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We have investigated the modified Jeans instability and gravitational collapse in uni-
formly rotating, anisotropic quantum plasmas, including the effects of intrinsic magneti-
sation, viscosity tensor and Ohmic diffusivity. The closure of the Chew, Goldberger and
Low and quantum magnetohydrodynamic fluid models describes the dynamical proper-
ties and modified dispersion characteristics of the system. The modified Jeans instability
criteria and Jeans wavenumbers for the onset conditions of gravitational collapse are
obtained, which are significantly modified due to spin magnetisation, quantum correc-
tions and rotation of the system. Strong magnetisation and electrical resistivity are found
to enhance the growth rate of Jeans instability, making the system more gravitationally
unstable. The magnetic field shows both stabilising (in weak magnetisation limit) and
destabilising (in strong magnetisation limit) influence on the growth rate by affecting
the gravitational collapse mechanism of dense stars. The growth rate of pressure-
anisotropy-driven firehose instability is destabilised due to pressure anisotropy, rotation
and spin magnetisation effects. The results are discussed in order to understand the Jeans
instability and gravitational collapse of low-mass strongly magnetised white dwarfs.
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1. Introduction

The interior of highly magnetised dense stars (e.g. white dwarfs, neutron stars
and magnetars) exhibits distinct properties due to the existence of degenerate parti-
cles in the quantum regime at extremely low temperatures (T < Tr, where Tr is the
Fermi temperature). The quantum effects become unavoidable and play a vital role
in dense plasmas when the de Broglie wavelength of the plasma species is compa-
rable to or larger than their interparticle separation, i.e. Ag > n, '3 (where ny is the
average particle density) (Bonitz ef al. 2010). The aforementioned condition is satis-
fied in magnetars (Az =9 x 10713 m) and white dwarfs (Az ~ 3 x 107! m) in which
the orders of de Broglie wavelengths are equivalent to the interparticle separations
in these systems (Goémez & Kandus 2018). The quantum mechanical behaviour
of plasma particles is significant and has been notably studied in white dwarfs,
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neutron stars, pulsars and magnetars, giant planets and laser fusion experiments
(Chabrier 1993; Karpiuk et al. 2021). Quantum effects also play an unavoidable
role in plasma screening for thermonuclear fusion in high-density laser experiments
(Elsing, Palffy & Wu 2022). In semiconductor plasmas, quantum effects are cru-
cial in modifying instabilities, e.g. drift and modulation instabilities (Sharma et al.
2024). In past years, many fluid instabilities have been studied in quantum plasmas,
such as filamentation instability (Bret 2007), magnetorotational instability (Usman
& Mushtaq 2021), oblique waveguide instability (Jamil ez al. 2020), electromagnetic
instability (Khodadadi Azadboni 2021) and temperature-anisotropy-driven Weibel
instability (Haas 2008). In addition, the Jeans instability is the fundamental mecha-
nism in the formation of dense stars through gravitational collapse, which has been
previously studied assuming the plasma pressure to be isotropic in nature (Shukla &
Stenflo 20006).

In most quantum plasma systems, the spins of the constituent particles are
randomly oriented; hence, the impact arising from spin-induced magnetisation
can be safely ignored. Strong magnetic fields are present in dense stars, e.g. in
white dwarfs (B ~ 10°—10° G) and neutron stars (B >~ 10'> G) (Wickramasinghe &
Ferrario 2005). Further, in magnetars, there exists an ultra-strong magnetic field
(B ~10"—10" G) that exceeds the quantum critical threshold, B, =4.4 x 10° G
(Duncan & Thompson 1992). These strong magnetic fields are mainly responsible
for magnetisation and affect the particle dynamics in degenerate plasmas. Strong
magnetic fields also cause Landau quantisation in magnetars, which produces axion
(Maruyama et al. 2018). These effects become significant in highly magnetised dense
stars when the spin is aligned along the magnetic field (Brodin & Marklund 2007a).
Spin magnetisation plays a crucial role via coupling to the Alfvénic speed by mod-
ifying the instability criteria and affecting the gravitational collapse in compact
astrophysical objects (Usman, Mushtaq & Jan 2018). Spin forces are important
even when their magnitudes are smaller than the usual J x B force, and this prop-
erty is demonstrated by studying the one-dimensional nonlinear shear Alfvén waves
(Brodin & Marklund 2007b). The propagation of the magnetosonic waves is affected
by quantum corrections, such as the Bohm potential and the spin of the electron.
The magnetohydrodynamics (MHD) formalism is used to analyse the normal modes
in magnetised quantum plasmas with spin coupling, Fermi pressure and Hall effect
(Gémez & Kandus 2018). Furthermore, the effects of spin magnetisation in quan-
tum plasmas have been investigated in the study of nonlinear magnetosonic waves
(Mushtaq & Vladimirov 2011), nonlinear Alfvén waves (Jan, Mushtaq & Ikram
2018) and magnetorotational instability (Usman & Mushtaq 2021). The growth
rate of Weibel instability in strongly coupled quantum plasmas decreases due to
the quantum parameter and increases due to the temperature anisotropy parameter
(Nejadtaghi et al. 2024).

