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Linear Maps Preserving Matrices of Local
Spectral Radius Zero at a Fixed Vector

Abdellatif Bourhim and Constantin Costara

Abstract. In this paper, we characterize linear maps on matrix spaces that preserve matrices of local
spectral radius zero at some fixed nonzero vector.

1 Introduction

Linear preserver problems, in the most general setting, demand the characterization
of linear maps between algebras that leave a certain property, a particular relation, or
even a subset invariant. This subject is very old and goes back well over a century to the
so-called first linear preserver problem, due to Frobenius [30], that determines linear
maps preserving the determinant of matrices. The aforesaid Frobenius’ work was gen-
eralized by J. Dieudonné [28], who characterized linear maps preserving singular ma-
trices. Since then many techniques have been developed to treat preserver problems,
and several interesting results have been obtained, notably by Aupetit, Bresar, Jafarian,
Molnar, Semrl, Sourour and others; see, for instance, [2-10,17,21,31,33,35,37-40]. But
this topic is still a very active area of research and several problems remain unsolved.
One of the most intractable unsolved problems in this area is the famous Kaplan-
sky conjecture, which asserts that every surjective unital invertibility preserving linear
map between two semisimple Banach algebras is a Jordan homomorphism. It has
not yet fully solved and remains open even for general C*-algebras, but it has been
confirmed for von Neumann algebras [5] and for the algebra of all bounded linear
operators on a Banach spaces [8,21,33,40].

More recently, there has been an upsurge of interest in linear and nonlinear local
spectra preserver problems. Bourhim and Ransford were the first ones to consider this
type of preserver problem, characterizing in [19] additive maps on the algebra of all
linear bounded operators on a complex Banach space X that preserve the local spec-
trum of operators at each vector of X. Their results cleared the way for several authors
to describe maps on matrices or operators that preserve local spectrum, local spec-
tral radius, and local inner spectral radius; see, for instance, the last section of the
survey article [13] and the references therein. This paper belongs to this subject and
investigates the form of linear maps on the algebras of square matrices that preserve
matrices of local spectral radius zero at some fixed nonzero vector. Its results gener-
alize, in particular, the main result of [18], where Bourhim and Miller described all
linear maps preserving the local spectral radius at a nonzero vector.
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2 Main Results

Let £(X) be the algebra of all bounded linear operators on a complex Banach space
X. 'The local resolvent set, pr(x), of an operator T € L£(X) at a point x € X is the
union of all open subsets U of C for which there is an analytic function ¢: U — X
such that (T —= A)¢(1) = x, (A € U). The local spectrum of T at x is defined by
or(x) = C\pr(x), and is obviously a closed subset of ¢(T), the spectrum of T.
Recall also that the local spectral radius of T at x € X is defined by

rr(x) :=limsup | T"x "

n—s+oo

In [24], Costara described surjective linear maps on £(X) that preserve operators
of local spectral radius zero at points of X. He showed, in particular, that if ¢ is a
surjective linear map on £(X) such that for every x € X and T € £(X), we have

rr(x) =0 ifandonlyif r,ry(x) =0,

then there exists a nonzero scalar ¢ such that ¢(T) = ¢ T for all T € £(X); see [16]
for related results. In this paper, we consider the more general problem of describing
linear maps ¢ on £(X) preserving operators of local spectral radius zero at a nonzero
fixed vector xo € X but when X = C" is a finite dimensional space. Our aim is to
characterize linear maps ¢ on the algebra M,, of all n x n-complex matrices such that

(2.1) r7(x9) =0 ifandonlyif 1,1y (x0) =0 (T eM,).

Since this problem is trivial for the case when n = 1, we suppose throughout this
paper that n > 2. For the special case when # = 2, we obtain the following result.

Theorem 2.1 For a nonzero fixed vector x € C?, a linear map ¢ on M, satisfies (2.1)
if and only if there exists a nonzero scalar a, an invertible matrix U € M, for which
Uxg = xo, and a matrix Q € M, satisfying Qxy = 0 and tr(Q) # -1 such that

¢(T)=a(UTU™ +tr(T) - Q)
forall T € M,.

In [18], Bourhim and Miller showed that a linear map ¢ on M,, preserves the local
spectral radius at a nonzero vector xo € C" if and only if ¢ is an automorphism (up to
a multiple factor of modulus one) and x, is an eigenvector of the intertwining matrix;
see also [23] for nonlinear local spectral radius preservers. For the special case when
n = 2, the above theorem shows that there are nontrivial linear maps on M, that
do not preserve the local spectral radius at x, even after a re-scaling that preserves
matrices of local spectral radius zero at xo. However, the next result shows that if 7 is
an integer greater than 2 and ¢ is a linear map on M, satisfying (2.1), then ¢ is, up to
a nonzero multiple factor, a local spectral radius preserver at xy.

Theorem 2.2 Let n > 3 be a natural number and fix a nonzero vector xo € C". A
linear map @: M,, - M, satisfies (2.1) if and only if there exists a nonzero scalar o and
an invertible matrix U € M, such that Uxq = xo and ¢(T) = aUTU ™ forall T € M,,.
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A few comments must be added to the statements of these theorems and the prob-
lem considered in this paper. First, let us observe that linear maps ¢ satisfying (2.1) are
automatically injective, and therefore bijective. This comes from the fact that a matrix
To € M, is trivial if and only if rr,+7(x0) = O for all nilpotent matrices T € M,; see
(16, Theorem 3.1]. Indeed, if ¢ is such a map and ¢(Tp) = 0 for some matrix Ty € M,
then for every nilpotent matrix T € M,, we have

0 =ry(r)(%0) = Ty(1y)+9(1) (X0)>

and thus ry,.7(xp) = 0. Since T is an arbitrary nilpotent matrix, we conclude that
Ty = 0 and ¢ is bijective, as claimed. Note that bijectivity of such linear maps ¢ is also
confirmed by the conclusion of the previous theorems.

Second, to prove the above theorems, we can and will assume, without loss of gen-
erality, that xo = ; := (1,0,...,0)" € C". Indeed, let A € M,, be an invertible matrix
such that Axg = e;. Let y(T) := Ap(A™'TA)A™" for T € M,,. Then one can easily
check that ¢: M,, = M, is a linear map such that (2.1) holds if and only if

rr(e) =0 < ry(n(e1) =0 (T e M,).

(This comes from the fact that r4r4-1(e1) = rr(xo) and rg-174(x0) = rr(e;) for each
T € M,). So, for the remainder of this paper, we shall suppose that

Xo =€ = (1,0,...,0)t€C".

