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Linear Maps Preserving Matrices of Local
Spectral Radius Zero at a Fixed Vector

Abdellatif Bourhim and Constantin Costara

Abstract. In this paper,we characterize linear maps onmatrix spaces that preservematrices of local
spectral radius zero at some ûxed nonzero vector.

1 Introduction

Linear preserver problems, in themost general setting, demand the characterization
of linear maps between algebras that leave a certain property, a particular relation, or
even a subset invariant. _is subject is very old and goes backwell over a century to the
so-called ûrst linear preserver problem, due to Frobenius [30], that determines linear
maps preserving the determinant ofmatrices. _e aforesaid Frobenius’workwas gen-
eralized by J.Dieudonné [28],who characterized linearmaps preserving singularma-
trices. Since then many techniques have been developed to treat preserver problems,
and several interesting results have been obtained, notably byAupetit, Brešar, Jafarian,
Molnár, Šemrl, Sourour and others; see, for instance, [2–10,17,21,31,33,35,37–40]. But
this topic is still a very active area of research and several problems remain unsolved.
One of the most intractable unsolved problems in this area is the famous Kaplan-
sky conjecture,which asserts that every surjective unital invertibility preserving linear
map between two semisimple Banach algebras is a Jordan homomorphism. It has
not yet fully solved and remains open even for general C∗-algebras, but it has been
conûrmed for von Neumann algebras [5] and for the algebra of all bounded linear
operators on a Banach spaces [8,21,33,40].

More recently, there has been an upsurge of interest in linear and nonlinear local
spectra preserver problems. Bourhim and Ransfordwere the ûrst ones to consider this
type of preserver problem, characterizing in [19] additive maps on the algebra of all
linear bounded operators on a complex Banach space X that preserve the local spec-
trumof operators at each vector of X. _eir results cleared theway for several authors
to describe maps on matrices or operators that preserve local spectrum, local spec-
tral radius, and local inner spectral radius; see, for instance, the last section of the
survey article [13] and the references therein. _is paper belongs to this subject and
investigates the form of linear maps on the algebras of square matrices that preserve
matrices of local spectral radius zero at some ûxed nonzero vector. Its results gener-
alize, in particular, the main result of [18], where Bourhim and Miller described all
linear maps preserving the local spectral radius at a nonzero vector.
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2 Main Results

Let L(X) be the algebra of all bounded linear operators on a complex Banach space
X. _e local resolvent set, ρT(x), of an operator T ∈ L(X) at a point x ∈ X is the
union of all open subsets U of C for which there is an analytic function ϕ∶U → X
such that (T − λ)ϕ(λ) = x, (λ ∈ U). _e local spectrum of T at x is deûned by
σT(x) ∶= C/ρT(x), and is obviously a closed subset of σ(T), the spectrum of T .
Recall also that the local spectral radius of T at x ∈ X is deûned by

rT(x) ∶= lim sup
n→+∞

∥Tnx∥ 1
n .

In [24], Costara described surjective linear maps on L(X) that preserve operators
of local spectral radius zero at points of X. He showed, in particular, that if φ is a
surjective linear map on L(X) such that for every x ∈ X and T ∈ L(X), we have

rT(x) = 0 if and only if rφ(T)(x) = 0,

then there exists a nonzero scalar c such that φ(T) = c T for all T ∈ L(X); see [16]
for related results. In this paper, we consider themore general problem of describing
linearmaps φ onL(X) preserving operators of local spectral radius zero at a nonzero
ûxed vector x0 ∈ X but when X = Cn is a ûnite dimensional space. Our aim is to
characterize linear maps φ on the algebraMn of all n× n-complexmatrices such that

(2.1) rT(x0) = 0 if and only if rφ(T)(x0) = 0 (T ∈Mn).
Since this problem is trivial for the case when n = 1, we suppose throughout this

paper that n ≥ 2. For the special case when n = 2, we obtain the following result.

_eorem 2.1 For a nonzero ûxed vector x0 ∈ C2, a linear map φ onM2 satisûes (2.1)
if and only if there exists a nonzero scalar α, an invertible matrix U ∈ M2 for which
Ux0 = x0, and amatrix Q ∈M2 satisfying Qx0 = 0 and tr(Q) /= −1 such that

φ(T) = α(UTU−1 + tr(T) ⋅ Q)

for all T ∈M2.

In [18], Bourhim andMiller showed that a linear map φ onMn preserves the local
spectral radius at a nonzero vector x0 ∈ Cn if and only if φ is an automorphism (up to
amultiple factor ofmodulus one) and x0 is an eigenvector of the intertwining matrix;
see also [23] for nonlinear local spectral radius preservers. For the special case when
n = 2, the above theorem shows that there are nontrivial linear maps on M2 that
do not preserve the local spectral radius at x0, even a�er a re-scaling that preserves
matrices of local spectral radius zero at x0. However, the next result shows that if n is
an integer greater than 2 and φ is a linear map onMn satisfying (2.1), then φ is, up to
a nonzero multiple factor, a local spectral radius preserver at x0.

_eorem 2.2 Let n ≥ 3 be a natural number and ûx a nonzero vector x0 ∈ Cn . A
linear map φ∶Mn →Mn satisûes (2.1) if and only if there exists a nonzero scalar α and
an invertiblematrixU ∈Mn such that Ux0 = x0 and φ(T) = αUTU−1 for all T ∈Mn .
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A few comments must be added to the statements of these theorems and the prob-
lem considered in this paper. First, let us observe that linearmaps φ satisfying (2.1) are
automatically injective, and therefore bijective. _is comes from the fact that amatrix
T0 ∈ Mn is trivial if and only if rT0+T(x0) = 0 for all nilpotent matrices T ∈ Mn ; see
[16,_eorem 3.1]. Indeed, if φ is such amap and φ(T0) = 0 for somematrix T0 ∈Mn ,
then for every nilpotent matrix T ∈Mn we have

0 = rφ(T)(x0) = rφ(T0)+φ(T)(x0),

and thus rT0+T(x0) = 0. Since T is an arbitrary nilpotent matrix, we conclude that
T0 = 0 and φ is bijective, as claimed. Note that bijectivity of such linear maps φ is also
conûrmed by the conclusion of the previous theorems.

Second, to prove the above theorems, we can andwill assume, without loss of gen-
erality, that x0 = e1 ∶= (1, 0, . . . , 0)t ∈ Cn . Indeed, let A ∈ Mn be an invertiblematrix
such that Ax0 = e1. Let ψ(T) ∶= Aφ(A−1TA)A−1 for T ∈ Mn . _en one can easily
check that φ∶Mn →Mn is a linear map such that (2.1) holds if and only if

rT(e1) = 0 ⇐⇒ rψ(T)(e1) = 0 (T ∈Mn).

(_is comes from the fact that rATA−1(e1) = rT(x0) and rA−1TA(x0) = rT(e1) for each
T ∈Mn). So, for the remainder of this paper, we shall suppose that

x0 = e1 = (1, 0, . . . , 0)t ∈ Cn .

_e rest of the paper is organized as follows. Section 2 provides several auxiliary
lemmas that will be used in the proof of the main results. Among them, some lem-
mas give the connection between matrices of local spectrum zero at x0 and nilpotent
ones. Others provide some permanence properties of maps preserving matrices of
local spectral radius zero at x0. In particular, we show that any linear map on Mn
satisfying (2.1) preserves matrices vanishing at x0. In Section 3, we show that, when
studying maps φ preserving matrices of local spectral radius zero at x0, we can addi-
tionally assume that φ ûxes the ûrst column of each matrix in Mn . Sections 4 and 5
are designed for the proofs of _eorems 2.1 and 2.2, and ûnally, we conclude in the
last sectionwith some open problems for further research in this area of local spectra
preservers.

