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1. Introduction. Recently the Ls-property has been introduced by Chatterji [2].
In [3], spaces with the Ls-property are shown to have applications to group C*-algebras.
This property is used to define Ls-groups, which are a generalization of hyperbolic
groups. The precise definitions are given in Section 2.

Hyperbolic groups are characterized as the groups with a linear Dehn function [5].
Elder showed that if a Cayley graph I'(G, A4) enjoys the Ls-property, then G has a sub-
cubic Dehn function [4]. This suggests the following question asked by I. Chatterji and
K. Ruane (Albany conference talk, 2004): If a group G acts properly, cocompactly, and
by isometries on an Ls-space, then what is a bound for the Dehn function of G?

In this paper we give an answer to this question by showing that Elder’s result
generalizes to groups that are quasi-isometric to an Ls-metric space (Theorem 3.2). It
should be noted that it is unknown whether or not such a group always admits a finite
generating set for which the Cayley graph is an Ls-metric space.

2. Preliminary results. Let G be a group with finite presentation (4 | R) and let A
be a connected graph in R? whose edges are oriented and labeled by elements in 4. The
graph A is said to be a van Kampen Diagram for w € A* if reading the labels around
the boundary of A gives w, and reading the labels on the boundary of each region
gives a relator in R*. A word w has a van Kampen diagram if and only if w = 1, and
the area A(w) is equal to the minimum number of regions in a van Kampen diagram
for w.

The function D(n) = max {A(w) : lw|, < n, w =1} is called the Dehn function
for the group presentation (A | R). An isoperimetric function for this presentation is
any function satisfying D(n) < f(n). To make the Dehn function independent of the
presentation, we define an equivalence relation on functions. The notation f* < g means
that there are positive constants 4, B, C, D, E such that f(n) < Ag(Bn+ C)+ Dn+ E.
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Two functions f and g are said to be equivalent, denoted f ~ g, if f < g < f. If two
finitely presented groups G and H are quasi-isometric, then their Dehn functions are
equivalent; see for example [7]. In particular, the Dehn function of G is independent
of its presentations up to this equivalence.

Let (X, d) be a metric space and let § > 0 be a constant. A finite sequence
(x1, x2, ..., x,) of points xi, x3,...,x, iIn X is said to be a §-path, if d(x;, x3) +
d(x2, x3) + ...+ d(x,—1, xn) < d(x1, x,) + 8. Choose x, y, z € X. If there exists a point
t € X so that the paths (x, ¢, y), (v, t, z), and (z, ¢, x) are all §-paths, ¢ is called a §-center
for a triple x, y, z. We say that a geodesic metric space (X, d) has the Ls-property and
call it an Ls-metric space, or an Ls-space for short, if every triple x, y,z € X has a
3-center in X. Of course the Ls-property makes sense for metric spaces in general, but
here we are only interested in geodesic metric spaces.

DEFINITION 2.1 (Ls-group). An Ls-group is a finitely generated group G that acts
properly, cocompactly, and by isometries on an Ls-space for a constant § > 0.

Next we introduce the Rips graph of a geodesic metric space (X, d). Let s > 0
be a constant. Construct a metric graph I'y(X) by requiring that V(I'y(X)) = X and
[x,y] € E(Ty(X))ifand only if 0 < d(x, y) < s. By d; denote the path metric obtained by
making each edge isometric to the unit interval [0, 1]. If y is an edge path in I'y(X), then
£(y)is the number of edges in y. That is, I';(X) is the 1-skeleton of the Rips complex for
(X, d) with parameter s. It is easy to see that (I'y(X), d,) is a geodesic space. Moreover,
the Rips graph is a generalization of the Cayley graph: Taking (X, d) = (G, d,), where
G is a group generated by a finite set 4 and d4 is the corresponding word metric, I'y(X)
is the Cayley graph I'(G, A).