The rest of the paper is organized as follows. Section 2 provides several auxiliary
lemmas that will be used in the proof of the main results. Among them, some lem-
mas give the connection between matrices of local spectrum zero at x and nilpotent
ones. Others provide some permanence properties of maps preserving matrices of
local spectral radius zero at xo. In particular, we show that any linear map on M,
satisfying (2.1) preserves matrices vanishing at x¢. In Section 3, we show that, when
studying maps ¢ preserving matrices of local spectral radius zero at x,, we can addi-
tionally assume that ¢ fixes the first column of each matrix in M,,. Sections 4 and 5
are designed for the proofs of Theorems 2.1 and 2.2, and finally, we conclude in the
last section with some open problems for further research in this area of local spectra
preservers.

3 Preliminary Results

In this section, we recall some notation and collect some preliminary results that will
be used in the proof of the main results. We believe that these auxiliary results are
interesting in their own right, and would like to point out that all them remain true
for any arbitrary nonzero vector xq € C" other than ¢; = (1,0,...,0)".

Throughout this paper, let M, ,, be the space of all n x m-complex matrices, and
note that M,, = M,, ,. For any matrix T € M,,«p,, let ‘T be the matrix obtained
by taking the complex conjugate of each entry of T, and denote, as usual, by T* the
transpose of T. For a square matrix T € M,,, the spectrum ¢(T) is the collection
of all eigenvalues of T, and let r(T), det(T) and tr(T) denote the spectral radius,
the determinant and the trace of T, respectively. The identity matrix of M, will be
denoted by I,,.
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We begin with a simple but useful lemma, which will be needed in the proof of
Theorem 2.2.

Lemma 3.1 Let y be a linear map from M, into My, such that u(d)c = 0 for all
d e M, and ¢ € M, ; for which dc = 0. Then there are n scalars 3, ..., B, € C such
that

u(d) = Prdi+ -+ Pudy
foralld e M,, withrows dy,...,d, € My p.

Proof Let yy,..., 4, be the linear functional components of y so that

u(d) = (u(d),..., un(d))

for all d € M,,. For each k, consider the linear function f; on M,, defined by f;(d) :=
xp forall d = (xij)ij € M,. Letd = (xij)i,j € N ker(fi) and note that since
de; = (x11,...,%n1)" = 0,wehave u(d)e; = p1(d) = 0. This shows that N} _; ker(fx) ¢
ker(u;), and thus there are n scalars ayy, . . ., a1 € C such that

wm(d) = Zn: e fr(d) = Z": 1k Xkl
P P

forall d = (x;)i,j € M,,. Analogously, for each [, there are n scalars ayy, ..., a7, € C
such that

3.) pi(d) =Y anexp
k=1

foralld = (xij)i,j € Mn.

Now, let | and s be two different integers between 1 and #, and set ¢ = e; — e,
where (e;)1<j<n is the canonical basis of C". Let d = (x;;);,; € M, be a matrix such
that dc = (x17 — X155 - -» Xn1 — Xns)" = 0, and note that u(d)c = p;(d) — us(d) = 0.
Just as above, this implies the existence of n scalars y;, ..., y, € C such that

wi(d) - Z Y (Xk1 = Xks)

forall d = (x;j)i,j € M,,. This and (3.1) entail that

n n n
Z XXkl — Z A5k Xks = Z VACTTRETD)
k=1 k=1

k=1

for all (x;j)i,; € M,. Therefore, ajx = o (= i) for all k. Thus, there exist n scalars
P1s-..,Bun € Csuch that ayy = --- = ayi = By for each k, and (3.1) becomes

wi(d) = Zﬂkxkl
k=1
forall d = (x;j)i,; € M. This shows that
u(d) = Prdi+ -+ Pud,

for all d € M,, with rows d, ..., d, € My,,,. The proof is therefore complete. [ |
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For background on local spectral theory, we refer the interested reader to the re-
markable books by Aiena [1], and by Laursen and Neumann [34]. However, the local
spectra of matrices is well understood and can be found, for instance, in [18,41]. For a
matrix T € M, denote by A;, ..., A the distinct eigenvalues of T and by Ny, ..., N
the corresponding root spaces. Therefore, C" = N; @ -- - & Ny (algebraic direct sum)
and T' = Ty ®---® T, where each Tj is the restriction of T to N;. Denoting the canon-
ical projection by P;: C" — N; ¢ C”, the local spectrum of T at any vector x ¢ C"
is

(3.2) or(x) = Uk{M 1 Pi(x) £ 0},

1<j<
and the local spectral radius of T at x is
(3.3) rr(x) =max{|A]-|:1§j§k, Pi(x) 740}

Note that since Py +- - - + Py is the identity of C", at least one of the P;(x)’s is nonzero,
and thus o7(x) has at least one element.

The following lemma is a simple observation, which shows that if M is an invariant
subspace of a matrix T € M, then the local spectra of T at any vector of M coincide
with the local spectra of T restricted to M.

Lemma 3.2 If M is an invariant subspace of a matrix T € M, then
(3.4) or(x) = og), (x)
forall x e M.

Proof This comes directly from (3.2) by observing that if the P;’s are as in (3.2), the
fact that M is invariant for T implies that M is invariant for each P;, j=1,...,k. W

The next lemma gives a characterization of matrices of local spectral radius zero at
Xo in terms of their powers applied to x,.

Lemma 3.3 For any matrix T € M,,, we have

(3.5) rr(xp) =0 < T"(xp) = 0.

Proof If T"(x¢) = 0 for some matrix T € M,, then T*(x,) = 0 for all k > n and
I'T(X()) =0.

Suppose now that rr(xg) = 0 for some matrix T € M, and note that (3.3) implies
that 0 is an eigenvalue of T and that xo = P;(xo) € Ny, where Nj is the root space
corresponding to the eigenvalue 0 of T and P, is the canonical projection on Nj. Since
N; = ker(T?) for some p € 1, n, we have T?(x,) = 0 and thus T"(x,) = 0, as desired.

|

As a consequence of Lemma 3.3, for a linear map ¢: M,, — M,,, we see that (2.1) is
equivalent to

(3.6) T"(x0) =0 <= ¢(T)"(x0) =0 (T eM,).

Of course, if r(T) = 0, then rr(x) = 0 for each vector x € C". A more subtle
connection between nilpotent matrices and matrices of local spectral radius zero is
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given by the fact that if T € M, and {x, T(xo), ..., T"(xo)} is a basis of C", then

or(xp) = 0(T), and in particular rr(xo) = r(T) (see, e.g, [18]). Thus, if the powers

of T applied to x¢ span the whole C", then ry(xo) = 0 if and only if T is nilpotent.
For any matrix T € M,, let

37) nr= max{ k>1:xg, Txg, ..., T¥ " x are linearly independent} el n.