3 Preliminary Results

In this section, we recall some notation and collect some preliminary results that will
be used in the proof of the main results. We believe that these auxiliary results are
interesting in their own right, and would like to point out that all them remain true
for any arbitrary nonzero vector x0 ∈ Cn other than e1 = (1, 0, . . . , 0)t .

_roughout this paper, let Mn ,m be the space of all n ×m-complex matrices, and
note that Mn = Mn ,n . For any matrix T ∈ Mn×m , let T be the matrix obtained
by taking the complex conjugate of each entry of T , and denote, as usual, by T t the
transpose of T . For a square matrix T ∈ Mn , the spectrum σ(T) is the collection
of all eigenvalues of T , and let r(T), det(T) and tr(T) denote the spectral radius,
the determinant and the trace of T , respectively. _e identity matrix of Mn will be
denoted by In .
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We begin with a simple but useful lemma, which will be needed in the proof of
_eorem 2.2.

Lemma 3.1 Let µ be a linear map from Mn into M1,n such that µ(d)c = 0 for all
d ∈ Mn and c ∈ Mn ,1 for which dc = 0. _en there are n scalars β1 , . . . , βn ∈ C such
that

µ(d) = β1d1 + ⋅ ⋅ ⋅ + βndn

for all d ∈Mn with rows d1 , . . . , dn ∈M1,n .

Proof Let µ1 , . . . , µn be the linear functional components of µ so that

µ(d) = ( µ1(d), . . . , µn(d))
for all d ∈Mn . For each k, consider the linear function fk onMn deûned by fk(d) ∶=
xk1 for all d = (x i j)i , j ∈ Mn . Let d = (x i j)i , j ∈ ⋂n

k=1 ker( fk) and note that since
de1 = (x11 , . . . , xn1)t = 0,wehave µ(d)e1 = µ1(d) = 0. _is shows that⋂n

k=1 ker( fk) ⊆
ker(µ1), and thus there are n scalars α11 , . . . , αn1 ∈ C such that

µ1(d) =
n

∑
k=1
α1k fk(d) =

n

∑
k=1
α1kxk1

for all d = (x i j)i , j ∈ Mn . Analogously, for each l , there are n scalars α l 1 , . . . , α l n ∈ C
such that

(3.1) µ l(d) =
n

∑
k=1
α l kxkl

for all d = (x i j)i , j ∈Mn .
Now, let l and s be two diòerent integers between 1 and n, and set c ∶= e l − es ,

where (e j)1≤ j≤n is the canonical basis of Cn . Let d = (x i j)i , j ∈ Mn be a matrix such
that dc = (x1 l − x1s , . . . , xnl − xns)t = 0, and note that µ(d)c = µ l(d) − µs(d) = 0.
Just as above, this implies the existence of n scalars γ1 , . . . , γn ∈ C such that

µ l(d) − µs(d) =
n

∑
k=1

γk(xkl − xks)

for all d = (x i j)i , j ∈Mn . _is and (3.1) entail that
n

∑
k=1
α l kxkl −

n

∑
k=1
αskxks =

n

∑
k=1

γk(xkl − xks)

for all (x i j)i , j ∈ Mn . _erefore, α l k = αsk(= γk) for all k. _us, there exist n scalars
β1 , . . . , βn ∈ C such that α1k = ⋅ ⋅ ⋅ = αnk = βk for each k, and (3.1) becomes

µ l(d) =
n

∑
k=1
βkxkl

for all d = (x i j)i , j ∈Mn . _is shows that

µ(d) = β1d1 + ⋅ ⋅ ⋅ + βndn

for all d ∈Mn with rows d1 , . . . , dn ∈M1,n . _e proof is therefore complete.
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For background on local spectral theory, we refer the interested reader to the re-
markable books by Aiena [1], and by Laursen andNeumann [34]. However, the local
spectra ofmatrices iswell understood and can be found, for instance, in [18,41]. For a
matrix T ∈Mn , denote by λ1 , . . . , λk the distinct eigenvalues of T and by N1 , . . . ,Nk
the corresponding root spaces. _erefore, Cn = N1 ⊕ ⋅ ⋅ ⋅ ⊕ Nk (algebraic direct sum)
and T = T1⊕⋅ ⋅ ⋅⊕Tk ,where each Tj is the restriction of T to N j .Denoting the canon-
ical projection by Pj ∶Cn → N j ⊆ Cn , the local spectrum of T at any vector x ∈ Cn

is

(3.2) σT(x) = ⋃
1≤ j≤k
{ λ j ∶ Pj(x) /= 0} ,

and the local spectral radius of T at x is

(3.3) rT(x) = max{ ∣λ j ∣ ∶ 1 ≤ j ≤ k, Pj(x) /= 0} .
Note that since P1 + ⋅ ⋅ ⋅ +Pk is the identity ofCn , at least one of the Pj(x)’s is nonzero,
and thus σT(x) has at least one element.

_e following lemma is a simple observation,which shows that ifM is an invariant
subspace of amatrix T ∈Mn , then the local spectra of T at any vector of M coincide
with the local spectra of T restricted to M.

Lemma 3.2 IfM is an invariant subspace of amatrix T ∈Mn , then

(3.4) σT(x) = σT∣M(x)
for all x ∈ M.

Proof _is comes directly from (3.2) by observing that if the Pj ’s are as in (3.2), the
fact that M is invariant for T implies that M is invariant for each Pj , j = 1, . . . , k.

_e next lemma gives a characterization ofmatrices of local spectral radius zero at
x0 in terms of their powers applied to x0.

Lemma 3.3 For any matrix T ∈Mn , we have

(3.5) rT(x0) = 0 ⇐⇒ Tn(x0) = 0.

Proof If Tn(x0) = 0 for some matrix T ∈ Mn , then T k(x0) = 0 for all k ≥ n and
rT(x0) = 0.

Suppose now that rT(x0) = 0 for somematrix T ∈Mn , and note that (3.3) implies
that 0 is an eigenvalue of T and that x0 = P1(x0) ∈ N1, where N1 is the root space
corresponding to the eigenvalue 0 of T and P1 is the canonical projection on N1. Since
N1 = ker(T p) for some p ∈ 1, n, we have T p(x0) = 0 and thus Tn(x0) = 0, as desired.

As a consequence of Lemma 3.3, for a linear map φ∶Mn →Mn , we see that (2.1) is
equivalent to

(3.6) Tn(x0) = 0 ⇐⇒ φ(T)n(x0) = 0 (T ∈Mn).
Of course, if r(T) = 0, then rT(x) = 0 for each vector x ∈ Cn . A more subtle
connection between nilpotent matrices and matrices of local spectral radius zero is
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given by the fact that if T ∈Mn and {x0 , T(x0), . . . , Tn−1(x0)} is a basis of Cn , then
σT(x0) = σ(T), and in particular rT(x0) = r(T) (see, e.g., [18]). _us, if the powers
of T applied to x0 span the whole Cn , then rT(x0) = 0 if and only if T is nilpotent.
For any matrix T ∈Mn , let

(3.7) nT = max{ k ≥ 1 ∶ x0 , Tx0 , . . . , T k−1x0 are linearly independent} ∈ 1, n.

_en {x0 , Tx0 , . . . , TnT−1x0} ⊆ Cn is linearly independent, but {x0 , Tx0 , . . . , TnT x0}
is not, and thus TnT x0 is a linear combination of {x0 , Tx0 , . . . , TnT−1x0}. Setting

(3.8) MT ∶= Span{x0 , Tx0 , . . . , TnT−1x0} ⊆ Cn ,

we have that MT ⊆ Cn is a nonzero subspace (the cyclic subspace generated by x0) of
dimension nT such that T(MT) ⊆ MT .

_e next result gives another connection between matrices of local spectral radius
zero at x0 and nilpotent ones.

Lemma 3.4 For any matrix T ∈ Mn , we have rT(x0) = 0 if and only if r(T̃) = 0 in
L(MT), whereMT is given by (3.8) and T̃ = T ∣MT ∈ L(MT).

