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Interplay of entrainment and rheology in snow avalanches:
a numerical study
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ABSTRACT. A one-dimensional evolution equation for the slope-normal velocity profile of a streamwise
uniform avalanche over an entrainable bed is derived. The boundary conditions are no slip at the bed,
a stress-free surface and constant bed shear stress equal to the shear strength of the snow cover. The
resulting equation is solved numerically bymeans of finite differences on a regular grid with a superposed
fine grid near the erosion front that is adjusted at each time-step. The first exploratory simulations yield
realistic entrainment rates and show that the entrainment rate tends towards a constant value while
the flow depth and the velocity increase linearly with time for all investigated rheologies. It is shown
that there indeed exists a rheology-independent asymptotic solution to the equation of motion of an
entraining slab if the bottom friction is equal to the bed shear strength; the asymptotic acceleration is
found to be half the downslope gravitational acceleration. The model can easily be extended to general
path profiles, non-uniform flows and variable snow properties.

INTRODUCTION
Since quantitative measurements of the mass balance of
snow avalanches have been reported (Issler and others, 1996;
Sovilla and others, 2001; Vallet and others, 2001; Sovilla,
2004), modellers have renewed their efforts to describe the
important but poorly understood process of entrainment.
Different erosion mechanisms have been hypothesized
(Gauer and Issler, 2004), and for some of these (frontal
ploughing, ripping of chunks corresponding to an entire
snowpack layer and continuous abrasion along the flow
bottom) there seems to be conclusive experimental evidence
from the deposit structure or data from profiling radar (Gubler
and Hiller, 1984; Issler, 2003; Sovilla, 2004). To date,
the potential of laboratory chutes for detailed studies of
erosion and entrainment mechanisms with diverse bed and
flow materials under controlled conditions has barely been
tapped (Barbolini and others, 2005).
Due to the lack of conclusive experimental knowledge,

mathematical models of bed entrainment have mostly been
heuristic (see Eglit and Demidov, 2005, for a comparison of
a large variety of entrainment models developed for different
phenomena), typically of the form

qe ∝ (σb − τc)
a or qe ∝ (u − uc)b , (1)

where a and b are empirical exponents, σb is the bed shear
stress and τc and uc are the threshold, or critical, bed shear
strength and velocity, respectively. More physical approaches
rooted in fluid dynamics were proposed by the Moscow
school, either treating the flow/bed interface as a shock front
(Briukhanov and others, 1967; Grigorian and Ostroumov,
1977) or postulating an analogy with shear-induced mixing
at the interface between different fluids (Eglit, 1983). In the
case of (frictional, dry) granular flows on a bed of the same
material, Boutreux and others (1998) clarified the role played
by the slope angle. Their work was extended and applied to
snow avalanches by Naaim and others (2004), who may have
been the first to recognize the close connection between the

shear rate at the bed/flow interface (governed by the rheology
of the flowing material) and the entrainment rate.
D. Issler and T. Jóhannesson (unpublished information)

further explored the connections between flow rheology, bed
properties, erosion of bed particles and their entrainment
into the flow, assuming constant flow depth and a perfectly
brittle bed material that is characterized by its shear strength,
τc, and is entrained along the flow bottom. With these
simplifications, they found analytical solutions for quasi-
stationary flow of a Bingham fluid and realistic erosion rates
for parameter values typical of snow avalanches. However,
extension to non-stationary situations requires some approx-
imations that are difficult to control a priori, and analytic
solutions for the velocity and shear-stress profiles under
entrainment may not exist for more complicated rheologies.
Our aim here is therefore to create a tool with which

to find suitable approximations to the velocity profiles of
entraining flowswith nonlinear rheology, or to directly obtain
parameterizations of the erosion rate as a function of the
depth-averaged flow velocity, ūx , and the flow depth, h.
We formulate and implement a one-dimensional numerical
model for the time evolution of the velocity and shear-stress
profiles, the erosion rate and the flow depth that can, in
principle, be applied to any rheology of the form

τ̂ = f (γ̇, σ̂), (2)

where τ̂ ≡ σxz/ρ and σ̂ ≡ σzz/ρ are the specific shear and
normal stress, respectively, and ρ is the density. The measure
of shear, γ̇, reduces to the shear-rate gradient, ∂zux , in our
idealized situation.