Then {xq, Txo, ..., T""'xo} € C" is linearly independent, but {xo, Txo, ..., T""xo}
is not, and thus T"7 x, is a linear combination of {xo, Txo, . .., T""'x, }. Setting

(3.8) M7 := Span{xo, Txg, ..., T"Tflxo} cC",

we have that M € C" is a nonzero subspace (the cyclic subspace generated by x,) of
dimension n7 such that T(Mr) € Mr.

The next result gives another connection between matrices of local spectral radius
zero at xo and nilpotent ones.

Lemma 3.4 For any matrix T € M,,, we have rr(xo) = 0 if and only if r(T) = 0 in
L(Mr), where M is given by (3.8) and T = T|p, € L(Mr).

Proof Since xo € Mt and T(Mr1) S Mr, from (3.4) we obtain that rr(xo) = 0 if
and only if r5(x0) = 0 in £L(M7). Since {xo, Txo, ..., T""x,} is a basis of M, in
L(Mr) we have that r7(xo) = r(T). Thus, r57(x0) = 0 is equivalent to r(T) = 0in
L(MT) |

The proof of Lemma 3.3 shows that the local spectral radius of a matrix T € M, at
X is zero if and only if there is an integer m between 1 and # such that 7™ x, = 0. The
following lemma shows that if r1(xo) = 0, then ny is the smallest integer m such that
T™xq = 0. Its proof uses the previous lemma.

Lemma 3.5 If T € M, is a matrix such that rr(xo) = 0, then nr is the smallest
integer m such that T™xo = 0.

Proof Assume that T € M, is a matrix such that rr(xg) = 0, and let m be the small-
est integer such that T"x, = 0. Note that since xo, TXo, ..., T™xo are not linearly
independent, (3.7) gives nt < m. To obtain the reverse inequality, keep in mind that
T™ 'xy # 0, and let us prove that xo, Txo, ..., T™ 'x, are linearly independent. If
not, we can find a nonzero complex polynomial P with a minimal degree that should
be at most m —1such that P(T)x, = 0. Since T™ ' x, # 0, at least one of the roots of P
is not zero. Thus, P(1) = H;zl(/\ - 1j)A* for some nonzero scalars A; not necessarily

distinct, and some integer s > 0. We have Hj.:l (T -AjI,)Txo = 0 and

X =

(T - A1) Tx0 £ 0,

J

L~

by the minimality of the degree of P. Note that x € My and Tx = A;x. Thus,
r(T|m,) > 0in L(Mr), contradicting Lemma 3.4. This contradiction shows that
x0, TXo, ..., T™ xq are linearly independent and m < nr, as desired. [ |
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Lemma 3.4 gives a link between matrices of local spectral radius zero at xo and
nilpotent matrices, the main difficulty in using it being now the fact that the subspace
M7 given by (3.8) changes with T. As a corollary of the same lemma, we obtain some
information on matrices of the form x( ® f in terms of matrices of local spectral radius
0 at xo. Recall that if f is a linear functional on C", then x¢ ® f denotes the rank one
operator on C" defined by

(%0 ® )(x) = f(x)x  (xeC).

Lemma 3.6  Let f be alinear functional on C". Then for every T € M, withrr(x¢) =
0, we have

ITixef(X0) =0 <= 1’( (T +xo ®f)|MT) =0,
where the spectral radius is computed in L(Mr), with Mt given by (3.8).

Proof By Lemma 3.4, it is sufficient to prove that M1 = Mr, gy, and this comes
from the fact that

(T +x0® f) (x0) € T?x9 + Span{xg, Txq, ..., T xo}

for each j > 1. [ |

As a corollary, we obtain the following property for matrices of the form x¢ ® f,
where f is a linear functional on C" not vanishing at x,.

Lemma 3.7 Let f be a linear functional on C" such that f(xo) # 0. If T e M, isa
matrix with rr(xo) = 0, then 171y xef(x0) # 0 for all nonzero scalars A € C.

Proof We shall follow the main idea from [39, Proof of Prop. 2.1]. Let T € M,
with r7(x9) = 0, and suppose that r1,3,xef(X0) = 0 for some Ay € C\{0}. Let
M be given by (3.8), and denote T := T|y, € £(Mr). By Lemma 3.6, in £(Mr)
we have r(T) = r(T + Ao(x0 ® f)|pm,) = 0. For A # 0, we have A ¢ o(T) and
A ¢ o(T + do(x0 ® f)|a, ), and therefore f((A - T)™"xo) # 1/A¢ by [33, Lemma 4].
Since T"* = 0 in £(M7), we then have

f(X())/A + e +f(T"T_1x0)//\"T }é 1//\()

Thus, =1/Ag + f(x0)A + --- + f(T"™'xo)A"™ # 0 for every A € C, and therefore
f(x0) =+ = f(T"'x¢) = 0. This contradicts the fact that f(xo) # 0, and shows
that 1, ax,ef(%0) # 0 for all nonzero scalars A € C. [ |

We will also need the following simple but useful observation about pencils of ma-
trices having local spectral radius zero at x,.

Lemma 3.8 Suppose that Ty, T, € M, satisfy r1,411,(x0) = 0 for all A € C. Then
T ' Toxo + T 2Ty Tixg + -+ TV T *x0 + T T ' xg = 0.

If, further, Tixo = 0, then T]* ' Tyxo = 0.
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Proof By (3.5), we have that (T} + AT;)"xo = 0 for all A. Therefore, the coefficient
of A in the development of the left-hand side expression must be zero, and this gives
the first equality from the statement. The second one follows immediately from the
first. ]

The following lemma shows that no anti-automorphism on M, preserves matrices
of local spectral radius zero at xo.

Lemma 3.9  There exists a matrix T € M, such that T'(xo) = 0 and r7(x¢) > 0.

Proof Let (e;j)i<j<n be the canonical basis of C", and T € M, be the matrix given
by T(e;) = e, T(e2) = es,..., T(ey-1) = e, and T(e,) = e,. By construction, we
have T*x = e, for all k > n, and thus rr(xo) = limsup, . | T*xo[* = 1. Moreover,
we also have (T (x), xq) = 0 for all x € C". Thus,

(x,Tt(x0)) =0 (x eC"),
which gives T*(x¢) = 0. [

The next result shows that linear maps satisfying (2.1) preserve matrices that send
%o to 0 € C". Its proof uses the characterization of maximal subspaces of singular ma-
trices due to Flanders that states that if § € M,, is a subspace such that det T' = 0 for all
T € 8,thendim 8 < n(n-1). If, however, dim 8 = n(n-1), then there exists a nonzero
x € C" such that either § = {T e M, : T(x) =0}, 0r 8§ = {T e M, : T"(x) = 0}; see
[29, Theorem 2].

