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A Congruence Modulo Four for Real
Schubert Calculus with Isotropic Flags

Nickolas Hein, Frank Sottile, and Igor Zelenko

Abstract. We previously obtained a congruence modulo four for the number of real solutions to
many Schubert problems on a square Grassmannian given by osculating �ags. Here we consider
Schubert problems given by more general isotropic �ags, and prove this congruence modulo four
for the largest class of Schubert problems that could be expected to exhibit this congruence.

Introduction

_e number of real solutions to a system of real equations is congruent to the num-
ber of complex solutions modulo two. We established a congruence modulo four for
many symmetric Schubert problems given by osculating �ags, leaving as a conjecture
a stronger form of that result [9]. We prove this conjecture for symmetric Schubert
problems given by �ags that are isotropic with respect to a symplectic form, giving a
simpler proof of a stronger and more basic result than that obtained in [9].

_is congruence modulo four follows from a result on the real points in ûbers of a
map between real varieties equipped with an involution. When the ûxed point set of
the involution has codimension at least two, the number of real points satisûes a con-
gruence modulo four. _ere is an involution acting on symmetric Schubert problems
given by isotropic �ags and we can compute the dimension of the ûxed point locus
in a universal family of Schubert problems. Our inability to compute this dimension
when the �ags are osculating was the obstruction to establishing the conjecture in [9].

_e congruence modulo four o�en implies a non-trivial lower bound on the num-
ber of real solutions to a symmetric Schubert problem given by isotropic �ags. Similar
lower bounds and congruences in real algebraic geometry have been of signiûcant in-
terest [1,3,6,7,10,11,17,18,20,24]. Another topological study was recently made of this
phenomenon in the Schubert calculus [5], and delicate lower bounds [14] were given
by computing the signature of a hermitian matrix arising in the proof of the Shapiro
Conjecture [15].

In Section 1 we state our main result, whose proof occupies Section 2.
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1 Symmetric Schubert Problems

Let V be a complex vector space of dimension 2m equipped with a nondegenerate
alternating form ⟨ ⋅ , ⋅ ⟩∶V ⊗ V → C. WriteW for the complex conjugate of a point,
vector, subspace, or variety W . A variety W is real if it is deûned by real equations;
equivalently, if W = W . Write W(R) for the real points of a real variety W , i.e.,
those that are ûxed by complex conjugation. Write Sa for the symmetric group of
permutations of {1, . . . , a}.

_e set of m-dimensional linear subspaces of V forms the Grassmannian
Gr(m,V), which is a manifold of dimension m2. A �ag is a sequence F●∶ F1 ⊊ F2 ⊊
⋅ ⋅ ⋅ ⊊ F2m = V of linear subspaces of V with dim Fi = i. A partition is a weakly de-
creasing sequence of integers λ∶m ≥ λ1 ≥ ⋅ ⋅ ⋅ ≥ λm ≥ 0. A �ag F● and a partition λ
determine a Schubert subvariety of Gr(m,V),

XλF● ∶= {H ∈ Gr(m,V) ∣ dimH ∩ Fm+i−λ i ≥ i for i = 1, . . . ,m}.

_is has codimension ∣λ∣ ∶= λ1 + ⋅ ⋅ ⋅ + λm in Gr(m,V).
Let λ = (λ1 , . . . , λs) be a list of partitions and F 1

●
, . . . , F s

●
be general �ags. By

Kleiman’s Transversality _eorem [12] the intersection

(1.1) Xλ1F 1
●
∩ Xλ2F2

●
∩ ⋅ ⋅ ⋅ ∩ XλsF s

●
.

is either empty or has dimension dimGr(m,V) − ∣λ1∣ − ⋅ ⋅ ⋅ − ∣λs ∣. Call λ a Schubert
problem if this expected dimension is zero, so that (1.1) is either empty or consists of
ûnitely many points. _e number of points d(λ) in (1.1) is independent of the choice
of general �ags. We will assume that d(λ) /= 0. A choice of �ags is an instance of the
Schubert problem λ; its solutions are the points in (1.1). _e instance is real if for all
i, there is some j with F i

●
= F j

● and λ i = λ j , for then (1.1) is stable under complex
conjugation.

