group with 4
irreducible character degrees has derived length at most 3. However, as of this writing,
this has not been proved.

As far as the best bound for derived length of p-groups, clearly any group with 2
degrees has derived length 2, and 3 is the best bound for {1, p, p2} and {I,p,p2,p3} (as
proved below). If we let Yn denote the set {\,p,p2,. . . , p"} then we note that the
argument in Corollary 2.13 shows that any bound on p-groups with degrees Yn implies a
bound for p-groups with degrees Ym, m>n. In particular, if c.d.(G) = Yn implies
d.l.(G) < b , then c.d.{G) = Yn+i implies d.l.(G) <b+i for all i>0. Since the methods in
this paper can surely be pushed harder, this is not the end of the story even for the sets
Yn-

The author wishes to mention that the group theory computer system CAYLEY [2]
was instrumental in the discovery and proof of the results in this paper. (This involvement
is partially documented in [6].) Special thanks also go to M. Isaacs and S. Larson for
helpful discussions.

2. p-Group actions. The first proposition in this section is primarily intended to
highlight some simple facts which we will build on.

PROPOSITION 2.1. Let G be a p-group acting faithfully on a set Q such that every
G-orbit in Q has size at most p". Then G has derived length at most n.

Proof. Let 0 be a G-orbit in Q and consider the action of G on 6. This action
defines a homomorphism from G into the symmetric group 5P-. Since any Sylow
p-subgroup of Spn, has derived length n, we see that G(n) must be in the kernel of the
action on Q. The facts that 0 was arbitrary and G acts faithfully on Q give us G(n) = 1 as
claimed.

As a Sylow p-subgroup of Sp* demonstrates, there is no hope of improving the
conclusion of this proposition. However, our main theorem will show that if Q is replaced
by an abelian p-group (with G acting via automorphisms) then the derived length of G is
more tightly controlled.

The following definition provides our basic tool for studying the action of G.

DEFINITION 2.2. Let a p-group G act on an abelian p-group A. If 0 is a G-orbit in A
such that the elements of € generate A, then we will say that 0 is a generating orbit.

We note that the action of G on a generating orbit induces a homomorphism into an
appropriate symmetric group. In particular, if G acts faithfully on A, then this map must
be an embedding, consequently our first lemma lists some properties of p-subgroups of
symmetric groups.
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LEMMA 2.3. Let T be a Sylow p-subgroup of the symmetric group on p2 symbols. Let
Bx, . . . , Bp be blocks of imprimitivity for the action of T and K be the kernel of the action
on these blocks. If PcT is a non-abelian subgroup, then

(a) P <£ K and
(b) UT) £ P (where Z2(T)/Z(T) = Z(F/Z(F))).

Proof. First note that if p = 2, we must have P = F and so we may assume that p is
odd. Also K is an elementary abelian group of index p in F and so P £ K.

Let Px = P n K. Then Pj<IP and P,<1K, hence Pi<F. Since |Z(r)| =p, it follows that
Z(T) c P,. Furthermore, since |P:Pi| =p and P is non-abelian, we must have Pi > Z(T).
Finally, the fact that |Zz(r): Z(F)| = p implies that Z2(T) ^PX^P.

We now wish to restrict our attention to p > 3 and establish some notation for the
next few results. Let p be an odd prime and P be a non-abelian p-group acting faithfully
on an abelian p-group U (written additively) with generating orbit G of size p2. The orbits
of P ' on G form p blocks of imprimitivity for P which we label B x , . . . , Bp. Since G is a
single P-orbit, we know that P does not fix these blocks and so we can choose the
labelling such that some element of P cyclically permutes the blocks B1—>B2-+. • .-*•
Bp^>Bx. If we choose an element x of P which maps into Z(F), then we can order the
elements of G so that x performs a cyclic shift within each block. We will write u+ to
denote ux and u(l) to denote ux' for all u e G. Lemma 2.3 gives us the following
computational facts:

(CF1) There is an element of P which cyclically permutes the blocks B,.
(CF2) For each i,0^i<p, there is an element of P which maps U-*M( O for all

ueG.
(CF3) Given m, n, i there is an element of P which fixes Bm element-wise and maps

M->U ( 0 for all ueBn.
The last two facts follow from the facts that Z{T)c.P and Z^F) c P respectively.