EVOLUTION EQUATION FOR THE VELOCITY
PROFILE
For the sake of simplicity, we make several assumptions,
which can easily be relaxed or modified later: (1) We treat the
avalanche as infinitely long in the x-direction along a slope
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Fig. 1. Schematic t–z diagram, showing the erosion front advancing
in time and the choice of coordinate system. Note that the x-
direction is not shown. The slope of the curve, b(t ), is the (non-
material) erosion speed, we(t ). There is no mass flux in the z-
direction even though mass flows across the moving interface.

inclined at a constant angle, θ. All variables thus depend only
on the slope-perpendicular coordinate, z, and the time, t
(Fig. 1). (2) The snow cover and the avalanche are assumed to
have the same density, ρ. (3) Entrainment stops as soon as the
entire snow cover is eroded away. (4) The combined depth
of avalanche and snow cover remains constant, i.e. there is
no mass redistribution along the body of the avalanche. As
a consequence, a particle in the avalanche always moves
parallel to the ground and the interface between flow and
bed is also parallel to the ground.
Mass balance is trivially satisfied in this set-up, and the

momentum balance in the z-direction yields σ̂ = −zg⊥
if we assume the surface at z = 0 to be stress-free and
(g‖, g⊥) ≡ (g sin θ, g cos θ) is the gravitational acceleration
vector. With u(z, t ) the velocity in the x-direction, we write
the balance of x-momentum as

∂t u = g‖ + ∂z τ̂ . (3)

The shear stress is to be expressed as a function of the shear
rate, ∂zu (cf. Equation (2)), so Equation (3) in general is a
nonlinear partial differential equation of diffusion type for u.
Note that τ̂ < 0 for u > 0 in our coordinate system.
We assume no slip at the erosion front, i.e. u(b, t ) = 0.

To completely specify this problem with a time-dependent
computational domain, the erosion speed, we = ḃ(t ),
must be determined. For bed materials that are perfectly
brittle (implying that they fail instantaneously and without
significant strain once the stress reaches a critical value, −τc)
Issler and Jóhannesson (unpublished information) argued
that there is a fundamental feedback mechanism that keeps
the bed shear stress, τb, at the value −τc as long as
entrainment is possible. If |τb| were smaller than τc, erosion
would cease, so the shear rate and |τb| would increase until
erosion resumes. If |τb| > τc, however, the erosion rate would
grow and the acceleration of more eroded bed material
would reduce |τb|. We assume that snow can indeed be
modelled as a perfectly brittle material to a sufficient degree

of accuracy, given the rapid loading induced by the arrival of
the avalanche and the substantial shear stresses exerted by
the flow, which are of the order of hρg‖ ≈ 1–3 kPa.
Equation (2) and the boundary condition τ̂ = −τ̂c imply

that the shear rate at the erosion front is constant in time:

γ̇(b(t ), t ) = f −1(τ̂ = −τ̂c, σ̂) ≡ γ̇c. (4)

The progression of the erosion front is driven by the need to
maintain the stress boundary condition while the recently
eroded material is being accelerated. At time t + dt , the
velocity of a particle that was eroded at time t is, according
to Equation (3) and to first order in dt ,

u(b(t ), t + dt ) = u(b(t ), t ) + ∂t u(b(t ), t )dt

= 0 + [g‖ + ∂z τ̂ (γ̇(b(t ), t ), σ̂(b(t ), t ))]dt (5)

=

[
g‖ +

δτ̂

δγ̇
∂z γ̇|γ̇=γ̇c +

δτ̂

δσ̂

∣∣∣∣
γ̇c

∂z σ̂(b(t ), t )|z=b(t )
]
dt

while the erosion front is now located at

b(t + dt ) ≈ b(t ) + we(t )dt . (6)