Proof Since x0 ∈ MT and T(MT) ⊆ MT , from (3.4) we obtain that rT(x0) = 0 if
and only if rT̃(x0) = 0 in L(MT). Since {x0 , T̃x0 , . . . , T̃nT−1x0} is a basis of MT , in
L(MT) we have that rT̃(x0) = r(T̃). _us, rT̃(x0) = 0 is equivalent to r(T̃) = 0 in
L(MT).

_e proof of Lemma 3.3 shows that the local spectral radius of amatrix T ∈Mn at
x0 is zero if and only if there is an integer m between 1 and n such that Tmx0 = 0. _e
following lemma shows that if rT(x0) = 0, then nT is the smallest integer m such that
Tmx0 = 0. Its proof uses the previous lemma.

Lemma 3.5 If T ∈ Mn is a matrix such that rT(x0) = 0, then nT is the smallest
integer m such that Tmx0 = 0.

Proof Assume that T ∈Mn is amatrix such that rT(x0) = 0, and let m be the small-
est integer such that Tmx0 = 0. Note that since x0 , Tx0 , . . . , Tmx0 are not linearly
independent, (3.7) gives nT ≤ m. To obtain the reverse inequality, keep in mind that
Tm−1x0 /= 0, and let us prove that x0 , Tx0 , . . . , Tm−1x0 are linearly independent. If
not, we can ûnd a nonzero complex polynomial P with aminimal degree that should
be at most m− 1 such that P(T)x0 = 0. Since Tm−1x0 /= 0, at least one of the roots of P
is not zero. _us, P(λ) =∏l

j=1(λ − λ j)λs for some nonzero scalars λ j not necessarily
distinct, and some integer s ≥ 0. We have∏l

j=1(T − λ jIn)T sx0 = 0 and

x ∶=
l
∏
j=2
(T − λ jIn)T sx0 /= 0,

by the minimality of the degree of P. Note that x ∈ MT and Tx = λ1x. _us,
r(T ∣MT ) > 0 in L(MT), contradicting Lemma 3.4. _is contradiction shows that
x0 , Tx0 , . . . , Tm−1x0 are linearly independent and m ≤ nT , as desired.
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Lemma 3.4 gives a link between matrices of local spectral radius zero at x0 and
nilpotent matrices, themain diõculty in using it being now the fact that the subspace
MT given by (3.8) changeswith T . As a corollary of the same lemma, we obtain some
information onmatrices of the form x0⊗ f in terms ofmatrices of local spectral radius
0 at x0. Recall that if f is a linear functional on Cn , then x0 ⊗ f denotes the rank one
operator on Cn deûned by

(x0 ⊗ f )(x) ∶= f (x)x0 (x ∈ Cn).

Lemma 3.6 Let f be a linear functional onCn . _en for every T ∈Mn with rT(x0) =
0, we have

rT+x0⊗ f (x0) = 0 ⇐⇒ r((T + x0 ⊗ f )∣MT) = 0,

where the spectral radius is computed in L(MT), with MT given by (3.8).

Proof By Lemma 3.4, it is suõcient to prove that MT = MT+x0⊗ f , and this comes
from the fact that

(T + x0 ⊗ f ) j(x0) ∈ T jx0 + Span{x0 , Tx0 , . . . , T j−1x0}

for each j ≥ 1.

As a corollary, we obtain the following property for matrices of the form x0 ⊗ f ,
where f is a linear functional on Cn not vanishing at x0.

Lemma 3.7 Let f be a linear functional on Cn such that f (x0) /= 0. If T ∈ Mn is a
matrix with rT(x0) = 0, then rT+λx0⊗ f (x0) /= 0 for all nonzero scalars λ ∈ C.

Proof We shall follow the main idea from [39, Proof of Prop. 2.1]. Let T ∈ Mn
with rT(x0) = 0, and suppose that rT+λ0x0⊗ f (x0) = 0 for some λ0 ∈ C/{0}. Let
MT be given by (3.8), and denote T̃ ∶= T ∣MT ∈ L(MT). By Lemma 3.6, in L(MT)
we have r(T̃) = r(T̃ + λ0(x0 ⊗ f )∣MT ) = 0. For λ /= 0, we have λ ∉ σ(T̃) and
λ ∉ σ(T̃ + λ0(x0 ⊗ f )∣MT ), and therefore f ((λ − T̃)−1x0) /= 1/λ0 by [33, Lemma 4].
Since T̃nT = 0 in L(MT), we then have

f (x0)/λ + ⋅ ⋅ ⋅ + f (TnT−1x0)/λnT /= 1/λ0 .

_us, −1/λ0 + f (x0)λ + ⋅ ⋅ ⋅ + f (TnT−1x0)λnT /= 0 for every λ ∈ C, and therefore
f (x0) = ⋅ ⋅ ⋅ = f (TnT−1x0) = 0. _is contradicts the fact that f (x0) /= 0, and shows
that rT+λx0⊗ f (x0) /= 0 for all nonzero scalars λ ∈ C.

Wewill also need the following simple but useful observation about pencils ofma-
trices having local spectral radius zero at x0.

Lemma 3.8 Suppose that T1 , T2 ∈Mn satisfy rT1+λT2(x0) = 0 for all λ ∈ C. _en

Tn−1
1 T2x0 + Tn−2

1 T2T1x0 + ⋅ ⋅ ⋅ + T1T2Tn−2
1 x0 + T2Tn−1

1 x0 = 0.

If, further, T1x0 = 0, then Tn−1
1 T2x0 = 0.
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Proof By (3.5), we have that (T1 + λT2)nx0 = 0 for all λ. _erefore, the coeõcient
of λ in the development of the le�-hand side expression must be zero, and this gives
the ûrst equality from the statement. _e second one follows immediately from the
ûrst.

_e following lemma shows that no anti-automorphismonMn preservesmatrices
of local spectral radius zero at x0.

Lemma 3.9 _ere exists amatrix T ∈Mn such that T t(x0) = 0 and rT(x0) > 0.

Proof Let (e j)1≤ j≤n be the canonical basis of Cn , and T ∈ Mn be the matrix given
by T(e1) = e2, T(e2) = e3,. . . , T(en−1) = en and T(en) = en . By construction, we
have T kx0 = en for all k ≥ n, and thus rT(x0) = lim supk→∞ ∥T kx0∥

1
k = 1. Moreover,

we also have ⟨T(x), x0⟩ = 0 for all x ∈ Cn . _us,

⟨x , T t(x0)⟩ = 0 (x ∈ Cn),

which gives T t(x0) = 0.

_e next result shows that linear maps satisfying (2.1) preservematrices that send
x0 to 0 ∈ Cn . Its proof uses the characterization ofmaximal subspaces of singularma-
trices due to Flanders that states that if S ⊆Mn is a subspace such that detT = 0 for all
T ∈ S, then dimS ≤ n(n−1). If, however, dimS = n(n−1), then there exists a nonzero
x ∈ Cn such that either S = {T ∈Mn ∶ T(x) = 0}, or S = {T ∈Mn ∶ T t(x) = 0}; see
[29,_eorem 2].

_eorem 3.10 Let φ∶Mn → Mn be a linear map satisfying (2.1). _en for each
T ∈Mn , we have

(3.9) T(x0) = 0 ⇐⇒ φ(T)(x0) = 0.

Proof Since x0 is not zero, S = {T ∈Mn ∶ T(x0) = 0} is a subspace of dimension
n(n − 1). As φ is bijective, we note that φ(S) ⊆ Mn is also a subspace of dimension
n(n− 1). More than that, rT(x0) = 0 for each T ∈ S; thus, rφ(T)(x0) = 0 for each such
T . _erefore φ(S) is a subspace consisting entirely of singular matrices, and thus, by
Flanders’ result, there is a nonzero vector x ∈ Cn such that either

(3.10) φ(S) = {T ∈Mn ∶ T(x) = 0},

or

(3.11) φ(S) = {T ∈Mn ∶ T t(x) = 0}.