Analytical techniques have been developed to model quantum plasmas and inves-
tigate waves and instabilities. These are the Wigner—Poisson, Schrodinger-Poisson
and quantum magnetohydrodynamic (QMHD) models (Haas 2005, 2011). The
QMHD model is most appropriate for studying the macroscopic transport proper-
ties of a quantum fluid involving global plasma parameters. The properties of dense
white dwarfs and neutron stars provide insightful predictions regarding their unique
characteristics. The behaviour of relativistic degenerate electrons and exchange-
correlation effects is studied on the propagation of high-frequency surface waves in
spin-1/2 quantum plasmas and it has been shown that due to exchange-correlation
effects, the frequency spectrum of high-frequency surface waves is shifted down
(Chen et al. 2020). The ion-acoustic solitary waves in an electron—positron-ion
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quantum plasma in the presence of an external static magnetic field have been
studied using the reductive perturbation method (El-Taibany et al. 2022). In the
QMHD framework, dust magnetosonic waves are investigated in degenerate quan-
tum plasmas, including spin and exchange-correlation effects (Maroof, Mushtaq &
Qamar 2016). Rahim, Adnan & Qamar (2019) used the QMHD model to anal-
yse the properties of small-amplitude magnetosonic shock waves in a dissipative
plasma, including spin-up and spin-down electrons. In addition, many interesting
phenomena, such as unstable charge density waves (Han, Zhang & Dai 2019) and
nucleus-acoustic shock waves (Mamun, Sharmin & Tamanna 2021), show the impor-
tance of quantum effects in collective modes in low-temperature and highly dense
plasmas. Recently, the dispersion properties of electron plasma waves in a nonlinear
quantum plasma have been studied by applying the Volkov approach in the kinetic
framework (Haas, Mendong¢a & Tercas 2023).

Dense stars are formed due to the collapse of massive stars in which electron
degeneracy pressure (in white dwarfs) and neutron degeneracy pressure (in neu-
tron stars) support them against gravitational collapse (Leung 1985). The magnetic
field has a unique role in the gravitational collapse of dense stars. In past years,
many researchers have extended the problems of Jeans (gravitational) instability
of quantum plasmas considering various physical effects in the environment of
dense stars. Shukla & Stenflo (2006) have investigated the Jeans instabilities of
self-gravitating astrophysical quantum dusty plasma assuming electrostatic perturba-
tions. The QMHD model is used to analyse the Jeans instability in quantum plasmas
considering the effects of finite Larmor radius corrections (Joshi et al. 2018), neu-
trino beam and flavour oscillations (Prajapati 2017; Hammad et a/. 2023) and Fermi
temperature ratio (Ali & Mushtaq 2011). Lundin, Marklund & Brodin (2008) have
investigated the modified Jeans instability considering the spin magnetisation effect
and found that it enhances the growth rate of the Jeans instability. However, the
plasma pressure in dense highly magnetised astrophysical systems does not remain
isotropic, and it becomes anisotropic in nature. Pressure-anisotropy-driven kinetic
instabilities have recently been studied in magnetised low-density plasmas in the intr-
acluster medium (Rappaz & Schober 2024). We find that none of these authors
(Lundin et al. 2008; Gémez & Kandus 2018; Bhakta & Prajapati 2018; Sangwan
& Prajapati 2023) have studied the role of intrinsic magnetisation, rotation, Ohmic
diffusion and viscous dissipation in the Jeans instability in anisotropic quantum
plasmas.