Theorem 3.10 Let 9:M,, — M, be a linear map satisfying (2.1). Then for each
T € M,,, we have

(3.9) T(x0) =0 <= o(T)(x) = 0.

Proof Since xg is not zero, § = {T € M, : T(x) = 0} is a subspace of dimension
n(n —1). As ¢ is bijective, we note that ¢(8) < M, is also a subspace of dimension
n(n—1). More than that, rr(xo) = 0 for each T € §; thus, (1) (x0) = 0 for each such
T. Therefore ¢(8) is a subspace consisting entirely of singular matrices, and thus, by
Flanders’ result, there is a nonzero vector x € C" such that either

(3.10) o(8)={T eM,: T(x) =0},
(3.11) @(8) ={T eM,: T'(x) = 0}.

Let us show that (3.11) cannot occur. So, suppose for the sake of contradiction that

(3.11) holds, and consider a nonzero vector y = (y1,...,y,)" € C" such that y 1 x.
Put

yor o yan

To:=| : - o eM,,

VYn 0 Ynln
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and note that Tj(x) = (x,y)y = 0. Therefore, Top € ¢(8) and rr,(xo) = 0. As
T&(x0) = (x0,7)(¥,¥)""'y, Lemma 3.3 implies that (xo,y) = 0, and thus y is or-
thogonal on X¢ = xo. Thatis, y L x implies y L xg, and therefore x and x, must be
linearly dependent. This implies that ¢(8) = {T € M,, : T*(x¢) = 0} and contradicts
Lemma 3.9, which ensures the existence of T € ¢(8) such that rr(xg) # 0.
Therefore, (3.10) holds and ¢(8) = {T € M, : T(x) = 0}. If x and x, were linearly
independent, then for a matrix T € M, satisfying T(x,) = xp and T'(x) = 0, we would
have T € ¢(8) and rr(xp) = 1. We arrive at a contradiction, since all the elements in
¢(8) have local spectral radius at xy equal to zero. Thus, x = Axy for some nonzero
scalar A, and therefore ¢(8) = 8 and the equivalence in (3.9) is established. ]

4 A Reduction

In this section, we shall prove that, without loss of generality, we can suppose that ¢
fixes the values of matrices at x,. That is, we can suppose that ¢ fixes the first column
of each matrix in M,,.

Let ¢: M,, - M,, be a linear map satisfying (2.1). By using Theorem 3.10, we can
reduce its study to the case when

¢(T)(x0) = T(x0)

for all T € M,,. Indeed, let us first show that there is a nonzero scalar a € C such that
o(I1,,)(x0) = axo. If not, since ¢ is surjective, one can find T € M, such that

¢(T)(x0) = 9(In)(x0) and ¢(T)(¢(In)(x0)) = 0.

It then follows that ¢ (T~ 1I,,)(x0) = 0 and r(r_1,)(x0) = 0. But since ¢ satisfies (2.1),
we haverr_j, (x9) = 0, and therefore, directly from the definition of the local spectral
radius, we get rr(xo) = 1. In particular, rr(xo) # 0, and (2.1) gives r,(1)(x0) # 0.
This contradicts the fact that ¢(T)?(xo) = 0 and shows that ¢(I,)(x) = axo for
some complex number « which, by (3.9), must not be zero, as claimed.

Next, we show that there is an invertible matrix U € M,, such that U(xg) = axo
and ¢(T)(x0) = UT(xo) for all T € M,,. Indeed, let ¢ = (¢;j)i<i,j<n be the lin-
ear functionals defined to be the entries of ¢, and let us show that there are n scalar
Q11> X125 -« ., 01 € C such that

(4.1) o1 (T) = auxn + QX1 + -+ + Xy

for all T = (xij)ici,jen € M,u. To do so, note that there exist (Bij)i<i,j<n such
that ¢ (T) = Y, Pijxij forall T = (Xijh<ijen € M,. In particular, for any
T = (xij)1<i,jen € My for which Txg = (x11,%21,...)" = 0, the identity (3.9)) im-
plies that 911 (T) = Y1<i, jen, j1 Bijxij = 0. This tells us that f;; = 0 forall1< i, j<n
such that j # 1, and thus (4.1) is satisfied with «;; = 8;1 for all i. Similarly, for every i,
there are n scalars a1, &3, . .., @i, € C such that

§0i1(T) = QX+ &ipXo1 t 0+ XinXn
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forall T = (x;j)i<i,j<n € M,. Now, set U := («a;;);,j and note that

<P11(T) anXxn + appXy -
T

(P(T)xo _ <P21:( ) _ a1xq1 + a:22x21 + - UTx,
§0n1(T) KXp1X1 + XpaXoy + -

for all T = (xij)i<i,jen € M,. That ¢ is bijective implies that the functionals from
the first column of ¢ are linearly independent, and therefore U, is invertible. That
@(I,,)(x0) = axo implies U(xg) = axo, with a # 0; as desired.

Now, put

w(T)::éU‘l(p(T)U (T eM,).

We have ry,(1y(x0) = ﬁrrp(T) (x0) for every T € M, and thus y satisfies (2.1). More-
over, we have

¥(T)(x0) = (U9(T)(U/a)) (x0) = U p(T)(x0)
= T(xo)

for all T € M,,, and y does not change the values of matrices at x,.
Therefore, for the remainder of the paper, we shall suppose that ¢: M,, - M, isa
linear map satisfying (2.1) such that ¢(T)(x¢) = T(xo) forall T € M,,. Write T € M,,

as
a b
(e )

witha e C,b e My -1, c € M,,_1,1, and d € M,,_;. Then ¢(T) is of the form

(42) o(T) = (‘j IBD((?))

with B: M,, — My, ,,; and D:M,, = M,,_; linear maps, which are to be determined.

It is worth pointing out that when proving Theorem 2.1, it suffices to show that
a linear map ¢ on M, of the form (4.2) satisfies (2.1) if and only if there is a matrix
Q € M satisfying Qxo = 0 and tr(Q) # -1 such that

(4.3) o(T) =T +te(T) - Q

for all T € M,. However, when n > 3, we shall prove that if a linear map on M, of the
form (4.2) satisfies (2.1), then ¢ must be the identity on M,,.