The shear rate at the front thus evaluates to

|γ̇(b(t + dt ), t + dt )| ≈ u(b(t ), t + dt )− 0
b(t + dt )− b(t )

≈
g‖ + δτ̂

δγ̇ (γ̇c, σ̂b)∂z γ̇|γ̇=γ̇c + δτ̂
δσ̂ (γ̇c, σ̂b)∂z σ̂|z=b(t )

we(t )
, (7)

where σ̂b ≡ σ̂(b(t ), t ). As this must be equal to γ̇c, we find
the propagation speed of the erosion front in the z-direction:

we(t ) =
g‖ + δτ̂

δγ̇ (γ̇c, σ̂b)∂z γ̇(b, t ) +
δτ̂
δσ̂ (γ̇c, σ̂b)g⊥

γ̇c
. (8)

Note that γ̇c is time-dependent if the shear stress depends
on the normal stress (e.g. due to Coulomb friction). As an
example, apply the NIS (Norem–Irgens–Schieldrop) model
(Norem and others, 1989),

σ̂ = σ̂e − ν′γ̇2, (9)

τ̂ = −τ̂y + μσ̂e − νγ̇2, (10)

to Equation (8); here μ is the dry-friction coefficient, τ̂y the
specific yield strength, σ̂e the specific effective normal stress
transmitted by frictional grain contacts, and ν, ν′ are the
coefficients of the dispersive stresses (m2). The erosion speed
becomes

we =

√
ν − μν′

τ̂c − τ̂y − μg⊥h

[
g‖− μg⊥− 2(ν − μν′)γ̇c∂z γ̇(b, t )

]
.

(11)

NUMERICAL IMPLEMENTATION AND
SIMULATION RESULTS
Much of the simplicity of Equation (3) is due to the absence
of advection in the z-direction – a feature that the numerical
scheme should reflect. At the same time, there is a moving
(non-material) boundary at z = b(t ) where increased
precision is required because the gradient of the shear rate
must be computed at the erosion front (cf. Equation (8)). In
order to accommodate both requirements, we combine a
coarse regular fixed grid of mesh length Δzc with a fine grid
of N + 1 equidistant nodes a distance Δzf = Δzc/N apart
in a finite-difference scheme. At the beginning of each time-
step, the fine mesh is translated so that its end coincides
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Fig. 2. Schematic representation of the coarse grid and the
superposed fine grid, which is shifted to the new position of the
erosion front at the beginning of each time-step.

with the present location of the erosion front, and u, σ̂ and
τ̂ are interpolated to the new node positions (see Fig. 2). The
field values at the coarse-grid node within the fine grid are
also interpolated; as the erosion front progresses, successive
coarse-grid nodes are activated.
We use staggered grids, with the velocity, u, located at

the nodes and the stresses, σ̂, τ̂ , at the cell centres. The
z-derivatives are approximated by central differences, and
quadratic extrapolation is used for ∂z γ̇(b(t )) so that the
scheme is second-order accurate in space. Time-stepping is
by simple forward differencing and thus first-order accurate.
The time-step is determined from two criteria: (1) the eroded
depth per time-step must be less than the cell width of the
fine grid; (2) disturbances of the velocity profile, which are
damped in the exact solution due to the diffusive nature of the
differential equation, must not be amplified in the numerical
approximation. The second criterion often imposes very short
time-steps, but computation times are nevertheless short (a
few seconds) on a current personal computer.
If the erosion rate is a little too large due to small numerical

errors, the specific shear stress will drop slightly below τ̂c,
and erosion ceases at once. In order to prevent spurious
fluctuations of this kind, the erosion rate is set to 98–99%
of its calculated value.
Another numerical problem, visible in Figure 3b and e,

arises from the displacement of the fine grid relative to the
coarse one: as the tail node of the fine grid is shifted past
a node of the coarse grid (which then gets activated), the
velocity and shear stress gradients change a little, but they
do so abruptly. The disturbance propagates to the erosion
front and causes the erosion rate to be overestimated briefly.
A more precise interpolation scheme is called for, but the
error is negligible for all practical matters.