Let us show that (3.11) cannot occur. So, suppose for the sake of contradiction that
(3.11) holds, and consider a nonzero vector y = (y1 , . . . , yn)t ∈ Cn such that y ⊥ x.
Put

T0 ∶=
⎡⎢⎢⎢⎢⎢⎣

y1 y1 ⋅ ⋅ ⋅ yn y1
⋮ ⋱ ⋮

y1 yn ⋅ ⋅ ⋅ yn yn

⎤⎥⎥⎥⎥⎥⎦
∈Mn ,
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and note that T t
0(x) = ⟨x , y⟩y = 0. _erefore, T0 ∈ φ(S) and rT0(x0) = 0. As

Tn
0 (x0) = ⟨x0 , y⟩⟨y, y⟩n−1 y, Lemma 3.3 implies that ⟨x0 , y⟩ = 0, and thus y is or-

thogonal on x0 = x0. _at is, y ⊥ x implies y ⊥ x0, and therefore x and x0 must be
linearly dependent. _is implies that φ(S) = {T ∈Mn ∶ T t(x0) = 0} and contradicts
Lemma 3.9, which ensures the existence of T ∈ φ(S) such that rT(x0) /= 0.

_erefore, (3.10) holds and φ(S) = {T ∈Mn ∶ T(x) = 0}. If x and x0 were linearly
independent, then for amatrix T ∈Mn satisfying T(x0) = x0 and T(x) = 0,wewould
have T ∈ φ(S) and rT(x0) = 1. We arrive at a contradiction, since all the elements in
φ(S) have local spectral radius at x0 equal to zero. _us, x = λx0 for some nonzero
scalar λ, and therefore φ(S) = S and the equivalence in (3.9) is established.

4 A Reduction

In this section, we shall prove that, without loss of generality, we can suppose that φ
ûxes the values ofmatrices at x0 . _at is, we can suppose that φ ûxes the ûrst column
of each matrix in Mn .

Let φ∶Mn → Mn be a linear map satisfying (2.1). By using _eorem 3.10, we can
reduce its study to the case when

φ(T)(x0) = T(x0)

for all T ∈Mn . Indeed, let us ûrst show that there is a nonzero scalar α ∈ C such that
φ(In)(x0) = αx0. If not, since φ is surjective, one can ûnd T ∈Mn such that

φ(T)(x0) = φ(In)(x0) and φ(T)(φ(In)(x0)) = 0.

It then follows that φ(T− In)(x0) = 0 and rφ(T−In)(x0) = 0. But since φ satisûes (2.1),
we have rT−In(x0) = 0, and therefore, directly from the deûnition of the local spectral
radius, we get rT(x0) = 1. In particular, rT(x0) /= 0, and (2.1) gives rφ(T)(x0) /= 0.
_is contradicts the fact that φ(T)2(x0) = 0 and shows that φ(In)(x0) = αx0 for
some complex number α which, by (3.9),must not be zero, as claimed.

Next, we show that there is an invertible matrix U ∈ Mn such that U(x0) = αx0
and φ(T)(x0) = UT(x0) for all T ∈ Mn . Indeed, let φ = (φ i j)1≤i , j≤n be the lin-
ear functionals deûned to be the entries of φ, and let us show that there are n scalar
α11 , α12 , . . . , α1n ∈ C such that

(4.1) φ11(T) = α11x11 + α12x21 + ⋅ ⋅ ⋅ + α1nxn1

for all T = (x i j)1≤i , j≤n ∈ Mn . To do so, note that there exist (β i j)1≤i , j≤n such
that φ11(T) = ∑i , j β i jx i j for all T = (x i j)1≤i , j≤n ∈ Mn . In particular, for any
T = (x i j)1≤i , j≤n ∈ Mn for which Tx0 = (x11 , x21 , . . . )t = 0, the identity (3.9)) im-
plies that φ11(T) = ∑1≤i , j≤n , j/=1 β i jx i j = 0. _is tells us that β i j = 0 for all 1 ≤ i , j ≤ n
such that j /= 1, and thus (4.1) is satisûed with α1i = β i1 for all i. Similarly, for every i,
there are n scalars α i1 , α i2 , . . . , α in ∈ C such that

φ i1(T) = α i1x11 + α i2x21 + ⋅ ⋅ ⋅ + α inxn1
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for all T = (x i j)1≤i , j≤n ∈Mn . Now, set U ∶= (α i j)i , j and note that

φ(T)x0 =
⎛
⎜⎜⎜
⎝

φ11(T)
φ21(T)

⋮
φn1(T)

⎞
⎟⎟⎟
⎠
=
⎛
⎜⎜⎜
⎝

α11x11 + α12x21 + ⋅ ⋅ ⋅
α21x11 + α22x21 + ⋅ ⋅ ⋅

⋮
αn1x11 + αn2x21 + ⋅ ⋅ ⋅

⎞
⎟⎟⎟
⎠
= UTx0

for all T = (x i j)1≤i , j≤n ∈ Mn . _at φ is bijective implies that the functionals from
the ûrst column of φ are linearly independent, and therefore U , is invertible. _at
φ(In)(x0) = αx0 implies U(x0) = αx0, with α /= 0; as desired.

Now, put

ψ(T) ∶= 1
α
U−1φ(T)U (T ∈Mn).

We have rψ(T)(x0) = 1
∣α∣ rφ(T)(x0) for every T ∈Mn , and thus ψ satisûes (2.1). More-

over, we have

ψ(T)(x0) = (U−1φ(T)(U/α))(x0) = U−1φ(T)(x0)
= T(x0)

for all T ∈Mn , and ψ does not change the values ofmatrices at x0.
_erefore, for the remainder of the paper, we shall suppose that φ∶Mn →Mn is a

linear map satisfying (2.1) such that φ(T)(x0) = T(x0) for all T ∈Mn . Write T ∈Mn
as

T = (a b
c d)

with a ∈ C, b ∈M1,n−1, c ∈Mn−1,1, and d ∈Mn−1. _en φ(T) is of the form

(4.2) φ(T) = (a B(T)
c D(T)) ,

with B∶Mn →M1,n−1 and D∶Mn →Mn−1 linear maps, which are to be determined.
It is worth pointing out that when proving _eorem 2.1, it suõces to show that

a linear map φ on M2 of the form (4.2) satisûes (2.1) if and only if there is a matrix
Q ∈M2 satisfying Qx0 = 0 and tr(Q) /= −1 such that

(4.3) φ(T) = T + tr(T) ⋅ Q

for all T ∈M2. However, when n ≥ 3, we shall prove that if a linear map onMn of the
form (4.2) satisûes (2.1), then φ must be the identity on Mn .

5 Proof of Theorem 2.1

Assume that there exists a matrix Q ∈ M2 satisfying Qx0 = 0 and tr(Q) /= −1 such
that φ has the form (4.3). Note that since Qx0 = 0 and tr(Q) /= −1, thematrix Q must
be of the form

Q = (0 α
0 β)
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for some scalars α and β with β /= −1. Given T = ( a bc d ) ∈M2, it then follows that

φ(T) = (a b + α(a + d)
c d + β(a + d)) .

Note that since β /= −1, we see that tr(T) = 0 if and only if tr(φ(T)) = 0. _erefore,
Lemma 3.3 tells us that

rT(x0) = 0 ⇐⇒ a2 + bc = ac + cd = 0

⇐⇒ a = c = 0 or a2 + bc = tr(T) = 0

⇐⇒ a = c = 0 or a2 + bc = tr (φ(T)) = 0
⇐⇒ rφ(T)(x0) = 0,

and then (2.1) is satisûed.
Conversely, suppose that φ∶M2 → M2 is a linear map of the form (4.2) such that

(2.1) holds for x0 = (1, 0)t ∈ C2. By (3.6), for T = ( a bc d ) ∈M2 , we have

(5.1) a2 + bc = c(a + d) = 0 ⇐⇒ a2 + B(T)c = c( a + D(T)) = 0.