Remark 1.1 Osculating �ags provide a rich source of isotropic �ags. As explained in
[9, §3], a rational normal curve γ∶C→ V induces a symplectic form on V and a sym-
plectic form onV gives rise to a rational normal curve; wemay assume that γ is real in
that γ(t) = γ(t). If γ is a rational normal curve corresponding to the symplectic form
⟨ ⋅ , ⋅ ⟩, then every osculating �ag is isotropic. (For t ∈ C, the osculating �ag F●(t) is the
�ag whose i-plane Fi(t) is spanned by γ(t) and its derivatives γ′(t), . . . , γ(i−1)(t).)

_e study of real solutions to Schubert problems given by �ags osculating at real
points in Grassmannians and �ag manifolds has been quite rich and fruitful [4, 13, 15,
16, 19, 21].

A partition λ is represented by its Young diagram, which is a le�-justiûed array of
boxes with λ i boxes in row i. We display some partitions with their Young diagrams,

(2, 1, 1) ←→ , (2, 2) ←→ , and (3, 2, 1) ←→ .

A partition λ is symmetric if it is symmetric about its main diagonal, that is, if λ = λ′,
where λ′ is the transpose of λ. _e partitions (2, 2) and (3, 2, 1) are symmetric while
(2, 1, 1) is not. A Schubert problem λ is symmetric if every partition in λ is symmetric.

https://doi.org/10.4153/CMB-2016-087-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-087-2


A Congruence Modulo Four for Real Schubert Calculus with Isotropic Flags 311

Recall that our vector space V was equipped with a nondegenerate alternating bi-
linear form ⟨ ⋅ , ⋅ ⟩. A linear subspaceW of V has annihilator∠(W) under ⟨ ⋅ , ⋅ ⟩,

∠(W) ∶= {v ∈ V ∣ ⟨v ,w⟩ = 0 for all w ∈W},
and we have dimW+dim∠(W) = 2m. _is induces amapH ↦∠(H) onGr(m,V)
called the Lagrangian involution. Given a �ag F●, we get the �ag∠(F●)whose i-plane
is∠(F2m−i). A �ag F● is isotropic if∠(F●) = F●.

_e length, ℓ(λ) of a symmetric partition is the number of boxes on its main diag-
onal, so ℓ(2, 2) = 2 while ℓ(2, 1) = 1. We state our main theorem.

_eorem 1.2 Suppose that λ = (λ1 , . . . , λs) is a symmetric Schubert problem on
Gr(m,V) and that F 1

●
, . . . , F s

●
are isotropic �ags deûning a real instance of the Schubert

problem λ such that (1.1) is ûnite. If ∑i ℓ(λ i) ≥ m+4, then the number (counted with
multiplicity) of real points in (1.1) is congruent to the number d(λ) of complex points,
modulo four.

Remark 1.3 We show in Remark 2.6 that∑i ℓ(λ i) ≥ m and this sum has the same
parity as m, so that the condition in _eorem 1.2 for this congruence modulo four is
that∑i ℓ(λ i) is not equal to m or to m + 2, which is very mild.

We use the observation of Remark 1.1 that osculating �ags are isotropic to deduce a
corollary about Schubert problems given by osculating �ags. Fix a real rational normal
curve γ∶C → V with corresponding osculating �ags F●(t) for t ∈ C, and a symmet-
ric Schubert problem λ = (λ1 , . . . , λs) on Gr(m,V). An osculating instance of this
Schubert problem is a list of distinct complex numbers t1 , . . . , ts which give corre-
sponding osculating �ags F●(t1), . . . , F●(ts). _is osculating instance is real if the set
{t1 , . . . , ts} is closed under complex conjugation and if t i = t j implies that λ i = λ j .