LEMMA 2.4. Let P, U, G, and B, be as above and let aeBx and b e B2. The P-orbit of
a + b is exactly the set

{a' + b' | a' e Bit b' e B,+1 (subscripts read mod/?)}.

Proof. Let a' e B, and b' e Bi+1 for some i. By CF1, some element takes Bx to B, and
B2 to B,+1. By CF2, we can then map a to a' and finally CF3 allows us to move b to b'
while leaving a' fixed. Thus the above set is contained in a single P-orbit. To see that the
P-orbit is no larger, note that P simply acts on the blocks B, like a cyclic group of order p.
Hence, if ag e B, for some /, then we must have Bf = B, and so fcseBf = B;+1. Thus
(a + b)8 = as + bg is in the above set for all g eG.

We now wish to study the case in which these sums are not all distinct.

LEMMA 2.5. Let P, U, G, and B, be as above. Suppose we have subscripts r and s, and
distinct elements ar, br 6 Br and as, bs e Bs such that

ar + as = br + bs.
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Then the element ar - br is fixed under the action of P.

Proof. We can write

b, = a<P and b, = afp

for some i, j with 0 < i, j <p. Hence we have

or

Now by CF3, we can spin Bs while fixing Br which yields

fl«o = flo-)« = aU) + (flr _ fl(0) = Os + 2{ar

and so on. Likewise we can rotate Br while fixing Bs. Note that if we fix Bs, we fix as and
a ^ and so fix (ar - a^). Consequently starting with

we obtain

etc.

Note that since a£p) = ar, the element ar — a^ must have order p.
Now consider a shift in P (by CFl) taking Br to flj. Then

ar^>a(
s
mi) and nfWflW

for some integers m and n with 0 =£ m, n<p and m¥=n. Thus

ar - a«->a<^) - a<"'-> = (m - n)(ar - a«).

This tells us that the shift map normalizes, and so centralizes, the subgroup (ar - a^) of
order p.

Similarly, any element of P which stabilizes the blocks maps

ar^a^ and «<'>-> a<tf>

hence

and so ar - a^ = ar-br is fixed by P as claimed.
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This provides enough information that we can now describe an action with generating
orbit of size p2.

PROPOSITION 2.6. Let p be an odd prime and P be a non-abelian p-group acting
faithfully on an abelian p-group U {written additively) with generating orbit 6 of size p2.
Then either

(1) P has an orbit of size p3 on U consisting of sums of pairs of elements in 6.
or

(2) P fixes an element ue U such that some of the elements in 6 are identified in
()

Proof. Let B 1 ; . . . , Bp be blocks of imprimitivity for the action of P on 0 as above
and let

5 = {oj + a2 | ax e Bx and a2 e B2}.

If \S\<p2, then we have

a1 + a2 = b1 + b2

for some distinct elements alt bx e B1 and a2, b2 e B2 and so by Lemma 2.5, the element
u = a1-bl is P-fixed and clearly suffices for conclusion 2 in the proposition. Thus we may
assume that \S\ =p2.

On the other hand, Lemma 2.4 tells us that 5 lies in a single P-orbit. If this orbit is
strictly larger than 5, then it must have size p3 and we are done, hence we may assume
that 5 is a complete P-orbit.

Now choose a2 e B2 and a3 e B3. By the preceding discussion and Lemma 2.4, we
must have a2 + a3 e S, say

for some ax e Bi and some :, 0<i<p. By CF3, we can act on this equation by an element
of P which fixes B2 and spins B3 giving

where a* e Bx. Subtracting these two equations, we get

or

a3 +a1 = a3 + a*.