Write

B(T) ∶= α1a + α2b + α3c + α4d ,(5.2)
D(T) ∶= β1a + β2b + β3c + β4d(5.3)

for all T = ( a bc d ) ∈M2. Taking a = b = d = 0 and c = 1, it then follows from (5.1)–(5.3)
that α3 = β3 = 0. Now given any a /= 0 and b /= 0, for d = −a and c /= 0 such that
a2 + bc = 0, from (5.1)–(5.3), we infer that

(α1 − α4)a + (α2 − 1)b = (1 + β1 − β4)a + β2b = 0.

Since this holds for all a, b /= 0, then α1 = α4, α2 = 1, β4 = 1 + β1 and β2 = 0. _us,

φ(T) = (a b + α(a + d)
c βa + (1 + β)d) (T = (a b

c d) ∈M2)

for some α, β ∈ C. Since φ is bijective, its image in M2 contains matrices of nonzero
trace, and therefore β /= −1. Denoting

Q = (0 α
0 β) ∈M2;

then
φ(T) = T + tr(T) ⋅ Q (T ∈M2),

where Q ∈M2 satisûes Qx0 = 0 and tr(Q) /= −1.

6 Proof of Theorem 2.2

In what follows, suppose that n > 2 and note that the “if ” part of _eorem 2.2 is
obvious. For the “only if ” part, assume that φ is of the form (4.2) and satisûes (2.1),
and then let us show that φ is the identity ofMn . We shall prove this in several steps.
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Step 1 _ere is R0 = ( a0 b00 0 ) ∈ Mn with a0 ∈ C/{0} and b0 ∈ M1,n−1 such that
B(R0) /= 0.

Let us suppose, for a contradiction, that B(R) = 0 for every R = ( a b0 0 ) ∈ Mn with
a ∈ C and b ∈M1,n−1, and keep in mind that (4.2) entails that

φ(R) = (a 0
0 D(R))

for each such R. If D(R) ∉ CIn−1 for some a ∈ C/{0} and b ∈ M1,n−1, then there
exists linearly independent vectors x , y ∈ Span{e2 , . . . , en} such that φ(R)x = y.
_en {x0 , x , y} is linearly independent in Cn with φ(R)x0 = ax0, φ(R)x = y and
φ(R)y ∈ Span{e2 , . . . , en}. Let T ∈Mn such that

φ(T)x0 = −ax0 + x , φ(T)x = −a2x0 + ax and φ(T)y = a3x0 − ay − φ(R)y.

_en

φ(T)2x0 = φ(T)(−ax0 + x) = −a(−ax0 + x) + (−a2x0 + ax) = 0,

and thus rφ(T)(x0) = 0, which implies that rT(x0) = 0. Now, Lemma 3.7 gives
rT+R(x0) /= 0, and consequently, rφ(T)+φ(R)(x0) /= 0. But since

(φ(T) + φ(R)) 3
x0 = (φ(T) + φ(R)) 2

x

= (φ(T) + φ(R))(−a2x0 + ax + y)
= φ(T)(−a2x0 + ax + y) + φ(R)(−a2x0 + ax + y)
= (a3x0 − ay − φ(R)y) + (−a3x0 + ay + φ(R)y)
= 0,

we arrive at a contradiction. _erefore, D(R) ∈ CIn−1 for every a ∈ C/{0} and b ∈
M1,n−1, and then by continuityD(R) ∈ CIn−1 for all a ∈ C and b ∈M1,n−1. _ismeans
that the image under φ of the subspace of all matrices of the form ( a b0 0 )) ∈Mn with
a ∈ C, b ∈ M1,n−1 , is of dimension at most 2. _is contradicts the fact that φ is
bijective, and completes the proof of this step.

Step 2 For everyR = ( a b0 0 ) ∈Mn with a ∈ C and b ∈M1,n−1,wehaveD(R) ∈ CIn−1,
and thus

φ(R) = (a B(R)
0 γ(R)In−1

)

with γ(R) ∈ C.

By Step 1, there is R0 = ( a0 b00 0 ) ∈ Mn with a0 ∈ C/{0} and b0 ∈ M1,n−1 such that
B(R0) /= 0. Since D is linear, it suõces to show that D(R) ∈ CIn−1 for all R = ( a b0 0 ) ∈
Mn for which a is suõciently close to a0 and b = (α2 , . . . , αn) is suõciently close to
b0 so that a /= 0 and B(R) /= 0. Consider such a matrix R, and note that R is of the
form x0 ⊗ f , where f is a linear functional on Cn . Let T ∈ Mn be amatrix such that

760

https://doi.org/10.4153/CJM-2018-017-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-017-0


Linear Maps Preserving Matrices of Local Spectral Radius Zero

rT(x0) = 0, and then Lemma 3.7 implies that rφ−1(T)+λx0⊗ f (x0) = rφ−1(T)+λR(x0) /= 0
for all nonzero scalars λ ∈ C. _erefore,

(6.1) rT+λφ(R)(x0) /= 0

for all nonzero scalars λ ∈ C.
Now, suppose that there exists c ∈ Cn−1 such that {c,D(R)c} is a linearly indepen-

dent system. By continuity, one can ûnd c such that B(R)c /= 0. _at {c,D(R)c} is a
linearly independent system implies that {c, ac + D(R)c} is also a linearly indepen-
dent system. Set λ0 ∶= − B(R)c /a2 ∈ C/{0} so that

(6.2) λ0a2 + B(R)c = 0,

and consider then d ∈Mn−1 such that

(6.3) d(c) = −λ0(ac + D(R)c) and d(ac + D(R)c) = 0.

Let T ∶= ( 0 0
c d ) ∈ Mn , and note that, in view of (6.3), we have d2(c) = 0. It then

follows that T3 = ( 0 0
0 d3 ), and thus rT(x0) = 0. By (6.2) and (6.3), we also have

(T + λ0φ(R))2 = (
λ0a λ0B(R)
c d + λ0D(R)

)
2

= ( λ0(λ0a2 + B(R)c) ∗
λ0(ac + D(R)c) + dc ∗) = (

0 ∗
0 ∗) ,

and therefore (T + λ0φ(R))2(x0) = 0. _is contradicts (6.1) and shows that D(R) ∈
CIn−1, as desired.

Step 3 _ere is a nonzero scalar α ∈ C such that

(6.4) φ (0 b
0 0) = (

0 αb
0 0 ) (b ∈M1,n−1).

By Step 2, there are two linear maps u∶M1,n−1 → M1,n−1 and γ∶M1,n−1 → C such
that

(6.5) φ (0 b
0 0) = (

0 u(b)
0 γ(b)In−1

) (b ∈M1,n−1).

Let us also write

φ (0 0
c 0) = (

0 v(c)
c w(c)) (c ∈Mn−1,1),

with v∶Mn−1,1 → M1,n−1 and w∶Mn−1,1 → Mn−1 linear maps. Let T = ( 0 bc 0 ) ∈ Mn ,
and let us ûrst show that bc = 0 if and only if

(6.6) Cn ∋ 0 = (φ (0 λb
c 0 ))

n

x0 = ( (
0 v(c)
c w(c)) + λ (0 u(b)

0 γ(b)In−1
))

n

x0

for all λ ∈ C. Indeed, since

(0 b
c 0)

2k

= ((bc)
k 0

0 (cb)k) (k ≥ 1),
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it then follows that rT(x0) = 0 if and only if bc = 0. Take any scalar λ ∈ C and replace
b by λb; it then follows from this and (3.6) that bc = 0 if and only if (6.6) holds, as
claimed.