Table 1. Initial conditions and material properties of the simulations
shown in Figure 3

Parameter Newtonian fluid Bagnoldian fluid

Slope angle, θ 30◦

Density, ρ 300 kgm−3

Erodible snow depth, D0 14.0m 15.0m
Initial flow height, h0 1.037m 1.05m
Initial velocity, ū0 3.8m s−1 0
Snow cover strength, τc 500 Pa 1450 Pa
Rheological exponent, q 1 2
Viscosity, η 0.10m2 s−1 –
Dispersive coefficient, ν – 0.005m2

Dispersive coefficient, ν′ – (arbitrary)
Coarse mesh width, Δzc 0.1m 0.1m
Fine mesh width, Δzf 0.02m 0.01m

The code was validated by verifying that non-entraining
flows with various rheologies converge to the known
analytical solutions for the terminal velocity and stationary
velocity profile. In addition, the simulated time evolution of
the velocity profile of a non-entraining laminar Newtonian
flow matches the theoretical solution obtained by Fourier
expansion.
Two exploratory simulations with the new model (Table 1;

Fig. 3) assume Newtonian and Bagnoldian rheologies,
respectively. The latter is obtained from Equations (9) and
(10) as a special case by letting τ̂y,μ→ 0. Both simulations
deliberately allow unrealistic flow height growth in order
to highlight the asymptotic behaviour of the model. If the
finite avalanche length and mass redistribution along the
flow direction were accounted for, realistic erosion depths of
0.5–2m and lower velocities and flow heights would result.
While the Newtonian flowwas started with an initial velocity
and eroded a relatively weak snow cover from the beginning,
the snow cover strength for the Bagnoldian case was only
slightly below the equilibrium bed shear stress of the non-
entraining flow. Erosion therefore began only when the flow
had nearly reached terminal velocity, the acceleration had
become small and the specific bed shear stress approached
the equilibrium value, h0g‖. However, after the threshold
was passed, the growing flow height made more gravitational
force available for entraining snow and accelerating the flow.
The long-term behaviours of both flows exhibit striking

similarities, in that both the acceleration and the erosion
speed tend towards constant values and the velocity
profiles are almost linear except near the surface, where
they resemble somewhat the equilibrium profiles of non-
entraining flows of the same rheology. Accordingly, the
shear-stress profiles are only weakly curved near the surface,
but ∂zτ differs strongly from the stationary value, ρg‖ =
1500Pam−1. The observed behaviour is a consequence of
the crucial postulate that the bed shear stress equal the bed
shear strength. This is made clearer in the following section.

ASYMPTOTIC SOLUTIONS FOR SLAB MODELS
WITH ENTRAINMENT
The results obtained through the numerical solutions suggest
there exists an asymptotic solution to the equation of motion
of an entraining mass point on an inclined plane with
constant entrainment rate and linearly growing flow depth
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Fig. 3. Results of numerical simulations for the case of Newtonian (left column) and Bagnoldian (right column) fluids in laminar flow. The
initial conditions and material properties are summarized in Table 1. The rows show the evolution of, respectively, velocity and acceleration,
erosion speed and flow height, and velocity and shear-stress profiles. Note that the Bagnoldian fluid meets the erosion criterion only after
∼6 s when it has almost attained its terminal velocity without erosion of ∼17m s−1. The profiles differ strongly from the corresponding
equilibrium profiles of stationary non-entraining flows with the same rheology.

and velocity under the shear-stress boundary condition,
τ̂b = τ̂c. We therefore set

we → w∞ = const, ū → ā∞t , h → w∞t (12)

in the equation of motion (overlined quantities are depth-
averaged)

dū
dt
(t ) = g‖ − τ̂c

h(t )
− we(t )ū(t )

h(t )
(13)

and obtain
ā∞ = g‖ − τ̂c

w∞t
− ā∞. (14)