It follows from Lemma 2.5 that u = a3 — a3 is fixed by P, which completes the proof.
We will need the following lemma whose proof is an easy application of the Three

Subgroups Lemma.

LEMMA 2.7. Let G act faithfully on a group H and K<1H admit G. If G acts trivially
on K and on H/K, then G is abelian.
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The next lemma relates the existence of fixed elements to the derived length of the
acting group.

LEMMA 2.8. Let G be an odd p-group acting faithfully on an abelian p-group A with
generating orbit 6 of size p3. Let a eA be G-fixed such that the image of 0 in A=A/(a)
has size p2 and let G be the image of G acting faithfully on A (so that 6 is a generating orbit
for A under the action of G). Suppose that G fixes an element 5 eA such that some of the
elements in 6 are identified in A/{6). Then G is metabelian.

Proof. Let Krc.G be the kernel of the action of G on Al{b) =A/(a, b) and
K2cG be the kernel of the action of G on (a, b) (i.e. K2 = CG((a, b))). If we let
N = KiC\ K2, then N acts trivially on each of A/(a, b) and (a, b) and so by Lemma 2.7,
N is abelian.

To see that G/N is abelian, first note that GIKX acts faithfully on A/(a, b) which by
hypothesis has a generating orbit of size/?. Since this means that GIKy is isomorphic to a
/7-subgroup of Sp, we see that G'cK^ On the other hand, G/K2 acts faithfully on
(a, b), yet by the choice of a and b, acts trivially on {a, b)/(a) and (a). By Lemma 2.7
again we see that G' cK2. Hence G' cK1DK2 = N and so G is metabelian as claimed.

Our method of proof actually proves the following somewhat technical sounding
proposition which has the main theorem as an immediate corollary. The notation 6 + 6
below is used as shorthand for the set of all elements x + y with x, y e 6.

PROPOSITION 2.9. Let p be an odd prime and n >3 . Suppose G is a p-group acting
faithfully on an abelian p-group A with generating orbit € such that |C| <p" and every
G-orbit in 0+ 0 has size ^p". Then G has derived length at most n — 1.

Proof. We will prove the proposition by induction on n, however most of the proof
will be the same for all cases n > 3. Fix n s: 3.

Let G acting on A be a counterexample with \A\ as small as possible. Note that if
\C\ =pk then G is isomorphic to a p-subgroup of 5P* and so G has derived lengths A:.
Consequently, in any counterexample we must have \0\=p" and d.l.(G) = n. Let w eA
be a G-fixed element of order p. Then by the minimality of A, we see that G(n~l) must
act trivially on A=A/(w) and so fixes each coset of (w) in A setwise. If we choose
x e G(n~^ D Z(G) with x ^ 1, then x must move some element of 0, however it can at
most add a multiple of w and we may assume that x adds exactly w to some element in 6.
Since x is central and G is transitive on 6 the action of x must add w to every element in 6
(we will need this later).

Now let K be the kernel of the action of G on A and G = G/K. Since K acts trivially
on A/(w) and on (w), we see that K is abelian (by Lemma 2.7) and so d.l.(G)^n - 1.
Furthermore G acts faithfully on A with generating orbit 6 and we see by the action of x
above that some elements of 0 differ only by w. Thus \6\<\G\ and so \d\<pn-\ We
claim that 6+0 must contain a G-orbit of size >/?". If n >3, this follows from our
inductive hypothesis.

If n = 3, we have shown that G is a non-abelian p-group acting faithfully on the
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abelian p-group A with generating orbit of size p2. By Proposition 2.6, we have the claim
unless G fixes some element w eA such that elements of 6 are identified in A/(ii). But in
this case we are in the setting of Lemma 2.8 which implies that G has derived length 2
contrary to our choice of a counterexample.