We deduce a corollary to _eorem 1.2 that implies [9, Conjecture 21], which was
the strongest result one could reasonably expect to hold concerning this congruence
modulo four for symmetric Schubert problems. _is is strictly stronger than all con-
gruence results obtained in [9].

Corollary 1.4 Suppose that λ = (λ1 , . . . , λs) is a symmetric Schubert problem on
Gr(m,V) and that F●(t1), . . . , F●(ts) are osculating �ags deûning a real instance of λ.
If∑i ℓ(λ i) ≥ m + 4, then the number (counted with multiplicity) of real points in

Xλ1F●(t1) ∩ Xλ2F●(t2) ∩ ⋅ ⋅ ⋅ ∩ XλsF●(ts)
is congruent to the number d(λ) of complex points, modulo four.

We do not need to assert that the intersection consists of ûnitely many points, for
it always does [2].

Remark 1.5 When d(λ) is congruent to two modulo four and ∑i ℓ(λ i) ≥ m + 4,
there will always be at least two real solutions to a real instance of a symmetric Schu-
bert problem. Such lower bounds implied by _eorem 1.2 occur frequently. Table 1
gives the total number of symmetric Schubert problems in Gr(m,V) for small val-
ues of m, together with the number of those for which _eorem 1.2 implies a lower
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bound of two. _e timings are reported in GHz-seconds (s), GHz-hours (h), and
GHz-years (y).

Table 1: Numbers of symmetric Schubert problem with a lower bound of two.

m 2 3 4 5 6 7
Symmetric 1 8 81 1037 16933 349844
Have lower bound 0 2 14 199 3289 82753
Percentage 0 25 17.3 19.2 19.4 23.7
Time 0.57 s 0.6 s 1.9 s 158 s 17.1 h 1.15 y

Real instances of nine of the smallest problems from Table 1 involving osculating
�ags were computed [8]. Few other problems from this table are feasible to compute
using symbolic methods. For eight (numbers 20,57, 507, 568, 586, 587, 590, and 595
from [8]) at least one real instance had only two real solutions, showing that the lower
bound of two is sharp in these cases.

Real osculating instances of problem number 773 from [8] with 70 solutions in
Gr(5, 10) have a sharp lower bound of six real solutions. _is is a member of a family
of such symmetric Schubert problems. By results in [7, §- 3], when m = 2k+1 is odd,
a real osculating instance of the symmetric problem on Gr(2k+1,V) given by one
condition (2k, . . . , 2k, 0) and 4k−1 conditions , which has (4k2k) complex solutions,
will have at least (2kk ) real solutions, and this lower bound is attained.

2 Proof of Theorem 1.2

We follow the main line of argument for the results of [9]. We observe that the La-
grangian involution H ↦ ∠(H) permutes the solutions to an instance of a symmet-
ric Schubert problem λ given by isotropic �ags, and then construct a familyXλ → Zλ
whose base parameterizes instances of the Schubert problem λ given by isotropic �ags
and whose ûbers are the solutions to those instances. We then estimate the codimen-
sion of the∠-ûxed point locus of the familyXλ → Zλ , which shows that the numerical
condition ∑i ℓ(λ i) ≥ m + 4 implies that the ûxed points have codimension at least
two. Finally, we invoke a key lemma from [9] to complete the proof.

2.1 The Lagrangian Grassmannian

An m-dimensional subspace H of V is Lagrangian if ∠(H) = H. _e set of all La-
grangian subspaces of V forms the Lagrangian Grassmannian LG(V). _is is smooth
of dimension (m+1

2 ) and is a homogeneous space for the symplectic group Sp(V) of
linear transformations of V which preserve ⟨ ⋅ , ⋅ ⟩.
An isotropic �ag F● and a symmetric partition λ determine a Schubert subvariety

YλF● of LG(V), which is the intersection XλF● ∩ LG(V),
YλF● ∶= {H ∈ LG(V) ∣ dimH ∩ Fm+i−λ i ≥ i for i = 1, . . . ,m}.
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_is has codimension ∥λ∥ ∶= 1
2 (∣λ∣ + ℓ(λ)) in LG(V).