5 Proof of Theorem 2.1

Assume that there exists a matrix Q € M, satisfying Qxo = 0 and tr(Q) # -1 such
that ¢ has the form (4.3). Note that since Qx¢ = 0 and tr(Q) # -1, the matrix Q must

be of the form
0 «
s (o ﬁ)
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for some scalars « and f8 with 8 # —1. Given T = ( at ) € My, it then follows that
[a b+a(a+d)
#(T) = (c d+p(a +d))'
Note that since 8 # —1, we see that tr(T) = 0 if and only if tr(¢(T)) = 0. Therefore,
Lemma 3.3 tells us that
rr(x9) =0 <= a’*+bc=ac+cd=0
— a=c=0ora’+bc=tr(T)=0
< a=c=00ra’+bc=tr(9(T)) =0
<~ r‘P(T) (xo) =0,

and then (2.1) is satisfied.
Conversely, suppose that ¢: M, — M, is a linear map of the form (4.2) such that
(2.1) holds for xo = (1,0)" € C%. By (3.6), for T = (¢ &) € M5, we have

(5.0) a*+bc=cla+d)=0 < a*+B(T)c=c(a+D(T)) =0.
Write

(5.2) B(T) == aja + ab + asc + aqd,

(5.3) D(T) := Bra+ Bab + B3c + Bad

forall T = ( a g ) € M,. Taking a = b = d = 0 and ¢ =1, it then follows from (5.1)-(5.3)

c

that a3 = B3 = 0. Now given any a # O and b # 0, for d = —a and ¢ # 0 such that
a? + bc = 0, from (5.1)-(5.3), we infer that

(0(1 - oc4)a + ((Xz - 1)b = (1 +ﬁ1 —ﬁ4)a +ﬁ2b =0.
Since this holds for all a, b # 0, then a1 = ay, a3 = 1, B4 = 1+ By and f3, = 0. Thus,
[a b+a(a+d) [a b
o(T) = (c ﬁa+(1+/3)d) (r- (c d) )
for some «, € C. Since ¢ is bijective, its image in M, contains matrices of nonzero
trace, and therefore § # —1. Denoting

Q:(g ;)EMz;

p(T)=T+t(T)-Q  (TeM,),
where Q € M, satisfies Qxg = 0 and tr(Q) # —1.

then

6 Proof of Theorem 2.2

In what follows, suppose that # > 2 and note that the “if” part of Theorem 2.2 is
obvious. For the “only if” part, assume that ¢ is of the form (4.2) and satisfies (2.1),
and then let us show that ¢ is the identity of M,,. We shall prove this in several steps.
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Step 1 Thereis Ry = (“00 hOO) € M, with ay € C\{0} and by € M;,,,_; such that
B(RO) % 0.

Let us suppose, for a contradiction, that B(R) = 0 for every R = (¢ &) € M, with
a € Cand b € My ,,_;, and keep in mind that (4.2) entails that

o(R) = (3 D(OR))

for each such R. If D(R) ¢ CI,_; for some a € C\{0} and b € M, ,_1, then there
exists linearly independent vectors x, y € Span{e,,...,e,} such that p(R)x = y.
Then {xy,x, y} is linearly independent in C" with ¢(R)xo = ax,, ¢(R)x = y and
¢(R)y € Span{e,,...,e,}. Let T € M, such that

@(T)xg = —axo +x, ¢(T)x = —a’*xo +ax and ¢(T)y=a’xo—ay—¢(R)y.
Then
@(T)xo = (T)(~axo +x) = —a(—axo + x) + (—a’xy + ax) = 0,

and thus ry(ry(x0) = 0, which implies that rr(xo) = 0. Now, Lemma 3.7 gives
rr.r(x0) # 0, and consequently, ry,(7y.4(r)(X0) # 0. But since

(9(T)+9(R)) 50 = (9(T) + 9(R))
= (¢(T) + ¢(R)) (~a’xo + ax +y)
= o(T)(~a*xo + ax +y) + p(R)(~a’xo + ax + y)

= (a’xo—ay - ¢(R)y) + (-a’xo + ay + 9(R)y)
= 0,

we arrive at a contradiction. Therefore, D(R) € CI,_; for every a € C\{0} and b €
M, -1, and then by continuity D(R) € CI,,_; forall a € Cand b € M,,,,_;. This means
that the image under ¢ of the subspace of all matrices of the form ( atb )) € M, with
a € C,b e M, is of dimension at most 2. This contradicts the fact that ¢ is
bijective, and completes the proof of this step.

Step 2 ForeveryR = (g g) e M, witha e Cand b € M ,,_;, wehave D(R) € CI,,_;,

and thus
a B(R)
?(R) = (o y(R)IM)

with y(R) € C.

By Step 1, there is Ry = (‘j)o b0°) € M,, with ag € C\{0} and by € M ,_; such that
B(Ry) # 0. Since D is linear, it suffices to show that D(R) € CI,,_; for all R = ( at ) €
M, for which a is sufficiently close to ag and b = (a3, ..., a,) is sufficiently close to
bo so that a # 0 and B(R) # 0. Consider such a matrix R, and note that R is of the

form xo ® f, where f is a linear functional on C". Let T € M,, be a matrix such that
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rr(xo) = 0, and then Lemma 3.7 implies that rg-1( 1)1 1x,07(¥0) = I'p-1(1)42r(X0) # 0
for all nonzero scalars A € C. Therefore,

(6.1) I7iag(R)(X0) # 0

for all nonzero scalars A € C.

Now, suppose that there exists ¢ € C"! such that {c, D(R)c} is a linearly indepen-
dent system. By continuity, one can find ¢ such that B(R)c # 0. That {¢c, D(R)c} isa
linearly independent system implies that {c, ac + D(R)c} is also a linearly indepen-
dent system. Set Ay := — B(R)c /a* € C\{0} so that

(6.2) Aoa® +B(R)c =0,
and consider then d € M,,_; such that
(6.3) d(c) =-A¢(ac+ D(R)c) and d(ac + D(R)c) = 0.

Let T := (‘C’ 2) € M, and note that, in view of (6.3), we have d*(c) = 0. It then

follows that T° = (g ;3 ), and thus ry(xo) = 0. By (6.2) and (6.3), we also have

2 /loa /\()B(R) 2 )L()(A(]az +B(R)C) * 0 =
(T+ op(R))" = ( c d +)L0D(R)) - ()Lo(am— D(R)c) +dc *) - (0 *) ’

and therefore (T + Ao9(R))?(xo) = 0. This contradicts (6.1) and shows that D(R) €
CI,,_4, as desired.

Step 3  'There is a nonzero scalar « € C such that

0 b 0 ab
(64) gD(O 0) = (0 0 ) (bGMLnfl)-
By Step 2, there are two linear maps u: My, ,-; = M, 1 and y: M, ,-; - C such
that
0 b)Y (0 u(b)
(65) [ (0 0) = (0 y(b)I,,l) (b € Ml,n—l)~

Let us also write

0 0 0 wv(c
¢ (c 0) - (c w((c))) (e My-11),
with v:M,,_;; = My,,,-; and w:M,,_1; - M,,_; linear maps. Let T = (‘g g) e M,,
and let us first show that bc¢ = 0 if and only if

6o es0-(s( ) u- (0 1) D))

for all A € C. Indeed, since

2k .
((C) Z) :((bg) (Cg)k) (k>1),
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it then follows that r7(xo) = 0 if and only if b¢ = 0. Take any scalar A € C and replace
b by Ab; it then follows from this and (3.6) that bc = 0 if and only if (6.6) holds, as
claimed.