Thus in either case, we see that 6+6 contains a G-orbit of size s p " . However, the
element x above adds 2w> to each element of the pre-image of this orbit assuring that the
complete pre-image forms a single G-orbit. Since this pre-image necessarily has size
>pn + 1 we have shown that no counter-example to the proposition can exist.

THEOREM 2.10. Let p be an odd prime and n^3 an integer and let G be a p-group
acting on an abelian p-group A such that every G-orbit in A has size at most p". Then
Q("-I) acts triviaHy on A.

Proof. If the theorem is not true, choose a counterexample G acting on A such that
\G\ + \A\ as small as possible. Choose an orbit 6 such that G("-1) acts nontrivially on 6.
Then by the minimality, 6 is a generating orbit for A and G acts faithfully on A. But the
hypotheses of Proposition 2.9 are clearly satisfied implying that G^"1' = 1 contrary to our
choice. This contradiction completes the proof.

It is now a simple matter to settle the character theoretic question which motivated
this work.

THEOREM 2.11. Let p be an odd prime, n > 3 an integer, and G a finite p-group with
irreducible character degrees less than or equal to p". Then the derived length of G is at
most n.

Proof. Choose A c G to be self-centralizing abelian normal. Now if A e 1TT(A) lies
under ^elrr(G), then since x{^)—P"> Clifford's theorem implies that the G-orbit of A
has size at most p". Hence in the action of G on A = lrr(A), we see that every G-orbit has
size at most p". By Theorem 2.10, G("~x) acts trivially on A and so on A. But A is
self-centralizing and so G ' ^ ' c / l is abelian, telling us that d.l.(G)^n as claimed.

Our final topic in this section will be extending Theorem 2.11 to include the case
p = 2. The major obstacle to this extension is the fact that Theorem 2.10 is not true for
p = 2 (as shown in Example 3.3), however, the character theoretic fact can be approached
more directly for p = 2.

PROPOSITION 2.12. Let G be a finite 2-group with irreducible character degrees less
than or equal to 8. Then the derived length of G is at most 3.

Proof. Let A c G be self-centralizing abelian normal and A e hr(A). As above, if A
lies under % e Irr(G), then since X(l) <8 , the G-orbit of A has size at most 8. Thus the
action of G on the orbit of A provides a homomorphism from G into the symmetric group
S8. Suppose that the image of G is a full Sylow 2-subgroup of Ss and let T = /G(A). In this
case, \G: T\ = 8 and the image of T in Sg is isomorphic to the direct product of a dihedral
group of order 8 with a cyclic group of order 2. Consequently, T/A is non-abelian and so
we can choose 8 e Irr(T | A) with 0(1) > 1. But now 6s is irreducible and has degree > 8
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contrary to hypothesis and so the image of G in S8 must be properly contained in a Sylow
subgroup. However, any such proper subgroup is metabelian, and so G" fixes A. Since A
was arbitrary, G" acts trivially on ln(A) and so on A, hence G" QA is abelian.

COROLLARY 2.13. Let n^ 3 be an integer and G a finite 2-group with irreducible
character degrees less than or equal to 2". Then the derived length of G is at most n.

Proof. We will proceed by induction on n, with the case n = 3 handled by the
proposition. For n>3, we note that no nonlinear character of a p-group restricts
irreducibly to the commutator subgroup. Consequently, G' has irreducible characters
with degree at most 2("~1) and by our inductive hypothesis, G' has derived length at most
n-l.

We note that Theorem A is simply a combination of Theorem 2.11 and Corollary
2.13 in a single statement.

3. Examples. In this section we wish to note a few examples related to the
preceding theorems. We begin by showing that n = 2 will not work in Theorem 2.10.

EXAMPLE 3.1. Given any prime p there is a p-group G acting on an abelian p-group A
such that every G-orbit in A has size at most p2 and yet G' acts non-trivially on A.

Proof. Let G be the Sylow /^-subgroup of GL(3, p) consisting of upper triangular
matrices (with l's on the diagonal) and let A be an elementary abelian group of order/?3

(row vectors) under the natural action of G. It is easy to see that elements in a single
G-orbit differ only in the last two coordinates and so G-orbits have size ^p2. On the
other hand, G is non-abelian, but acts faithfully on A.