We need the following result which partially explains why these Lagrangian Schu-
bert varieties are relevant for _eorem 1.2.

Proposition 2.1 ([9, Lemma 9]) Let λ be a partition and F● a �ag. _en

∠(XλF●) = Xλ′∠(F●).

_us, if λ is symmetric and F● isotropic, then∠(XλF●) = XλF● andYλ = (XλF●)∠,
the set of points of XλF● that are ûxed by∠. _is has the following consequence.

Corollary 2.2 _eLagrangian involution permutes the solutions to a symmetric Schu-
bert problem given by isotropic �ags.

2.2 Families Associated with Schubert Problems

Let λ be a symmetric Schubert problem. We construct families whose bases parame-
terize all instances of λ given by isotropic �ags and whose ûbers are the solutions to
the corresponding instance.

_e set Fℓ of isotropic �ags in V is a �ag manifold for Sp(V) of dimension m2.
Deûne

U∗

λ ∶= {(F 1
●
, . . . , F s

●
,H) ∣ F i

●
∈ Fℓ and H ∈ Xλ iF i

●
for i = 1, . . . , s}.

We have the two projections π∶U∗

λ → (Fℓ)s and pr∶U∗

λ → Gr(m,V). For isotropic
�ags F 1

●
, . . . , F s

●
, the ûber pr(π−1(F 1

●
, . . . , F s

●
)) consists of the solutions

(2.1) Xλ1F 1
●
∩ Xλ2F2

●
∩ ⋅ ⋅ ⋅ ∩ XλsF s

●

to the instance of the Schubert problem λ given by the �ags F 1
●
, . . . , F s

●
.

As Sp(V) does not act transitively on Gr(m,V), we cannot use Kleiman’s _e-
orem [12] to conclude that an intersection (2.1) given by general �ags is transverse.
Transversality follows instead from the main result of [23]. Consequently, there is a
nonempty Zariski open subset O ⊂ (Fℓ)s consisting of s-tuples of isotropic �ags for
which the intersection (2.1) is transverse and therefore consists of d(λ) points.

We seek a familyX→ Z of instances of λwhere dimX = dimZ andZ is irreducible
with Z(R) parameterizing all real instances of λ. Since we cannot easily compute the
dimension of U∗

λ , we replace it by a possibly smaller set. Deûne Uλ to be the closure
of π−1(O) in U∗

λ . Restricting π to Uλ gives the dominant map

(2.2) π∶Uλ → (Fℓ)s ,

where a ûber π−1(F 1
●
, . . . , F s

●
) is a subset of the intersection (2.1) and is equal to it when

the intersection is ûnite. _us dimUλ = dim(Fℓ)s = s ⋅m2.
_is family (2.2) has the fault that the real points of its base (Fℓ)s are s-tuples of

real isotropic �ags, which are only some of the �ags giving real instances of λ.
Let Sλ ⊂ Ss be the group of permutations σ of {1, 2, . . . , s} with λ i = λσ(i) for all

i = 1, . . . , s. _en Sλ ≃ Sa1×⋅ ⋅ ⋅×Sa t , where λ consists of t distinct partitions µ1 , . . . , µt

with µ i occurring a i times. _en Sλ acts on the families U∗

λ ,Uλ → (Fℓ)s , preserving
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ûbers,

pr(π−1(F 1
●
, . . . , F s

●
)) = pr(π−1(Fσ(1)

●
, . . . , Fσ(s)

●
)) for all σ ∈ Sλ .