One immediately sees that ā → g‖/2 as t → ∞ and the
bed shear stress, τ̂ , becomes insignificant compared to the
gravitational traction, hg‖. This conclusion is borne out by
the numerical simulations with Newtonian and Bagnoldian
rheologies (Fig. 3).
The most notable features of this solution are (1) its

independence of the rheology, (2) its apparent stability and
(3) the fact that asymptotically one half of the momentum
input from gravity goes into accelerating the bulk of the flow
and the other half into bringing the eroded mass up to the
average flow velocity.
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As mentioned above, some (temporary) model assump-
tions are unrealistic for snow avalanches, and hence so is
this asymptotic solution with ever-increasing velocity and
flow height. Interestingly, however, Gauer and others (2010)
pointed out that available experimental data on maximum
velocity of avalanches, umax, plotted against the drop height,
H, indicate the relationship umax ∝ (gH)1/2, which is
obtained if the effective friction coefficient is approximately
constant, but not if it grows significantly with velocity. The
boundary condition on the shear stress we have adopted
in this work, τ̂b = τ̂c, gives an effective friction coefficient
that is independent of the velocity, but diminishes as the
inverse of the growing flow depth. However, entrainment
of eroded snow at an ever-increasing speed gives rise
to a resistive acceleration, −a∞ ∝ u2 ∝ gh ∝ σ̂, that
mimics dry friction as long as the slope angle is constant
and there is enough erodible snow. The dynamics of entrain-
ment thus offers a possible explanation for the observed
growth of umax with H that can be tested further against
experimental data.

CONCLUSIONS AND OUTLOOK
The numerical model described here has proved to be
a very useful tool to continue the work of Issler and
Jóhannesson (unpublished information) beyond the restric-
tive assumptions needed to obtain analytical solutions. In
particular, the asymptotic solution hinted at by the numerical
simulations highlights the decisive dynamical role played
by the postulated feedback mechanism that locks the bed
shear stress at the value of the shear strength of the snow
cover, and by the assumptions concerning the redistribution
of entrained snow. We anticipate that future detailed studies
of the shape evolution of the velocity and shear-stress profiles
will give useful guidance in the development of approximate
entrainment models based on the self-consistent approach
of Issler and Jóhannesson (unpublished information). It is
also conceivable that further asymptotic solutions can be
found with different assumptions regarding redistribution of
entrained snow.
The numerical model also has potential for future

development in its own right. Some of the next steps we
plan to implement are: (1) improved interpolation methods
to reduce disturbances as the fine grid leaves a node of the
coarse grid behind; (2) extension to a slab model on an
arbitrary path profile, with the slab length growing as snow is
entrained; (3) snow strength varying along the path and with
depth in the snow cover; (4) the ideas leading to Equation (8)
can and should also be incorporated in more advanced
numerical models in two dimensions (x and z). However,
a more refined formulation of the momentum balance will
be needed because the assumptions of vanishing uz and
independence of x are no longer valid.
Last but not least, there is urgent need for innova-

tive experimental studies of the fundamental entrainment
mechanisms. Particularly, our central assumption of perfectly
brittle failure needs to be confronted with controlled
experiments under realistic conditions. If it holds to some
degree in snow, the conditions for its validity in other
eroding gravity mass flows are a question of great practical
interest. While the experimental challenge is substantial, the
pioneering study of Barbolini and others (2005) indicates a
promising approach.

ACKNOWLEDGEMENTS
D.I. gratefully acknowledges a fellowship from the NILS
Mobility Project (ABEL Extraordinary Chair action) and
the hospitality extended by the Laboratorio de Geotecnia
of CEDEX in Madrid, Spain. Completion of this work
was financed by the EU Framework Programme 7 project
SafeLand and by the Norwegian Water Resources and Energy
Directorate through the research project Snow Avalanches.
We thank two anonymous referees for careful reading and
constructive criticism. This is contribution No. 349 from the
International Centre for Geohazards.