This paper analyses the influence of spin magnetisation, rotation, Ohmic diffusion
and viscosity stress tensor on the Jeans instability in anisotropic quantum plasmas.
The remaining part of the paper is organised as follows. In §2, the anisotropic
quantum fluid model is constructed using the Chew, Goldberger and Low (CGL)
and QMHD fluid models for anisotropic quantum plasmas. In § 3, the dispersion
relation of the modified Jeans instability is analytically derived by solving linearised
perturbation equations and using the normal-mode method. In §4, the general dis-
persion relation is analysed in the transverse and longitudinal modes to examine the
role of spin magnetisation and other parameters. The applications of the analytical
results for dense quantum plasmas in white dwarfs are discussed. Finally, the paper
is summarised and concluded in § 5.

2. Anisotropic quantum fluid model

Let us discuss the gravitational collapse and Jeans instability in a highly dense,
magnetised white dwarf consisting of pressure anisotropy (p; # p., where p; , are
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the pressure components parallel and perpendicular to the direction of the magnetic
field) and viscosity tensor in finitely conducting quantum fluid. The plasma is
embedded in the strong uniform magnetic field along the z axis, i.e. B(0, 0, B).
Non-magnetic white dwarfs are generally slow rotators, having periods varying
from a few days to a few hours. However, there are some white dwarfs, e.g.
EUVE J0317-853, which are highly magnetised and rapidly rotating (r, =700s)
(Ferrario & Wickramasinghe 2005). Also, the plasma rotation on the surface of
white dwarfs is less significant than the rigid rotation of these stars. Therefore,
it is necessary to consider the rotation effects for such dense stars in the dynam-
ical descriptions during the structure formation. It is assumed that the system
is rotating along the z axis with uniform rotational frequency $2(0, 0, £2), which
gives rise to the Coriolis force in the momentum transfer equation. Furthermore,
the dynamics of plasma particles in white dwarfs may be relativistic or non-
relativistic depending upon the size and mass of the star. In low-mass white dwarfs,
ultra-relativistic degenerate electrons satisfy the equation of state P o p*3. On
the other hand, non-relativistic degenerate electrons satisfy the equation of state
P o p*3. In the present work, we deal with anisotropic pressure plasmas; thus
the usual CGL fluid equations are considered following the work of Shukla &
Stenflo (2008).

We also assume that the interior properties of the system consist of quantum
plasmas with temperature (7') less than the Fermi temperature (7r) so that the
quantum effects become significant in the system, i.e.

T o1, =L 71—2(3712)2/3112/3 2.1)
= kB 2mk3 o '
where Er, kp and m are the Fermi energy, the Boltzmann constant and the mass of
the particle, respectively.

The ratio & =TF/T signifies the behaviour of the system, and when & > 1 the
quantum effects dominate in the system (Manfredi, Hervieux & Hurst 2021). The
Fermi temperature is directly proportional to the number density, suggesting a high
value of the Fermi temperature inside white dwarfs due to the high values of number
densities. The quantum coupling parameter, which is basically the ratio of interac-
tion energy to the Fermi energy, i.e. [y ~ 1/(nA})** ~ (hw,/Er)* (where hw, is
the plasmon energy), is considered to be small in the collisionless regime (where
collective and mean-field effects dominate). Plasmas with high densities are more
collective because of Pauli’s exclusion principle.

The quantum effects in the QMHD model appear through the Bohm potential
term and intrinsic magnetisation effects. The quantum Bohm potential accounts
for quantum effects like diffraction and quantum tunnelling, while the Fermi pres-
sure represents the statistical pressures of the degenerate particles. In semiconductor
physics, the Bohm potential is mainly responsible for tunnelling and differential
resistance effects. The quantum Bohm force originates from interpreting a Fermi
gas within the framework of hidden variables in quantum mechanics (Bohm 1952)

which is given by

h? v2./n,

Fop=—V ( " ) , (2.2)
2m, Jn,

where m, is the electron mass and n, is the electron number density.
The QMHD equations for dense magnetoplasma, including electron temperature
anisotropy, are derived by Shukla & Stenflo (2008) in the MHD limit. In previous
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works (Lundin er al. 2008; Modestov, Bychkov & Marklund 2009), authors have
separately studied the effects of quantum Bohm potential, spin magnetisation and
self-gravitation using the QMHD fluid model of Haas (2005). The MHD instability
and Jeans instability in viscous resistive quantum plasma are studied considering
the spin magnetisation terms in the equation of motion (Bychkov, Modestov &
Marklund 2010; Sharma & Chhajlani 2014). Gémez & Kandus (2018) have also
formulated a two-fluid QMHD model considering spin-magnetic coupling irrespec-
tive of all other spin interactions. However, the theory of spin magnetisation in
dense plasmas and QMHD equations is still a grey area of research owing to their
limitations in real physical systems (Bonitz, Moldabekov & Ramazanov 2019). We
suggest the validity of this theory in the core of white dwarfs, where iron is present
in abundance. The ferromagnetic properties of iron make the spin magnetisation
effect important while studying the gravitational collapse of dense quantum plasmas
in the core of white dwarfs.