Deûne π∶Xλ → Zλ to be the quotient of Uλ → (Fℓ)s by the group Sλ .

2.3 Proof of Theorem 1.2

We defer the proof of the following lemma.

Lemma 2.3 _e map π∶Xλ → Zλ is a proper dominant map of real varieties of the
same dimension with Zλ smooth and Zλ(R) connected. _e Lagrangian involution
preserves ûbers of π and the codimension in Xλ of the ∠-ûxed points X∠

λ is at least
1
2 (∑i ℓ(λ i) −m).

We recall [9, Lemma 5].

Proposition 2.4 Let f ∶X → Z be a proper dominant map of real varieties of the same
dimension with Z smooth. Suppose that X has an involution∠ preserving the ûbers of
f such that the image in Z of the set of∠-ûxed points has codimension at least 2.

If y, z ∈ Z(R) belong to the same connected component of Z(R), the ûbers above
them are ûnite, and at least one contains no∠-ûxed points, then we have

# f −1(y) ∩ X(R) ≡ # f −1(z) ∩ X(R) mod 4.

Remark 2.5 Lemma 5 in [9] requires that there are no ∠-ûxed points in either
ûber π−1(y) or π−1(z). _is may be relaxed to only one ûber avoiding∠-ûxed points,
whichmay be seen using a limiting argument along the lines of the proof of [9, Corol-
lary 7].

Proof of_eorem 1.2 By Lemma 2.3, the hypotheses of Proposition 2.4 hold as the
inequality ∑i ℓ(λ i) ≥ m + 4 implies that codim π(X∠

λ ) ≥ codim(X∠

λ ) ≥ 2. Let
(F 1

●
, . . . , F s

●
) be isotropic �ags deûning a real instance of the Schubert problem λ such

that (2.1) is ûnite.
Since this instance is real, for each i = 1, . . . , s if F i

●
= F j

●, then λ i = λ j . _us there
is a permutation σ ∈ Sλ such that F i

●
= Fσ(i)

● for i = 1, . . . , s, and so the image of
(F 1

●
, . . . , F s

●
) in Zλ is a real point y ∈ Zλ(R). We complete the proof by exhibiting

a point z ∈ Zλ(R) for which π−1(z) consists of d(λ) real points, none of which are
ûxed by∠.
For distinct t1 , . . . , ts ∈ R, the intersection

(2.3) Xλ1F●(t1) ∩ Xλ2F●(t2) ∩ ⋅ ⋅ ⋅ ∩ XλsF●(ts)
is transverse and consists of d(λ) real points by theMukhin–Tarasov–Varchenko_e-
orem [15]. _e osculating �ags F●(t i) are real and isotropic, and we would be done
if there were no ∠-ûxed points in (2.3). _is is equivalent to the intersection of the
corresponding Lagrangian Schubert varieties being empty. _is is unknown, but ex-
pected, as it follows from [22, Conjecture 5.1], which is supported by signiûcant evi-
dence.
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Since the intersection (2.3) is transverse, if (E1
●
, . . . , Es

●
) ∈ (Fℓ)s are real isotropic

�ags that are suõciently close to the osculating �ags in (2.3), then the intersection

(2.4) Xλ1E1
●
∩ Xλ2E2

●
∩ ⋅ ⋅ ⋅ ∩ XλsEs

●

is transverse and consists of d(λ) real points. By Kleiman’s _eorem [12] we may also
assume that (E1

●
, . . . , Es

●
) are general in that the intersection

(2.5) Yλ1E1
●
∩ Yλ2E2

●
∩ ⋅ ⋅ ⋅ ∩ YλsEs

●

of Lagrangian Schubert varieties is either empty or has dimension

(m + 1
2
) −

s

∑
i=1
∥λ i∥ = (m + 1

2
) − 1

2

s

∑
i=1
∣λ i ∣ − 1

2

s

∑
i=1

ℓ(λ i)

≤ m2

2
+ m

2
− m2

2
− m

2
− 2 = −2.