Next, we show that y( - ) is identically zero. Let b € M ,_;, and pick up a nonzero
¢ € M,,_1,1 such that bc = 0. Set

(0w ) g me (07O
Tl"(o y(b)zn_l) and T( w<c>)’

and note that (6.6) implies that rp,, 7,(x0) = 0 for all A € C. Since Tixp = 0,
Lemma 3.8 gives

g (0 #®) (0 v(e))
0=T""h 0‘(0 y(b)In_l) (c w(c)) 0

0= (0 y(b)”‘zu(b)) (0) _ (y(b)”‘zu(b)C)
0 p(b)" L J\c y()"le )

This implies y(b)"'c = 0, but, since ¢ # 0, we see that y(b) = 0. Therefore, y is
identically zero, as claimed.

Finally, let us show that there is a nonzero scalar o € C such that u(b) = ab for all
b € My, ,—1. By what has been proved before, (6.5) becomes

(Y- e

Let b € M, ,—1 and ¢ € M,,_1; such that bc = 0, and let us prove that u(b)c = 0. Let
A € C and note that (6.6) becomes

(67) ( (‘2 jv((cc))) ) (g ”(Ob)))"xo “0.

Denote
0 v(c) ¢
M:Span{(c w(c)) xO:kZO}E(C,

0 u(b)
0 0

M=Span{( ((C’ :V((Cc)))m(g u(ob)))kxozkzo}.

Therefore, ( 0 v(e) ) +A( 9 “()) sends M into M, and is nilpotent in £ (M), in view

c w(c)

of (6.7). In particular, this implies that the trace of

(0 u(b))‘ (0 v(c))|
0 0 Jim\c w(c)]lm

in £(M) is zero. Now observe that

Rl T a2 | S |

and therefore its trace is u(b)c = 0, as desired.

that is

and note that, since the range of ( ) is in Cxg, we have
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Therefore, given any b € M ,_; there exists A, € C such that u(b) = A,b. The
linearity of u implies the existence of a € C such that u(b) = ab for all b € M ,,_;.
That ¢ is injective gives o # 0. We have therefore proved the existence of a nonzero
complex scalar « such that (6.4) holds, and the proof of this step is complete.

Step 4 For each T € M,,, we have
(6.8) T*(x0) =0 <= ¢(T)*(x0) = 0.

Let T € M, and note that, since ¢ is bijective and ¢! also satisfies (2.1), it suffices
to prove that T%x, = 0 implies ¢(T)*x, = 0. So, assume that T?x, = 0 and suppose,
for a contradiction, that ¢(T)?(xo) # 0. Since ¢(T)xo = Txo, we see that Txg # 0.
Consider ny, Mr, ny(y and Mty given respectively by (3.7) and (3.8), and note
that ny = 2 and My is spanned by xo and Txo. Since rr(xo) = 0, ry(7y(x0) = 0,
and therefore (3.5) tells us that ¢(T)"x¢ = 0. Then let m > 3 be the smallest natural
number such that ¢(7)™(xo) = 0. By Lemma 3.5, we have n,(7) = m and

{xo,go(T)xo,...,go(T)m*lxo}

is linearly independent and spanning M, (ry. Pick then a linear functional f on C"
such that
f(x0) = f(p(T)x0) =+ = f(p(T)"x0) = 0

and f(¢(T)™ 'xp) = 1, and denote Ry = xo ® f. Since f(xo) = 0, Step 3 tells
us that there is a nonzero scalar « € C such that ¢(Rg) = aRy. That Royxp =
Ro(@(T)xp) = 0and ¢(T)xo = Txo imply that Ry is identically zero on My, and
therefore by Lemma 3.6, we obtain rr,g,(xo) = 0. Then ry(1)1¢(r,)(X0) = 0; that
is, Iy (Ty+ar, (X0) = 0. By our construction, we have (¢(T) + aRo)"xo = axo, and
thus 0 = r4(7)+ar, (¥0) = |a|. This contradicts the fact that « # 0, and shows that
@(T)%xp = 0, as desired.

Step 5 There are two linear maps v: M,,_1; - My, ,—; and w: M,,_1; - M,,_; such

that
v(c)e=0, w(c)c=0 (ceMy-1,1)
and
a b\ (a aby+b+v(c)+XB;d; a b
69) (P(c d)_(c a(B-1I,.1+w(c)+pd c d €My ),
where f3 is a nonzero complex number and by = (B, ..., Bn-1)-

There are two linear maps v: M,,_1,; = My, ;-1 and w:M,,_;; = M,,_; such that

o o) (¢ o) e

2
Since (29 )zxo = 0, the previous step tells us that ( (C) ::,((CC)) ) Xo = 0, and therefore

(6.10) v(c)e=0, w(c)c=0 (ceM,_11).
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For T = ( e Z) e M,, from (4.2) and (6.8), we infer that

a’+bc=0 a’>+B(T)c=0
ac+dc=0eM, 1, ac+D(T)c=0¢eM,_11.

0 0\ (0 u(d)
Lo d4) o z(d)
with u:M,,_; - My,,,—1 and z: M,,_; - M,,_; linear maps, (6.4) then gives

a b a aby+ab c)+u(d
o0 8)- (2 otz ),

for some by € M,,_; and dy € M,,_;. Using (6.10) in (6.11), we get
6.13) {a2+bc:0 — {a2+(abo+ocb+u(d))c:0

Writing

ac+dc=0eM,_1; ac+ (ado+2z(d))c=0€eM,_11.
Taking a = 0 and b = 0 in (6.13), we obtain that
(6.14) dc=0eM,_;; < u(d)c=0and z(d)c=0eM,_1,;.
This and Lemma 3.1 imply the existence of f31, ..., f,-1 € C such that

(6.15) u(d) = nzglﬁjdj,
i
where d;, ..., d,_1 € My ,_; are the rows of any matrix d € M,,_;.
Now, let us show that
(6.16) z(d) = (In-1 + do)d
for all d € M,,_;. First, let us show thatif a € C and d € M,,_;, then
(6.17) det(al,.;+d) =0 — det(a(I,,_l +do) + z(d)) =0.