The strong correlation between plasma constituents in dense stars originates from
the Coulomb force, quantum degeneracy and magnetic confinement, enhanced
by extreme density and magnetic fields. These conditions create a highly organ-
ised plasma state in which electrons and ions cannot behave independently,
especially when external magnetic fields impose additional constraints on motion
and interactions. Additionally, in the framework of the spin-magnetised quantum
plasma, spin alignment along the magnetic field contributes to the magnetisa-
tion of the system, further enhancing inter-particle correlations. This spin-induced
magnetisation modifies the collective behaviour of the plasma and alters the prop-
agation of low-frequency modes such as those associated with Jeans and firehose
instabilities.

Therefore, considering the strong correlations between plasma constituents due to
the aforementioned effects, we write the single fluid equation of motion as (Haas
2005; Brodin & Marklund 2007a; Lundin et al. 2008; Bychkov et al. 2010)

9 o o B?
p<§+v-v)V:—V-P—V-n—pv¢>g+2p(vxsz)—v(2——M-B>

Mo
B % V?
+B-V(——M)+ pv( ﬁ). (2.3)
o 2mem; VP
The continuity equation is
0
8—’; +V.(pV)=0, (2.4)

where V, P, B, ¢, I, p and M are the fluid velocity, the pressure tensor, the mag-
netic field vector, the gravitational potential, the viscosity tensor, the quantum fluid
density and the magnetisation due to electron spin, respectively.

On the right-hand side of (2.3), many force terms appear that describe the dynam-
ics of the considered plasma configuration. The inclusion of additional force terms
in the basic QMHD model of Haas (2008) extensively describes the wave modes
and instabilities in quantum plasmas, as many researchers have discussed (Lundin
et al. 2008; Asenjo 2012; Sharma & Chhajlani 2013; Rahim et al. 2019). The first
two terms, respectively, show the anisotropic pressure tensor and viscosity stress
tensor. Since large masses are involved in white dwarfs, the self-gravitational force
term becomes unavoidable and is included as the gradient of a scalar potential ¢,.
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The quantum effects are included in terms of Bohm potential as derived in the
QMHD model (Haas 2005) and spin magnetisation due to the interaction between
the magnetic field B and magnetisation vector M (Brodin & Marklund 2007¢;
Modestov et al. 2009). The fourth term represents the centrifugal force, which shows
the rotation of the system.

The dynamics is considered on a time scale larger than the inverse cyclotron
frequency but shorter than the inverse spin transition frequency, so that the effects
of spin-flip do not occur, which happens because of particle collisions and also due
to the time variation of the magnetic field. The temporal variation of the magnetic
field should be smaller than the inverse cyclotron frequency of the electron (Brodin,
Marklund & Manfredi 2008). In this case, the magnetisation vector is given by
(Brodin & Marklund 2007a; Lundin et a/. 2008)

B\ .
M =22 ann (£22) B, (2.5)
kT

m; B

where up is the Bohr magnetron and m; is the mass of ions. The factor
tanh (up B/ kpT) appears by virtue of the fact that the spin vector is aligned parallel
to the magnetic field and the system reaches the thermodynamic equilibrium state.
Generally, the spin is randomly oriented for most plasmas, so the factor ugB/kpT is
very small, and the spin quantum effects are negligible. Meanwhile, the spin effects
are significant in low-frequency wave motions for plasmas that are highly magnetised
or have low temperatures (Marklund & Brodin 2007).
The magnetic field equations using the modified Ohm’s law are

oB

E:V x (V x B)+nV*B (2.6)
and
V.-B=0, 2.7
where n=1/uoo0, is the Ohmic diffusion coefficient and o, is the electrical
conductivity.