LEMMA 2.2. Let (X, d) be a geodesic space and I'y(X) be its associated Rips graph.
Then for all s > 1,

(1) 1d(x,y) <dy(x,y) < 1d(x,y)+ 1 forallx,y € X,

(2) (X, d) and (Ty(X), dy) are quasi-isometric.

Proof. (1) For the first inequality, let dy(x, y) = n. Then there is a geodesic path
y = [x0, x1][x1, x2]. . . [Xn—1, X,] where y(0) = xo = x, y(1) = x, = y. Note that each
[xi, x;11] is an edge in ['y(X), i.e., dy(x;, x;11) = 1 and d(x;, x;11) < 5. Thus

d(x,y) < d(xg, x1) +d(x1,x2) + ...+ d(xp_1, Xp) < s-n=15-ds(x, ).

For the second inequality, let y be a geodesic path from x to y. Choose a partition
Pity<ti<---<tyon[0,1]wherety =0,¢,=1,d(y(ti-1), y(t;)) =sforall 1 <i<
n—1,and 0 < d(y(t,—1), y(t,)) < s. Let x; = y(t;), x = Xx¢, and y = x,,. Then there is
an edge path [xo, x1][x1, x2] - - - [Xn_1, X»] in ['4(X) from x to y. Thus,

n—1

1 1 1
dy(x,y) < =Y dlxi, x)+ 1< —ly)+1=~d(x,y) + 1.
S S S

i=1
(2) By the above fact (1), the identity ¢ : (X, d) — (['y(X), dy) is a quasi-isometric

embedding. And every point in [';(X) is less than one edge apart from some vertex in
X Cc Iy(X). O
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It is an open question whether or not the Ls-property is invariant under quasi-
isometries. Nevertheless, in the next section we reduce to the case of a metric graph by
way of the following lemma.

. , . X r 8
. LEM]MA 2.3.1f(X, d)is an Ls-space, then (T's(X), dy) is an Ls--space where §” = < + 6
and s > 1.

Proof. First choose x, y,z € X C I'y(X) and let 7 € X be a §-center of the triple
X, ¥y, zin (X, d). By Lemma 2.2.(1),

1)
ds(X, l) + ds(t, y) < ds(x’ y) + ; + 2.

Also, dy(y, 1) + dy(t, z) < dy(y, 2) + £ + 2 and dy(x, 1) + dy(t, z) < dy(x,2)+ 2 +2. So
t € X is a §'-center of the triple x, y, z in (X, d;), and hence (X, d;) is an Lg-space for
§=2+2.

Now let x, y, z be in Ty(X). Choose X', )/, 2 € X = V ([y(X)) such that dy(x, x') <
1,dy(y,)") < 1l,and dy(z,Z') < 1.Lett € X C I'y(X) bead’-center for X', y/, z in (X, d).
A simple calculation shows that

dy(x, 0) + d(t, p) < dy(x, X') + d(x', 1) + d(2, Y) + ds (', p)
<d(x,y)+8+2
< dy(X', x) +di(x, y) + ds(», ) + 8" + 2
<dix,y)+58 +4.

Similarly, di(y, t) + dy(¢, z) < ds(y, z) + 8’ + 4 and d(z, t) + d,(¢, x) < di(z, x) + &' + 4.
Take 8" =48 +4 = % + 6. Then 7 € T'y(X) is a §”-center for the triple x, y, z € ['y(X),
and hence (I'y(X), d;) is an Lg/-space for §” = ‘S; + 6. [

3. Mainresult. We first observe a fact about polygons in R”. By a polygon in R?,
we mean a simple closed curve consisting of a finite number of line segments, called
edges. For each edge e of a polygon P, let H, be the open half-plane on the side of
the line through e determined by a P-inward pointing normal vector to e. Define the
convex core of P by C(P) = meeS(P) H,. Being an intersection of half-planes, C(P) is
convex, and in some bad cases it is empty.

Assume that C(P) is non-empty, and choose ¢ € C(P). Then for all x € P, [x, c]N
P = {x}, where [x, c] is a straight line segment. Note, in particular, that if P is a convex
polygon, then C(P) is the inside of P. The following lemma is obvious and easy to
prove.