We conclude that (2.5) is empty and therefore (2.4) contains no Lagrangian subspaces.
If z ∈ Zλ(R) is the image of (E1

●
, . . . , Es

●
) ∈ (Fℓ)s , then the ûber π−1(z) (which

is (2.4)) consists of d(λ) real points, none of which are Lagrangian. _is completes
the proof.

Proof of Lemma 2.3 Consider the quotient of (Fℓ)s by the group Sλ , which is the
product Zλ = Syma1

(Fℓ) × Syma2(Fℓ) × ⋅ ⋅ ⋅ × Syma t(Fℓ), where Syma(Fℓ) is the
quotient (Fℓ)a/Sa and λ consists of t distinct partitions µ1 , . . . , µt with µ i occurring
a i times in λ.
For F● ∈ Fℓ, let Z○eF● ⊂ Fℓ be those �ags in linear general position with respect

to F●. _is dense subset of Fℓ is a Schubert variety isomorphic to Cm2
. As F● varies

in Fℓ, these form an aõne cover of Fℓ. Given a ûnite set {F 1
●
, . . . , Fa

●
} of isotropic

�ags, there is an isotropic �ag F● that is simultaneously in linear general position
with each F i

●
, so that {F 1

●
, . . . , Fa

●
} ⊂ Z○eF●. _us (Fℓ)a is covered by the Sa-invariant

aõne varieties (Z○eF●)a , each isomorphic to (Cm2)a . By descent, this implies that
the quotient Syma(Fℓ) = (Fℓ)a/Sa is well deûned and covered by aõne varieties
(Z○eF●)a/Sa , each isomorphic to (Cm2)a/Sa ≃ (Cm2)a as Ca/Sa ≃ Ca . It follows
that Syma(Fℓ) is a smooth irreducible variety whose real points are connected which
implies the same for Zλ .

_emap π∶U∗

λ → (Fℓ)s is proper, as it comes from a projection along a Grassman-
nian factor. Its ûbers are preserved by the Lagrangian involution and are equal over
points in an Sλ-orbit. Both properties hold for π−1(O) → O (as O is Sλ-stable) and
therefore for π∶Uλ → (Fℓ)s . We conclude that π descends to the quotient π∶Xλ → Zλ ,
where it is a proper dominant map and the Lagrangian involution preserves its ûbers.

Since dimUλ = dim(Fℓ)s = s ⋅ m2 and Sλ is a ûnite group, we conclude that
dimXλ = dimZλ = s ⋅m2.

We study the∠-ûxed points of U∗

λ which form the universal family,

Lλ ∶= {(F 1
●
, . . . , F s

●
,H) ∣ F i

●
∈ Fℓ and H ∈ Yλ iF i

●
for i = 1, . . . , s}.
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Consider the projection pr∶Lλ → LG(V). Let H ∈ LG(V). _en

pr−1(H) = {(F 1
●
, . . . , F s

●
,H) ∣ H ∈ Yλ iF i

●
for i = 1, . . . , s}

≃
s

∏
i=1
{F● ∈ Fℓ ∣ H ∈ Yλ iF●}.

For λ symmetric and H ∈ LG(V), deûne Zλ(H) ∶= {F● ∈ Fℓ ∣ H ∈ YλF●}. _is is a
Schubert subvariety of Fℓ of codimension ∥λ∥. _us

pr−1(H) = Zλ1(H) × Zλ2(H) × ⋅ ⋅ ⋅ × Zλs(H)
has codimension ∑i ∥λ i∥ = 1

2 ∑i( ∣λ i ∣ + ℓ(λ i)) in (Fℓ)s and is irreducible as each
Zλ i (H) is a Schubert variety and is therefore irreducible. _us pr∶Lλ → LG(V) ex-
hibits Lλ as a ûber bundle. We compute its dimension:

dimLλ = dimLG(V) + dimpr−1(H) = (m + 1
2
) + s ⋅m2 −

s

∑
i=1
∥λ i∥

= s ⋅m2 − 1
2
(

s

∑
i=1

ℓ(λ i) −m) .