Next, we show that γ( ⋅ ) is identically zero. Let b ∈M1,n−1, and pick up a nonzero
c ∈Mn−1,1 such that bc = 0. Set

T1 ∶= (
0 u(b)
0 γ(b)In−1

) and T2 ∶= (
0 v(c)
c w(c)) ,

and note that (6.6) implies that rT1+λT2(x0) = 0 for all λ ∈ C. Since T1x0 = 0,
Lemma 3.8 gives

0 = Tn−1
1 T2x0 = (

0 u(b)
0 γ(b)In−1

)
n−1

(0 v(c)
c w(c)) x0 ,

that is

0 = (0 γ(b)n−2u(b)
0 γ(b)n−1In−1

)(0c) = (
γ(b)n−2u(b)c

γ(b)n−1c ) .

_is implies γ(b)n−1c = 0, but, since c /= 0, we see that γ(b) = 0. _erefore, γ is
identically zero, as claimed.
Finally, let us show that there is a nonzero scalar α ∈ C such that u(b) = αb for all

b ∈M1,n−1. By what has been proved before, (6.5) becomes

φ (0 b
0 0) = (

0 u(b)
0 0 ) (b ∈M1,n−1).

Let b ∈ M1,n−1 and c ∈ Mn−1,1 such that bc = 0, and let us prove that u(b)c = 0. Let
λ ∈ C and note that (6.6) becomes

(6.7) ( (0 v(c)
c w(c)) + λ (0 u(b)

0 0 ))
n

x0 = 0.

Denote

M = Span{ (0 v(c)
c w(c))

k

x0 ∶ k ≥ 0} ⊆ Cn ,

and note that, since the range of ( 0 u(b)
0 0 ) is in Cx0, we have

M = Span{( (0 v(c)
c w(c)) + λ (0 u(b)

0 0 ))
k

x0 ∶ k ≥ 0} .

_erefore, ( 0 v(c)
c w(c) ) + λ( 0 u(b)

0 0 ) sends M into M, and is nilpotent in L(M), in view
of (6.7). In particular, this implies that the trace of

(0 u(b)
0 0 ) ∣M (

0 v(c)
c w(c)) ∣M

in L(M) is zero. Now observe that

(0 u(b)
0 0 ) ∣M (

0 v(c)
c w(c)) ∣M = (u(b)c u(b)w(c)

0 0 ) ∣
M
,

and therefore its trace is u(b)c = 0, as desired.
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_erefore, given any b ∈ M1,n−1 there exists λb ∈ C such that u(b) = λbb. _e
linearity of u implies the existence of α ∈ C such that u(b) = αb for all b ∈ M1,n−1.
_at φ is injective gives α /= 0. We have therefore proved the existence of a nonzero
complex scalar α such that (6.4) holds, and the proof of this step is complete.

Step 4 For each T ∈Mn , we have

(6.8) T2(x0) = 0 ⇐⇒ φ(T)2(x0) = 0.

Let T ∈Mn , and note that, since φ is bijective and φ−1 also satisûes (2.1), it suõces
to prove that T2x0 = 0 implies φ(T)2x0 = 0. So, assume that T2x0 = 0 and suppose,
for a contradiction, that φ(T)2(x0) /= 0. Since φ(T)x0 = Tx0, we see that Tx0 /= 0.
Consider nT , MT , nφ(T) and Mφ(T) given respectively by (3.7) and (3.8), and note
that nT = 2 and MT is spanned by x0 and Tx0. Since rT(x0) = 0, rφ(T)(x0) = 0,
and therefore (3.5) tells us that φ(T)nx0 = 0. _en let m ≥ 3 be the smallest natural
number such that φ(T)m(x0) = 0. By Lemma 3.5, we have nφ(T) = m and

{x0 , φ(T)x0 , . . . , φ(T)m−1x0}

is linearly independent and spanning Mφ(T). Pick then a linear functional f on Cn

such that
f (x0) = f (φ(T)x0) = ⋅ ⋅ ⋅ = f (φ(T)m−2x0) = 0

and f (φ(T)m−1x0) = 1, and denote R0 ∶= x0 ⊗ f . Since f (x0) = 0, Step 3 tells
us that there is a nonzero scalar α ∈ C such that φ(R0) = αR0. _at R0x0 =
R0(φ(T)x0) = 0 and φ(T)x0 = Tx0 imply that R0 is identically zero on MT , and
therefore by Lemma 3.6, we obtain rT+R0(x0) = 0. _en rφ(T)+φ(R0)(x0) = 0; that
is, rφ(T)+αR0(x0) = 0. By our construction, we have (φ(T) + αR0)mx0 = αx0, and
thus 0 = rφ(T)+αR0(x0) = ∣α∣. _is contradicts the fact that α /= 0, and shows that
φ(T)2x0 = 0, as desired.

Step 5 _ere are two linear maps v∶Mn−1,1 →M1,n−1 and w∶Mn−1,1 →Mn−1 such
that

v(c)c = 0, w(c)c = 0 (c ∈Mn−1,1)

and

(6.9) φ (a b
c d) = (

a ab0 + b + v(c) +∑ β jd j
c a(β − 1)In−1 +w(c) + βd) ( (a b

c d) ∈Mn) ,

where β is a nonzero complex number and b0 = (β1 , . . . , βn−1).

_ere are two linear maps v∶Mn−1,1 →M1,n−1 and w∶Mn−1,1 →Mn−1 such that

φ (0 0
c 0) = (

0 v(c)
c w(c)) (c ∈Mn−1,1).

Since ( 0 0
c 0 )

2x0 = 0, the previous step tells us that ( 0 v(c)
c w(c) )

2
x0 = 0, and therefore

(6.10) v(c)c = 0, w(c)c = 0 (c ∈Mn−1,1).
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For T = ( a bc d ) ∈Mn , from (4.2) and (6.8), we infer that

(6.11)
⎧⎪⎪⎨⎪⎪⎩

a2 + bc = 0
ac + dc = 0 ∈Mn−1,1

⇐⇒
⎧⎪⎪⎨⎪⎪⎩

a2 + B(T)c = 0
ac + D(T)c = 0 ∈Mn−1,1 .

Writing

φ (0 0
0 d) = (

0 u(d)
0 z(d))

with u∶Mn−1 →M1,n−1 and z∶Mn−1 →Mn−1 linear maps, (6.4) then gives

(6.12) φ (a b
c d) = (

a ab0 + αb + v(c) + u(d)
c ad0 +w(c) + z(d) ) ,

for some b0 ∈M1,n−1 and d0 ∈Mn−1. Using (6.10) in (6.11), we get

(6.13)
⎧⎪⎪⎨⎪⎪⎩

a2 + bc = 0
ac + dc = 0 ∈Mn−1,1

⇐⇒
⎧⎪⎪⎨⎪⎪⎩

a2 + (ab0 + αb + u(d))c = 0
ac + (ad0 + z(d))c = 0 ∈Mn−1,1 .

Taking a = 0 and b = 0 in (6.13), we obtain that

(6.14) dc = 0 ∈Mn−1,1 ⇐⇒ u(d)c = 0 and z(d)c = 0 ∈Mn−1,1 .

_is and Lemma 3.1 imply the existence of β1 , . . . , βn−1 ∈ C such that

(6.15) u(d) =
n−1

∑
j=1
β jd j ,

where d1 , . . . , dn−1 ∈M1,n−1 are the rows of any matrix d ∈Mn−1.
Now, let us show that

(6.16) z(d) = (In−1 + d0)d
for all d ∈Mn−1. First, let us show that if a ∈ C and d ∈Mn−1, then

(6.17) det(aIn−1 + d) = 0 ⇐⇒ det ( a(In−1 + d0) + z(d)) = 0.