In dense stars, plasma confinement occurs due to the strong gravitational force
balanced by the electron degeneracy pressure. There exists a pressure equilibrium
between these forces that confines the plasma constituents inside these stars. Thus,
we include the Poisson equation of gravitational potential as

V¢, =4 Gp. (2.8)

In anisotropic plasmas, the isotropic pressure is expressed by the pressure tensor

P=p, I +(p,— p.)ee, (2.9)

where I is unit dyadic and é = B/B is the normal vector along the direction of the
magnetic field.

The CGL fluid theory applies to plasmas where collisions between particles can
be neglected. These plasmas exhibit slow changes over time compared with the
ion gyrating motion around a magnetic field and have spatial variations occurring
over distances much greater than the ion gyration radius. The pressure components
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p. and p, represent the adiabatic equations of state known as double-adiabatic or
CGL equations which are given by

d (ps d (pB°
—0 g L(2E) . 2.10
dr( ) an dr( o 219

The viscous dissipation in dense stars is an important mechanism. Binary white
dwarfs come closer due to the loss of angular momentum by gravitational wave
radiation and are heated internally to high temperatures due to viscous dissipation.
The values of dynamical viscosity in dense stars have a wide range u = 10""—10" g
cm~! s7! (Iben et al. 1998). Also, the estimated viscosity parameter in the degenerate
matter of density range 10*—10'° g cm™3 lies in the range 10°—10' g cm™'s~!
(Durisen 1973). This high viscosity value suggests the possible role of turbulence
(Zahn 1977), shear and magnetic viscosity, indicating that a weak magnetic field can
enhance the viscosity (Sutantyo 1974). Therefore, one cannot ignore the contribution
of the viscosity of dense stars in gravitational collapse.

Thus, considering the above assumption and neglecting higher-order viscosity coef-
ficients (1o > 11, 12, 03, N4), the Braginskii viscous stress tensor can be written as
(Braginskii 1965)

Hxx:H = -
» 3 (ax dy 0z

du,  dv, o,
oMo (20 | O 500 (2.12)
3 \ 0x ay 0z

Equations (2.3)-(2.8) represent the governing fluid equations for the considered
configuration. In the model equations, the fluid pressure is considered classical to
maintain the validity of the CGL fluid model. In the fluid theory, at the MHD scale,
the collective wave modes and instabilities are described through the bulk plasma
parameters such as classical pressure, fluid density and global fluid velocity. Thus, in
most quantum plasma work, the fluid pressure is taken to be classical (Haas 2005;
Shukla & Stenflo 2008; Lundin et al. 2008; Asenjo 2012), specifically in the present
work, to adopt the CGL fluid equations in their usual form. The wave modes and
instabilities in the degenerate quantum plasma can be studied with the help of
analytical solutions of these equations. These equations are linearised and solved
in the following section using normal-mode analysis to obtain the characteristic
dispersion relations.

du. v, v,
o —v> 2.11)

and

3. Perturbation equations and dispersion relation

Equations (2.3)-(2.8) are linearised, assuming that each quantity consists of
equilibrium and perturbed parts. The equilibrium part of the physical quantity
is independent of space-time variations. These physical quantities can be repre-
sented as /0 /00 + p1s ¢g ¢0g + ¢1g’ Pi.L=PpojoL + piaL, V=0(=0)+v,, M=

<>

M,+M,, P PO +P,, H HO +H1 and B = B, + B;. All the quantities with sub-
script ‘0’ represent the unperturbed states of physical quantities, such as the fluid
velocity, pressure, density, spin-induced magnetisation, gravitational potential, vis-
cosity tensor and magnetic field. The perturbations in these physical quantities can

be expressed as pi, @i, pijis, Vi(vy, vy, v.), My, Py, II, and B (B, By, By.,),
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respectively. The magnitude of the perturbations is assumed to be small as compared
with the magnitude of the unperturbed state, i.e. |A;| < |Ag].
Let us now write the perturbed form of the equation of motion (2.3) as

81) < <
pa—tl =—V.P,—V-II, —pV, +2p(v; x 2)