_us dimUλ ∩ Lλ ≤ s ⋅ m2 − 1
2 (∑i ℓ(λ i) − m). As Uλ ∩ Lλ is the set of ∠-ûxed

points of Uλ , dimUλ = m2, and Xλ is the quotient of Uλ by the ûnite group Sλ , the
∠-ûxed points in Xλ have codimension at least 1

2 (∑i ℓ(λ i) −m).

Remark 2.6 If λ is a symmetric Schubert problem, the quantity
s

∑
i=1
∥λ i∥ = 1

2

s

∑
i=1
(∣λ i ∣ + ℓ(λ i)) = m2

2
+ 1

2

s

∑
i=1

ℓ(λ i)

is an integer, so∑i ℓ(λ i) has the same parity as m. For generic �ags (E1
●
, . . . , Es

●
), the

intersection (2.5) of Lagrangian Schubert varieties is a subset of the intersection (2.4)
of Schubert varieties. By Kleiman’s _eorem, this gives the inequality

(m + 1
2
) −

s

∑
i=1
∥λ i∥ ≤ m2 −

s

∑
i=1
∣λ i ∣,

which implies that m ≤ ∑i ℓ(λ i). _us the only possibilities for ∑i ℓ(λ i) for which
_eorem 1.2 does not imply a congruence modulo four are m or m + 2.

When ∑i ℓ(λ i) = m, we have (m+1
2 ) = ∑i ∥λ i∥ so that λ is a Schubert problem

for LG(V) with c(λ) solutions. _at is, for general isotropic �ags E1
●
, . . . , Es

●
, the

intersection (2.5) is transverse and consists of c(λ) points. When c(λ) /= 0, the family
Uλ → (Fℓ)s is reducible: Lλ is one component and Uλ ∖Lλ is the other.
For example, the problem 2 ⋅ 2 = 8 on Gr(4, 8) has ∑i ℓ(λ i) = 4 = m. _e

corresponding problem in LG(C8) has four solutions. _us four of the eight solu-
tions on Gr(4, 8) will be isotropic and the other four will not be isotropic. In our
experimentation (number 490 on [8]) this problem exhibits a congruence modulo
four.

When∑i ℓ(λ i) = m + 2, a general intersection (2.5) of Lagrangian Schubert vari-
eties is empty and π−1(O) does not meet Lλ . _ere are three possibilities.
(1) Lλ ⊂ Uλ and π∶Lλ → π(Lλ) generically has ûnite ûbers.
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(2) Lλ ⊂ Uλ and π∶Lλ → π(Lλ) has positive-dimensional ûbers.
(3) Lλ /⊂ Uλ .

In case (1), π(Lλ) has codimension one as does the image of the set of∠-ûxed points
of Xλ , so Proposition 2.4 does not necessarily imply a congruence modulo four. In
cases (2) and (3), π(Lλ) has codimension two, and so there will be a congruence
modulo four.

We have observed some symmetric Schubert problems with∑i ℓ(λ i) = m+ 2 that
have a congruencemodulo four and some that do not (so that (1) holds). For example,

⋅ ⋅ 3 = 6 on Gr(4, 8) has ∑i ℓ(λ i) = 6 = m + 2 (number 495 on [8]) and its
numbers of real solutions do not exhibit a congruencemodulo four, but 2 ⋅ ⋅ = 8
on Gr(4, 8) has ∑i ℓ(λ i) = 6 = m + 2 (number 497 on [8]) and its numbers of real
solutions appear to be congruent modulo four. We believe that (3) is unlikely and that
(2) holds if and only if there is a congruence modulo four.
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