It also follows from 3.1 that the conclusion of Theorem 2.10 cannot be strengthened
for n = 3. The next example shows that 2.10 gives the best bound for n = 4 as well.

EXAMPLE 3.2. Given an odd prime p there is a p-group G acting on an abelian
p-group A such that every G-orbit in A has size at most p4 and G" acts non-trivially on A.

Proof. Let A be a vector space of dimension p2 + 1 over GF(p) and denote the basis
of A by the set:

{1,2, 3, . . . ,p2, «} .

We will define G as a group of linear transformations on A. Let Y be the Sylow
p-subgroup of Sp2 generated by the permutations:

r = < ( l 2 3 . . . p ) , ( l p + 1 2p + l . . . ) ( 2 p + 2 2 p + 2 . . . ) . . . { p 2p 3 / 7 . . . ) )

and let H be a group of transformations on A which fix a> and act on the rest of the basis
like a non-abelian subgroup of order p3 in T. Finally, let G be generated by H and the
transformation a which maps 1 to 1 + co and fixes all other basis vectors. This group G has
order pp2+3.

Clearly the action of G on A/((o) is the same as the action of H and so G-orbits in
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A/{a>) can have size at most/?3. However, the full action of G only adds multiples of cu
to the vectors in any orbit and so G-orbits in A have size ^p4.

To show that G" =£ 1, we will find two commutators which don't commute. Let z =£ 1
be an element in the center of H. Since H is non-abelian, order p3, z is a commutator in
H and so in G. Furthermore, the element [z, o] adds <w to 1 and subtracts w from some
other basis element (say 2), while fixing all other basis vectors and so [z, o] doesn't
commute with z.

We also note that Theorem 2.10 is not true for p = 2.

EXAMPLE 3.3. There is a 2-group G acting on an abelian 2-group A such that every
G-orbit in A has size at most 8 and yet G" acts non-trivially on A.

Proof. Let G and A be the corresponding groups in the proof of Example 3.2 with
p = 2 (i.e. A is a vector space of dimension 5 and G turns out to be isomorphic to a full
Sylow 2-subgroup of S8). It is easily checked in this case that in fact no G-orbit in A/((o)
has size greater than 4 and so the G-orbits in A are at most 8. Since G is isomorphic to a
full Sylow 2-subgroup of S8, it has derived length 3 as claimed.

Finally, we wish to present two examples related to Theorem 2.11. Example 3.4 was
first mentioned to me by M. Isaacs and was the motivation for the current work.

EXAMPLE 3.4. Given any prime there is a p-group G with irreducible character degrees
{1, p, p2} and derived length 3.

Proof. Since the squares of the degrees of the irreducible characters sum to the
group order and any group with only two character degrees has derived length 2, it
suffices to find a p-group of order p6 with derived length 3. For p s 5, such groups exist
and can be found in various classifications of small p -groups such as [5].

For p = 2, let G be a Sylow 2-subgroup of Ss.
For p = 3, the simplest example seems to be the following group of order 37

constructed by M. Isaacs:

G = (u, v, w, x, y, z \ u3 = v3 = w3 = x9 = y3 = z = 1,
[y, x] = zu, [z, x] = u, [u, x] = v, [v, y] = w, [u, z] = w~\
and all other commutators are trivial).

EXAMPLE 3.5. Given any prime p there is a p-group G with irreducible character
degrees {1, p, p2, p3} and derived length 3.

Proof. Let H be a group as in Example 3.4 with degrees {l,p,p2} and derived
length 3. Then if P is any non-abelian group of order p3, the direct product G = H x P
has the desired properties.

The same trick will produce groups with character degrees {1, p, p2, p3, p4} and
derived length 3, however, it is not known if these degrees can occur with derived length
4.
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