Indeed, if −a is an eigenvalue of a matrix d ∈ Mn−1, there exists a nonzero matrix
c in Mn−1,1 such that ac + dc = 0. Let then b ∈ M1,n−1 such that a2 + bc = 0,
and then (6.13) gives ac + ad0c + z(d)c = 0. _us, det(aIn−1 + d) = 0 implies that
det (a(In−1 + d0) + z(d)) = 0. _e converse follows in the same way, and thus (6.17)
always holds. Second, we show that In−1 + d0 ∈ Mn−1 is invertible. If not, let c0 be a
nonzero matrix inMn−1,1 such that (In−1 + d0)c0 = 0. It then follows from (6.14) that
z(In−1 + d0)c0 = 0, and therefore (a(In−1 + d0) + z(In−1 + d0))c0 = 0 for all a ∈ C.
_is and (6.17) imply that det((a + 1)In−1 + d0) = 0 for all a ∈ C, which in its turn
arises a contradiction and shows that In−1 + d0 ∈Mn−1 invertible, as claimed. Finally,
we show that the linear map z has the desired form. From (6.17), we see that

det(aIn−1 + d) = 0 ⇐⇒ det ( aIn−1 + (In−1 + d0)−1z(d)) = 0.

_is means that d ↦ (In−1 + d0)−1z(d) is a linear map on Mn−1 that preserves the
spectrum. By [35], there exists an invertible q ∈Mn−1 such that either z(d) = (In−1 +
d0)qdq−1 for all d ∈ Mn−1, or z(d) = (In−1 + d0)qd tq−1 for all d ∈ Mn−1. If the
ûrst case occurs, then dc = 0 implies dq−1c = 0. _is gives q ∈ CIn−1, and therefore
z(d) = (In−1 + d0)d for each d. Since n > 2, the second case cannot occur. Indeed,
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dc = 0 would then imply d tq−1c = 0. Let c /= 0, a nonzero linear functional f onCn−1

such that f (c) = 0 and put d = (q−1c)⊗ f . We have that dc is zero, but d tq−1c is not!
Next, let us show that

(6.18) α = 1 and b0 = (β1 , . . . , βn−1),
where β1 , . . . , βn−1 are the scalars involved in (6.15). Write b0 = (δ1 , . . . , δn−1), and
let us prove that α = 1 and δ j = β j for all j. Given any a ∈ C and nonzero c ∈ Mn−1,1,
there exists d ∈Mn−1 such that ac + dc = 0. _en let b ∈M1,n−1 such that a2 + bc = 0,
and note that, since bc = −a2 and d jc = −ac j for each j, equations (6.13) and (6.15)
imply that

0 = a2 + ( ab0 + αb + u(d)) c

= a2 + αbc + a
n−1

∑
j=1
δ jc j +

n−1

∑
j=1
β jd jc

= a2(1 − α) + a
n−1

∑
j=1
(δ j − β j)c j .

Since a ∈ C and c ∈ Mn−1,1/{0} are arbitrary, we conclude that α = 1 and δ j = β j for
all j = 1, . . . , n − 1; as desired.
Denote β ∶= In−1 + d0, and let us prove that β is a scalar matrix in Mn−1. Let

c ∈ Mn−1,1 and d ∈ Mn−1 be a nilpotent matrix, and set T ∶= ( 0 0
c d ). Note that since

rd(c) = 0 in Mn−1, we have rT(x0) = 0 and thus (φ(T))nx0 = 0, by (3.5). In view of
(6.12), (6.15), and (6.16), we have φ(T) = ( 0 v(c)+∑ β jd j

c w(c)+βd ), and thus a�er replacing d
by λd, one has

( (0 v(c)
c w(c)) + λ (0 ∑ β jd j

0 βd ))
n

x0 = 0 (λ ∈ C).

_en Lemma 3.8 gives

(0 ∑ β jd j
0 βd )

n−1

(0 v(c)
c w(c)) x0 = 0.

In particular, (βd)n−1c = 0. Since c ∈Mn−1,1 is an arbitrary matrix, we conclude that
(βd)n−1 = 0. _erefore, d ∈ Mn−1 nilpotent implies βd ∈ Mn−1 nilpotent. _e main
result of [10] implies the existence of a complex scalar δ and an invertible q ∈ Mn−1
such that either βd = δqdq−1 for every d having its trace equal to zero, or βd =
δqd tq−1 for every d with zero trace. In both cases we have that tr(d) = 0 implies
tr(βd) = 0. _is implies that β is a scalar matrix, as claimed. (Since β is scalar, in fact,
the second case cannot occur).
Finally, we are in position to conclude and ûnish the proof of this step. By what

has been shown previously, there is a, nonzero scalar β ∈ C such that d0 = (β − 1)In−1
and thus (6.16) becomes z(d) = βd for all d ∈Mn−1. _is together with (6.12), (6.15),
and (6.18) show that φ has the form (6.9), and thus the proof of this step is complete.

Step 6 For every T ∈Mn , we have

(6.19) T3(x0) = 0 ⇐⇒ φ(T)3(x0) = 0.
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Let us observe that for T = ( a bc d ) ∈Mn , we have

T2(x0) = (
a2 + bc
ac + dc)

and

(6.20) φ(T)2(x0) = (
a2 + bc + a∑ β jc j +∑ β jd jc

β(ac + dc) ) ,

by (6.9). _is shows, in particular, that φ(T)2(x0) − βT2(x0) ∈ Cx0. Now, suppose
for the sake of contradiction that T3x0 is 0, but φ(T)3(x0) is not. We proceed as in the
proof of Step 4, and letm ≥ 4 be the smallestnatural number such that φ(T)m(x0) = 0
and f a linear functional f on Cn such that

f (x0) = f (φ(T)x0) = ⋅ ⋅ ⋅ = f (φ(T)m−2x0) = 0

and f (φ(T)m−1x0) = 1. Since φ(T)x0 = Tx0 and φ(T)2(x0) − βT2(x0) ∈ Cx0 with
β /= 0, we have f (x0) = f (Tx0) = f (T2x0) = 0. Denoting R0 = x0 ⊗ f , R0 is then
identically zero on MT , and now, as in the proof of Step 4, we arrive at a contradic-
tion. _is contradiction shows that T3x0 = 0 implies that φ(T)3(x0) = 0, and then,
working with φ−1 instead of φ, the reverse implication holds as well.

Step 7 _emap φ given by (6.9) is the identity; i.e., v = w ≡ 0, β = 1, and β j = 0 for
all j = 1, . . . , n − 1.

Let c ∈ Mn−1,1 be a nonzero matrix and pick up x ∈ Mn−1,1 such that x and c are
linearly independent. Let d ∈ Mn−1 such that dc = x and dx = 0, and then d2c = 0.
For T = ( 0 0

c d ) ∈Mn , we have

φ(T) = (0 v(c) +∑ β jd j
c w(c) + βd ) and φ(T)2x0 = (∑

β jd jc
βdc ) ;

see (6.9) and (6.20). Note that since d2c = 0, we have T3x0 = 0 and (6.19) implies that

0 = φ(T)3(x0) = (
0 v(c) +∑ β jd j
c w(c) + βd )(

∑ β jd jc
βdc ) = (

β(v(c) +∑ β jd j)dc
c(∑ β jd j)c + βw(c)dc

) .

Since d2c = 0, we have d jdc = 0 for all j, and thus

(6.21) 0 = (v(c) +∑ β jd j)dc = v(c)dc = v(c)x
and

(6.22) 0 = c(∑ β jd j) c + βw(c)dc = c(∑ β jd j) c + βw(c)x .

From (6.21), we conclude that v ≡ 0.
Now, note that, since d jc = x j for all j = 1, . . . , n − 1, equation (6.22) becomes

(6.23) (∑ β jx j) c + βw(c)x = 0.