Indeed, if —a is an eigenvalue of a matrix d € M,,_;, there exists a nonzero matrix
¢ in M,_1, such that ac + dc = 0. Let then b € M, ,_; such that a®> + bc = 0,
and then (6.13) gives ac + adyc + z(d)c = 0. Thus, det(al,—; + d) = 0 implies that
det (a(I,-1 +doy) + z(d)) = 0. The converse follows in the same way, and thus (6.17)
always holds. Second, we show that I,,_; + dy € M,,_; is invertible. If not, let ¢y be a
nonzero matrix in M,,_; ; such that (I,,_; + dg)co = 0. It then follows from (6.14) that
z(I,-1 + do)co = 0, and therefore (a(I,,_y +dy) + z(I,,-1 + dg))co = 0 for all a € C.
This and (6.17) imply that det((a + 1)I,,_; + do) = 0 for all a € C, which in its turn
arises a contradiction and shows that I,,_; + dy € M,,_; invertible, as claimed. Finally,
we show that the linear map z has the desired form. From (6.17), we see that

det(al,-1+d) =0 < det ( al,_+ (Lo + do)’lz(d)) =0.

This means that d — (I,_; + do)'z(d) is a linear map on M,,_, that preserves the
spectrum. By [35], there exists an invertible g € M,,_; such that either z(d) = (I,-; +
do)qdq foralld € M,_y, or z(d) = (I,_; +do)qd'q" for all d € M,_;. If the
first case occurs, then dc = 0 implies dg~'c = 0. This gives g € CI,,_;, and therefore
z(d) = (I,—1 + do)d for each d. Since n > 2, the second case cannot occur. Indeed,
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dc = 0 would then imply dtg’lc = 0. Let ¢ # 0, a nonzero linear functional f on C"*
such that f(¢) =0and putd = (¢g7'c) ® f. We have that dc is zero, but d'q "¢ is not!
Next, let us show that

(618) a=1 and bo = (ﬁl)u-:ﬁn—l))

where Bi,. .., fn-1 are the scalars involved in (6.15). Write by = (61,...,08,-1), and
let us prove that & = 1and §; = f3; for all j. Given any a € C and nonzero ¢ € M,,_y,
there exists d € M,,_; such that ac + dc = 0. Then let b € M, ,,_; such that a* + bc = 0,
and note that, since bc = —a? and djc = —ac;j for each j, equations (6.13) and (6.15)
imply that

0=a’+(aby+ab+u(d))c

n-1 n-1

:a2+(xbc+a26jcj+ > Bidjc

=1 =
n—-1

= az(l— a)+a Z(Sj -Bj)c;.
=1

Since a € C and ¢ € M,,_1;1\{0} are arbitrary, we conclude that & = 1 and §; = §; for
all j=1,...,n —1; as desired.

Denote 8 := I,_; + dy, and let us prove that f is a scalar matrix in M,_;. Let
c € M,_1; and d € M,_; be a nilpotent matrix, and set T := (2 g). Note that since
rg(c) = 0in M,,_;, we have rr(xo) = 0 and thus (¢(T))"xe = 0, by (3.5). In view of
(6.12), (6.15), and (6.16), we have ¢(T) = ( (C) V(;zj)%géld" ), and thus after replacing d
by Ad, one has

0 v(c) 0 Y pBid; " B
(¢ @) 2o T mmo aeon

Then Lemma 3.8 gives
n-1
0 2B\ (0 v(e)) . _
(0 ﬁcjl J) (c w(c))xo_o'

In particular, (8d)" ¢ = 0. Since ¢ € M,,_y is an arbitrary matrix, we conclude that
(Bd)™! = 0. Therefore, d € M,,_; nilpotent implies fd € M,_; nilpotent. The main
result of [10] implies the existence of a complex scalar § and an invertible g € M,,_;
such that either fd = 8qdq™! for every d having its trace equal to zero, or fd =
8qd'q" for every d with zero trace. In both cases we have that tr(d) = 0 implies
tr(fd) = 0. This implies that f3 is a scalar matrix, as claimed. (Since j3 is scalar, in fact,
the second case cannot occur).

Finally, we are in position to conclude and finish the proof of this step. By what
has been shown previously, there is a, nonzero scalar § € C such that dg = (f—1)I,,
and thus (6.16) becomes z(d) = f3d for all d € M,,_;. This together with (6.12), (6.15),
and (6.18) show that ¢ has the form (6.9), and thus the proof of this step is complete.

Step 6 Forevery T € M,,, we have
(6.19) T?(x0) =0 <= ¢(T)*(x0) = 0.
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Let us observe that for T = ( e Z ) e M,,, we have

2
P - (41 4)
and

by (6.9). This shows, in particular, that ¢(T)?(xo) — BT*(x9) € Cxo. Now, suppose
for the sake of contradiction that T°x, is 0, but ¢ (T')*(x,) is not. We proceed as in the
proof of Step 4, and let m > 4 be the smallest natural number such that ¢ (T)" (x¢) = 0
and f alinear functional f on C" such that

f(xo) = f(@(T)x0) == f(9(T)" *x0) =0

and f(¢(T)™ xo) = 1. Since ¢(T)xo = Txo and ¢(T)*(x¢) — BT?*(x0) € Cxo with
B # 0, we have f(xo) = f(Txo) = f(T*xo) = 0. Denoting Ry = xo ® f, Ry is then
identically zero on M, and now, as in the proof of Step 4, we arrive at a contradic-
tion. This contradiction shows that T?x, = 0 implies that ¢(T)?(x,) = 0, and then,
working with ¢! instead of ¢, the reverse implication holds as well.

Step 7 The map ¢ given by (6.9) is the identity; i.e, v =w =0, f = 1, and 8; = 0 for
allj=1,...,n-1

Let ¢ € M,,_1,; be a nonzero matrix and pick up x € M,,_; ; such that x and c are
linearly independent. Let d € M,,_; such that dc = x and dx = 0, and then d*c = 0.
For T = (8 2) € M,,, we have

0 v(c)+ id; idic
- (2 G5 e oL
see (6.9) and (6.20). Note that since d*c = 0, we have T°x, = 0 and (6.19) implies that
_ spoy_ [0 v(e)+ X Bid;\ (T Bidic) _ [ B(v(c)+ X Bjd;)dc

0=¢(T) (x0) = (c w(e)+pd )\ pdc )= \c(SBidy)e + pw(c)de)”
Since d*c = 0, we have d;dc = 0 for all j, and thus
(6.21) 0=(v(c)+ > Bjdj)dc=v(c)dc=v(c)x
and
(6.22) 0= c( Zﬁjdj) c+pBw(c)dc= c( Zﬂjdj) c+ Bw(c)x.
From (6.21), we conclude that v = 0.

Now, note that, since djc = x; forall j=1,...,n -1, equation (6.22) becomes
(6.23) ( Zﬁjxj) c+pw(c)x =0.