REFERENCES

Barbolini, M., A. Biancardi, F. Cappabianca, L. Natale and
M. Pagliardi. 2005. Laboratory study of erosion processes in snow
avalanches. Cold Reg. Sci. Technol., 43(1–2), 1–9.

Boutreux, T., E. Raphael¨ and P.-G. de Gennes. 1998. Surface flows
of granular materials: a modified picture for thick avalanches.
Phys. Rev. E, 58(4), 4692–4700.

Briukhanov, A.V. and 6 others. 1967. On some new approaches to
the dynamics of snow avalanches. In Oura, H., ed., Physics of
snow and ice. Sapporo, Hokkaido University. Institute of Low
Temperature Science, 1223–1241.

Eglit, E.M. 1983. Some mathematical models of snow avalanches. In
Shahinpoor, M., ed. Advances in the mechanics and the flow of
granular materials. Vol. 2. Houston, TX, Gulf Publ. Co. Clausthal-
Zellerfeld, 577–588. (Trans. Tech. Publ.)

Eglit, M.E. and K.S. Demidov. 2005. Mathematical modeling of
snow entrainment in avalanche motion. Cold Reg. Sci. Technol.,
43(1–2), 10–23.

Gauer, P. and D. Issler. 2004. Possible erosion mechanisms in snow
avalanches. Ann. Glaciol., 38, 384–392.

Gauer, P., K. Kronholm, K. Lied, K. Kristensen and S. Bakkehøi.
2010. Can we learn more from the data underlying the statistical
α-β model with respect to the dynamical behavior of avalanches?
Cold Reg. Sci. Technol., 62(1), 42–54.

Grigorian, S.S. and A.V. Ostroumov. 1977. Matematicheskaya
model sklonovih processov lavinnogo tipa [The mathematical
model for slope processes of avalanche type]. Moscow, Moscow
State University. Institute for Mechanics (Scientific Report 1955).
[In Russian.]

Gubler, H. and M. Hiller. 1984. The use of microwave FMCW radar
in snow and avalanche research. Cold Reg. Sci. Technol., 9(2),
109–119.

Issler, D. 2003. Experimental information on the dynamics of dry-
snow avalanches. In Hutter, K. and N. Kirchner, eds. Dynamic
response of granular and porous materials under large and
catastrophic deformations. Berlin, Springer, 109–160.

Issler, D., P. Gauer, M. Schaer and S. Keller. 1996. Staublaw-
inenereignisse imWinter 1995: Seewis (GR), Adelboden (BE) und
Col du Pillon (VD). Eidg. Inst. Schnee- Lawinenforsch. Interner
Ber. 694.

Naaim, M., F. Naaim-Bouvet, T. Faug and A. Bouchet. 2004.
Dense snow avalanche modeling: flow, erosion, deposition and
obstacle effects. Cold Reg. Sci. Technol., 39(2–3), 193–204.

Norem, H., F. Irgens and B. Schieldrop. 1989. Simulation of snow-
avalanche flow in run-out zones. Ann. Glaciol., 13, 218–225.

Sovilla, B. 2004. Field experiments and numerical modelling of mass
entrainment and deposition processes in snow avalanches. (PhD
thesis, ETH Zuri¨ ch.)

Sovilla, B., F. Sommavilla and A. Tomaselli. 2001. Measurements
of mass balance in dense snow avalanche events. Ann. Glaciol.,
32, 230–236.

Vallet, J., U. Gruber and F. Dufour. 2001. Photogrammetric
avalanche volume measurements at Vallee´ de la Sionne,
Switzerland. Ann. Glaciol., 32, 141–146.

https://doi.org/10.3189/172756411797252031 Published online by Cambridge University Press

https://doi.org/10.3189/172756411797252031