By continuity, this holds for x = c too, and since w(c)c = 0, we get ∑ β jc j = 0 for
every nonzero c ∈Mn−1,1. _us, β j = 0 for all j. _en (6.23) gives w(c)x = 0 for each
c and x that are linearly independent, and this implies w ≡ 0.
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_us, (6.9) becomes

φ (a b
c d) = (

a b
c a(β − 1)In−1 + βd

) ( (a b
c d) ∈Mn) .

For

T =

⎛
⎜⎜⎜⎜⎜
⎝

−1 0 1 0 . . .
1 0 −1 0 . . .
0 1 1 0 . . .
0 0 0 0 . . .
⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟
⎠

,

we have T3 = 0 and

φ(T) =

⎛
⎜⎜⎜⎜⎜
⎝

−1 0 1 0 . . .
1 1 − β −β 0 . . .
0 β 1 0 . . .
0 0 0 1 − β . . .
⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟
⎠

.

By (6.19), we have

0 = φ(T)3x0 = (β − 1)

⎛
⎜⎜⎜⎜⎜
⎝

1
−1
−β
0
⋮

⎞
⎟⎟⎟⎟⎟
⎠

.

Clearly, β = 1, and the proof is therefore complete.

7 Concluding Remarks and Open Problems

In the sequel, let X and Y be two complex Banach spaces, and let x0 ∈ X and y0 ∈ Y be
two nonzero vectors. In this section,wemake some remarks and comments on linear
and nonlinear preservers of local spectral radius and discuss some further challenging
problems, which are suggested by the main results of this paper. First, we wonder if
our main results remain valid for the inûnite-dimensional case.

Problem 1 Which linear maps φ from L(X) onto L(Y) satisfy

(7.1) rT(x0) = 0 ⇐⇒ rφ(T)(y0) = 0 (T ∈ L(X))?

When X and Y are inûnite-dimensional Banach spaces, we conjecture that a lin-
ear map φ from L(X) onto L(Y) satisûes (7.1) if and only if there is a nonzero scalar
α ∈ C and a bijective bounded linear mapping A from X into Y such that Ax0 = y0
and φ(T) = αATA−1 for all T ∈ L(X). Note that the injectivity of any linear map φ
satisfying (7.1) follows from [16, _eorem 3.1]. But, unlike for the ûnite-dimensional
case, the surjectivity assumption of such a map φ is necessary. Otherwise, the de-
scription of maps φ from L(X) into L(Y) satisfying (7.1) would be vague, since the
mapping φ from L(X) into L(X ⊕ X), deûned by φ(T) = T ⊕ T , (T ∈ L(X)),
satisûes (7.1) when y0 = x0 ⊕ x0.
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We also would like to point out that the full description of all linear maps φ from
L(X) onto L(Y) satisfying

rφ(T)(y0) = rT(x0) (T ∈ L(X)).
is well known and can be found in [13, 18,20,26]. In [20], Bračič andMüller extended
the main result of [18] to inûnite-dimensional Banach spaces by characterizing sur-
jective linear and continuous maps on L(X) that preserve the local spectral radius
at a ûxed nonzero vector of X. In [26, _eorem 1.2], Costara showed that surjective
linear local spectral radius preservers on L(X) are automatically continuous.
A number of authors studiedmaps preserving the spectra and local spectra of dif-

ferent products of matrices or operators that includes the usual product, the triple
product and the Jordan product; see, for instance, [11–16, 23, 25, 27, 31, 32]. It is also
worthmentioning that the full description of surjectivemaps φ fromL(X) intoL(Y)
preserving the spectral radius of diòerent products of operators is unknown; see [13].
As far as for the nonlinear local spectral radius preservers, we ûrst state the following
problem.

Problem 2 Which maps φ from L(X) onto L(Y) satisfy
(7.2) rS±T(x0) = 0 ⇐⇒ rφ(S)±φ(T)(y0) = 0 (S , T ∈ L(X))?

Obviously, (7.2) holds for any map φ from L(X) onto L(Y) satisfying
(7.3) rφ(S)±φ(T)(y0) = rS±T(x0) (S , T ∈ L(X)).
In the ûnite-dimensional case, the description of such maps is known as shown by
Costara in [23]. He proved that a surjectivemap φ onMn satisûes (7.3)with φ(0) = 0
if and only if φ is an automorphism multiplied by a scalar of modulus one and the
intertwining matrix sends x0 to y0. However,when X and Y are inûnite-dimensional
spaces, the characterization ofmaps satisfying (7.3) is unknown and remains an open
problem as well.

In [14], Bourhim andMashreghi showed that amap φ from L(X) onto L(Y) sat-
isûes

σφ(T)φ(S)(y0) = σTS(x0) (T , S ∈ L(X)),
if and only if there exists a bijective bounded linear mapping A from X into Y such
that Ax0 = y0 and either φ(T) = ATA−1 for all T ∈ L(X) or φ(T) = −ATA−1 for all
T ∈ L(X). Naturally, this result suggests the problem of describing all maps φ from
L(X) onto L(Y) for which

rφ(T)φ(S)(y0) = rTS(x0) (T , S ∈ L(X)).
Even more, one may ask the following more general question of describing all maps
on L(X) preserving the product of operators of local spectral radius zero at some
ûxed nonzero vector of X.

Problem 3 Which maps φ from L(X) onto L(Y) satisfy
rST(x0) = 0 ⇐⇒ rφ(S)φ(T)(y0) = 0 (S , T ∈ L(X))?
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Similar questions can be askedwhen replacing theusual product by triple or Jordan
product.

Problem 4 Describe all maps φ from L(X) onto L(Y) satisfying either

rSTS(x0) = 0 ⇐⇒ rφ(S)φ(T)φ(S)(y0) = 0 (S , T ∈ L(X)),

or

rST+TS(x0) = 0 ⇐⇒ rφ(S)φ(T)+φ(T)φ(S)(y0) = 0 (S , T ∈ L(X)).

One may ask similar questions for diòerent local spectra, in particular, when the
local spectral radius is replaced by the inner local spectral radius. For a positive scalar
r, let D(0, r) (resp. D(0, r)) denote the closed (resp. the open) disc centered at the
origin with radius r, and for a closed subset F of C and an operator T ∈ L(X), the
subspace

XT(F) ∶= {x ∈ X ∶ (T − λ) f (λ) = x has an analytic solution f on C/F}

is the so-called glocal spectral subspace of T . Recall that the local spectral radius of T
at any vector x ∈ X coincides with

rT(x) = inf { r ≥ 0 ∶ x ∈ XT(D(0, r))} ;

see [34, Proposition 3.3.13]. Analogously, the inner local spectral radius of T at x is
deûned by

ιT(x) ∶= sup{ r ≥ 0 ∶ x ∈ XT(C/D(0, r))} ,

and note that ιT(x) = 0 if and only if 0 ∈ σT(x); see [36]. We also note that if T ∈Mn
is amatrix and x ∈ Cn , then ιT(x) is nothing but theminimum modulus of σT(x).

Problem 5 Which linear maps φ from L(X) onto L(Y) satisfy

(7.4) ιT(x0) = 0 ⇐⇒ ιφ(T)(y0) = 0 (T ∈ L(X))?

Consider a unital map φ from L(X) onto L(Y) satisfying (7.4). _en for every
T ∈ L(X), we have

λ ∈ σT(x0) ⇐⇒ ιT−λ(x0) = 0
⇐⇒ ιφ(T)−λ(y0) = 0
⇐⇒ λ ∈ σφ(T)(y0).

_is implies that

σφ(T)(y0) = σT(x0)

for all T ∈ L(X). _erefore, by [20,22], there is a bijective bounded linear mapping A
from X into Y such that Ax0 = y0 and φ(T) = ATA−1 for all T ∈ L(X). So, to answer
the last question, one only needs to determine φ(1) when φ satisûes (7.4).
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