LEMMA 3.1. Suppose that P is a polygon in R*> with non-empty convex core and let
X, ¥, z be distinct vertices of P. If ¢ € C(P), then the three line segments [x, c], [y, c], and
[z, c] subdivide P into three polygons, each with non-empty convex core.

Let (X, d) be an Ls-space and I'(X) be the associated Rips graph with parameter
s > 1. We now give a procedure for constructing a sequence of planar combinatorial
graphs and combinatorial maps to I';(X) which we use in the proof of the main theorem.
This is similar to the procedure used by Elder [4] in a Cayley graph. By Lemma 3.1,
these combinatorial graphs can be constructed by vertices and straight edges.
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Let a convex n-gon A in R? with vertices vy, vy, ..., vy—; in this order and a
combinatorial map ¢y : Ay — I's(X) be given. Put x; = ¢o(v;). Note that d(x;, x;41) < s
since [x;, x;41] is an edge in I'y(X).

Construct Aj. If n > 38” + 8, then we subdivide Ag as follows: Let p = [ 5] and
q= L2—3"J, where | | is the greatest integer function. Then the three vertices vg, vy, v,
subdivide Ay into three sub-paths, each of edge length less than or equal to [5] + 1.
Let ¢ be a §-center for X, X,, X4 in (X, d). Then by Lemma 2.3 and its proof, ¢ is
also a §”-center for xo, x,, x, in (I's(X), d;), where §” = % + 6. Since Ay is convex, its
convex core is non-empty. Choose a point ¢ € C(Ap) so that the three line segments
[vo, ¢, [vp, c] and [vy, ] intersect only at c. Then A has 3 regions.

Defineamap ¢; : A — I'y(X) by requiring that ¢ |a, = @0, ¢1(c) = ¢, and ¢ [c, v;]
is a geodesic path in I'y(X) from ¢ = ¢;(c) to x; = ¢1(v;) where i = 0, p, g. Subdivide
each of [vy, c], [vp, c], and [v,, c] so that ¢; maps them combinatorially onto their images
in ['y(X). Define the combinatorial length £(y) of a path y in A; to be the number of
edges in y. Then

Z([v,,, c)) + £(c, vq]) = ds(xpv 1) + dy(t, xq) =< dx(xpv xq) +48" < g +1+4".

Similarly, £([vo, c]) + €([c, v,]) < 5 + 1+ 8" and £([vo, ]) + £([c, v,]) < 5 +1+38". So
the combinatorial perimeter of each region of Ay is bounded by

n n 2n
— 414+ =-4148"==+2+4".
3+ +3+ + 3 + 24

Recall thatn > 38" + 8 or§” < "T’g Thus it is shorter than 27” +2+ "T’g =n— % < n.

That is, the combinatorial perimeter of each new region in A is strictly shorter than
the combinatorial perimeter of Ay.

Repeat this trisection process on each region in A; whose perimeter is greater than
38” + 8 to construct A, and ¢, : Ay — I'y(X). Thus, the number of regions in A, is
less than or equal to 3> and the combinatorial perimeter of each new region in A, is
bounded by

2(2 2\* 2
(Z 248 ) 1248 =(2) n+2Q+8)+2+08).
33 3 3

Choose k so that (3 < n < (3)**1. After k iterations, we have Ay and g : A —
['y(X). Thus A, has at most 3* regions, and the combinatorial perimeter of each region
in Ay is at most

) k k—1 2
(3) n~|—(§> " +2)+ -+ 32+ + 2+

which is bounded by (3)F(3)+! +% < 38”4+ 8. In particular, our procedure
3

terminates after at most k steps.

THEOREM 3.2. If a finitely generated group G is quasi-isometric to an Ls-space for
some § > 0, then G is finitely presented and has a sub-cubic Dehn function.