By continuity, this holds for x = ¢ too, and since w(c)c = 0, we get 3" ;c; = 0 for
every nonzero ¢ € M,_y ;. Thus, 8; = 0 for all j. Then (6.23) gives w(c)x = 0 for each
c and x that are linearly independent, and this implies w = 0.
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Thus, (6.9) becomes

o6 0 aonrien)  ((E8)e)

For
-1 0 1 0
1 0 -1 0
T=10 1 1 0 R
0o 0 0 O
we have T2 = 0 and
-1 0 1 0
1 1-p B 0
(p(T) =10 B 1 0
0 0

By (6.19), we have

-1
0= (T xo=(B-1)| 5.
0

Clearly, B = 1, and the proof is therefore complete. ]

7 Concluding Remarks and Open Problems

In the sequel, let X and Y be two complex Banach spaces, and let xy € X and y, € Y be
two nonzero vectors. In this section, we make some remarks and comments on linear
and nonlinear preservers of local spectral radius and discuss some further challenging
problems, which are suggested by the main results of this paper. First, we wonder if
our main results remain valid for the infinite-dimensional case.

Problem 1 Which linear maps ¢ from £(X) onto £(Y) satisfy
(71) rr(x0) =0 <= ro(1)(y0) =0 (Tel(X))?

When X and Y are infinite-dimensional Banach spaces, we conjecture that a lin-
ear map ¢ from £(X) onto £(Y) satisfies (7.1) if and only if there is a nonzero scalar
a € C and a bijective bounded linear mapping A from X into Y such that Axy = y
and ¢(T) = aATA™ for all T € £(X). Note that the injectivity of any linear map ¢
satisfying (7.1) follows from [16, Theorem 3.1]. But, unlike for the finite-dimensional
case, the surjectivity assumption of such a map ¢ is necessary. Otherwise, the de-
scription of maps ¢ from £(X) into £(Y) satisfying (71) would be vague, since the
mapping ¢ from £(X) into £L(X & X), defined by ¢(T) = T T, (T € L(X)),
satisfies (7.1) when y = xo ® xo.
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We also would like to point out that the full description of all linear maps ¢ from
L(X) onto £L(Y) satisfying

ro(r)(yo) =rr(x0) (T € £(X)).
is well known and can be found in [13,18,20,26]. In [20], Bra¢i¢ and Miller extended
the main result of [18] to infinite-dimensional Banach spaces by characterizing sur-
jective linear and continuous maps on £(X) that preserve the local spectral radius
at a fixed nonzero vector of X. In [26, Theorem 1.2], Costara showed that surjective
linear local spectral radius preservers on £ (X) are automatically continuous.

A number of authors studied maps preserving the spectra and local spectra of dif-
ferent products of matrices or operators that includes the usual product, the triple
product and the Jordan product; see, for instance, [11-16, 23, 25,27, 31, 32]. It is also
worth mentioning that the full description of surjective maps ¢ from £(X) into £(Y)
preserving the spectral radius of different products of operators is unknown; see [13].
As far as for the nonlinear local spectral radius preservers, we first state the following
problem.

Problem 2 Which maps ¢ from £(X) onto £(Y) satisfy
(72) r5:7(X0) =0 <= Iy(s)ep(r)(Y0) =0 (S, TelL(X))?

Obviously, (7.2) holds for any map ¢ from £(X) onto £(Y) satisfying

(7.3) To(s)e(T)(Y0) = rser(x0) (S, T € L(X)).
In the finite-dimensional case, the description of such maps is known as shown by
Costara in [23]. He proved that a surjective map ¢ on M, satisfies (73) with ¢(0) =0
if and only if ¢ is an automorphism multiplied by a scalar of modulus one and the
intertwining matrix sends xg to yo. However, when X and Y are infinite-dimensional
spaces, the characterization of maps satisfying (7.3) is unknown and remains an open
problem as well.

In [14], Bourhim and Mashreghi showed that a map ¢ from £(X) onto £(Y) sat-
isfies

To(nyp(s)(P0) = ors(x0) (T, S L(X)),
if and only if there exists a bijective bounded linear mapping A from X into Y such
that Axg = yo and either ¢(T) = ATA™ forall T € £(X) or ¢(T) = —ATA™! for all
T e £L(X). Naturally, this result suggests the problem of describing all maps ¢ from
L(X) onto £L(Y) for which

To(Typ(s)(Yo) = rrs(x0) (T, SeL(X)).
Even more, one may ask the following more general question of describing all maps

on £(X) preserving the product of operators of local spectral radius zero at some
fixed nonzero vector of X.

Problem 3 Which maps ¢ from £(X) onto £(Y) satisfy
I'ST(X()) =0 < r<p(S)q)(T)(y0):0 (S,TEL(X))?
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Similar questions can be asked when replacing the usual product by triple or Jordan
product.

Problem 4 Describe all maps ¢ from £(X) onto £(Y) satisfying either

r575(X0) =0 <= To(s)p(T)e(s)(Y0) =0 (S, T e L(X)),

or
57275 (X0) =0 <= To(8)p(T)+o(T)p(s)(Y0) =0 (S, T e L(X)).

One may ask similar questions for different local spectra, in particular, when the
local spectral radius is replaced by the inner local spectral radius. For a positive scalar
r, let D(0,7) (resp. D(0,r)) denote the closed (resp. the open) disc centered at the
origin with radius r, and for a closed subset F of C and an operator T € £(X), the
subspace

X1(F):={xeX:(T-21)f(A) = x has an analytic solution f on C\F}

is the so-called glocal spectral subspace of T. Recall that the local spectral radius of T
at any vector x € X coincides with

rr(x) =inf{r > 0:xeXp(D(0,r))};

see [34, Proposition 3.3.13]. Analogously, the inner local spectral radius of T at x is
defined by

ir(x) :=sup{r>0:xeXr(C\D(0,r))},

and note that 17(x) = 0 if and only if 0 € o7 (x); see [36]. We also note that if T € M,
is a matrix and x € C", then 17(x) is nothing but the minimum modulus of o7(x).

Problem 5 Which linear maps ¢ from £(X) onto £(Y) satisfy
(7.4) 17(x0) =0 <= 15(y(¥0) = 0 (TeL(X))?

Consider a unital map ¢ from £(X) onto £(Y) satisfying (7.4). Then for every
T € £L(X), we have

Aeor(xg) < 112(x0) =0
= 1p(1)-2(y0) =0
= Aeayry()o)-

This implies that
ap(1) (o) = 07 (x0)

forall T € £L(X). Therefore, by [20,22], there is a bijective bounded linear mapping A
from X into Y such that Axy = yo and ¢(T) = ATA™ forall T € £L(X). So, to answer
the last question, one only needs to determine ¢(1) when ¢ satisfies (7.4).
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