Proof. Let A be a finite generating set for G which is inverse closed and use the
word metric d4 for G. Suppose (G, d,) is quasi-isometric to an Ls-space (X, d). Choose
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quasi-isometries « : G — X and B: X — G such that for all ge G and x € X,
ds(g, (Boa)g) < Candd(x, (¢ o B)(x)) < C,where C is a constant. We may assume
that o and 8 are both (1, €)-quasi-isometries with the same constants A > 1 and ¢ > 0.

Choose win A*sothatw =aya; ...a, wherea;e Aandw=1.Letg;=a;...a;€G.
We want to construct a van Kampen diagram for w. Start with a convex n-gon Ag in
R? with vertices vy, . . ., v,_; in this order.

Put s = A + ¢ and define ¢y : Ag — Ti(X) by ¢o(v;) = a(g;) = x;, say. Note that
[xi, x;11] 1s an edge in ["y(X), since

d(x;, Xip1) = d(a(g:), a(git1)) < Ad4(gi, 1) +e=A+e=s.

So the map ¢y is a closed path in I'y(X) with combinatorial length n.

If n = |w] 4 is greater than 3§” + 8§, then trisect Ay to construct A; and ¢; : A} —
I'y(X). Iterate the trisection process for each region whose combinatorial perimeter is
greater than 38” + 8 until all regions have perimeter shorter than 38” + 8. Suppose this
is achieved after k-iteration. Thus we have Ay and ¢y : Ay — ['y(X), where Ay has at
most 3¢ regions and (3)¥ < n < ().

In order to get an n-gon which is mapped to a closed path of 4-length nin T'(G, A),
we inflate Ay a bit to form the graph A. We put n vertices on the outside of A labeled
by yo, ..., yn—1 and put 2n edges [v;, y;] and [y;, yir1] where i =0, 1, ..., n — Ilmodn.
Thus A has n regions outside of Ay.

Define a map ¢ : A — I'(G, A) as follows: (1) ¢ is the composition V(Ay) AN
¥ (G, A); 2) p(y;) = gi; and (3) ¢([u, v]) is a geodesic path from ¢(u) to
¢(v) in T'(G, A), for [u, v] € E(A). Then ¢ maps dA to a closed path labeled by w in
I'(G, A) of A-length n.

We now show that each region in I'(G, A) has a perimeter bounded by a constant.
If [u, v] € E(Ay), then

lo([u, vDI4 = da((B o pi) (W), (B © @r)(v)) = Ad(r(u), p(v)) + & < As + €.

Recall that the combinatorial perimeter of ecach region of Aj is bounded by
38" +8. So, for each region D in Ay, ¢(dD) is a closed path in I'(G, 4) of
length at most (38" + 8)(As + ¢). And for each outer region M in A\ Ag, (M) =

@lvi, vigtlelvipr, yig1leli, yilelyi, vil in T'(G, 4), and
ds(p(¥i), eix1) = 1; da(@(vi), 9(31)) < C; dg(@(vi), (vig1)) < As + &.

So, p(d M) is the closed path in I'(G, A) of length at most As + & +2C + 1.

Let K = max {(As + )(38” + 8), As + &€ + 2C + 1}. Then the perimeter of every
region in ['(G, A) is bounded by K, whence {w € 4* | w = 1 and |w|, < K} is a finite
set of defining relators for G, and so G is finitely presented.

The area A(w) is at most 3% 4+ n. Remember (%)k <nork <log, sn. Hence

A(w) < 3k +n< 310215” +n= n10g1.53 +n~ n10g1.53'

If |lw|, =n < 38”4+ 8, then w is a relator so again A(w) = 1 < n'°%s3, O

We obtain the following statement which is an answer to the question posed in the
introduction.
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COROLLARY 3.3. If a group G acts properly, cocompactly, and by isometries on an
Ls-space for some § > 0, then G is finitely presented and has a sub-cubic Dehn function.

Proof. Suppose G acts properly, cocompactly, and by isometries on an Ls-space
X. By the Svarc-Milnor Theorem [1, Proposition 8.19], G is finitely generated and
quasi-isometric to X. The result follows from Theorem 3.2. O
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