BOBIZ Bl 2 2
-V _MOBIZ_MIZBO +B()V __Ml + \"AY P1-
Mo Mo m.m;
(3.1)
The perturbed form of the continuity equation (2.4) is
api
—4+p(V-.v)=0. (3.2)
ot
The perturbed form of the magnetisation equation is
B .
M, =M, (i + &z) , (3.3)
By P

where B, = (B, Bi,,0) and M;= (Bo/mo)x/(1+ x). Here x is the magnetic
susceptibility given by (Lundin et al. 2008)
. ((Boeg)/(m;i V7)) tanh (1 B)/ (ks T))
1= ((Bowp)/(m; V) tanh ((upB)/ (ks T))

The perturbed form of magnetic induction equation (2.6) and the Gauss law of
magnetism (2.7) are

(3.4)

9B, )
W=VX(01XB0)+T]V B] (35)

and
V.B,=0. (3.6)

The perturbed form of the Poisson equation of self-gravitational potential (2.8) can
be written as
Vi, =4nGp;. (3.7)

The perturbed form of the pressure tensor equation (2.9) is

Py=pi I +(py — pi)ee+ (py— pr)(eé, +ée). (3.8)
The perturbed form of the adiabatic equations of state (2.10) is

B 3 2B

(3.9)
P1 1Y B P 1Y B

These perturbation equations are solved using normal-mode analysis to derive the
dispersion relations and analyse waves and instabilities in various cases. We assume
small perturbations in each perturbed quantity of the form of a sinusoidal function
of space and time as

Ai(r,t)=Alexp(ik - r —iwt), (3.10)
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where A shows the amplitude of the perturbation and w is the perturbation fre-
quency. The wavevector k is restricted to the x—z plane such that k =k, x + k.Z,
where k, and k, represent the wavenumbers along the x and z axes, respectively. The
above perturbations give rise to space and time derivatives as d/dx = ik,, 9/dz =ik,
d/0t = —iw, respectively.

<>

The %,y and Z components of divergence of viscosity stress tensor IT, are
given by
(V-M,), = %(kfvx — 2kkv.), (3.11a)
(V-II,), =0, (3.11b)
VoIl = — 21 (ke kv, — 2K 3.11¢)
( ° 1)1—_7( xK Uy — ZUZ)- :

The x, y and Z components of divergence of pressure tensor as stated in (3.8) can
be written as

o on
(Vep).= ;(kﬁvx + kokv) pL+ w—[kfm — (py— PLKZ]. (3.12a)
n
(V. Py, = k2, PP (3.12b)
a)rl
< 3 ) Uy
(Ve p). = Z(kxkzvx + k2v,) py — w—[ZkaZpH +(py — pOkk]. (3.12¢)

n

Equation (3.1) is solved with the help of (3.2), (3.3), (3.5), (3.7), (3.11) and (3.12).
Then after resolving the equation of motion, i.e. (3.1), in X, y and Z components
which gives three equations in terms of v,, v, and v,. These equations are written in

matrix form as
(O], x [P, =0, (3.13)

where m, n, g =1, 2, 3. Matrix [P], is a column matrix of order 3 x 1, whose ele-
ments are v,, v, and v,. Matrix [Q],,, 1s a 3 x 3 square matrix with the following
matrix elements:

, 1o 2 2 Vj 2 2 Vj 2
=0 —— ||C; —C; — kk—|C —— |k
Qll w a)r] |:< s|| sl 1+X) b4 ( .YJ_+ 1+X X

2 .
— (A2 - %) + ";"(’kﬁ, (3.14a)
) X p
O =-2iws2, (3.14b)
v: o 2i
Q13 = _kxkz (Az - 1X+A + 130))70> ) (3140)
X P
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ik2 V2
=w——(C% -C? ), 3.14
Q22 w oy ( s sl 1+X> ( C)
0 =0, (3.14f)
V? ]
O3 = —kk. | = (3¢ -2 + XA ) 0y 72 (3.14¢)
Wy 1+ x 3p
03 =0, (3.14h)
iwdne 5.5 .
Opn=w"+ 3 —— kI —KT?, (3.14i)
P

where Cy = (py/p)"?, Cio=(pi/p)"* and w,=—iw+nk* The term V,=
B/(uop)'/? represents the Alfvén speed. The term F,; =[C;, — C; — Vi/(1+ )]
represents the pressure-anisotropy-driven firehose mode Also the following substi-
tutions are used:

Rk 4G Rk 47 G
A2=< +¢ - = p) and T2=< +3C2 — %) (3.15)

dm, m; k2 m,m; S|

The general dispersion relation is obtained by putting the determinant of the
matrix det.(Q),,, =0, given as

' 1 V2
[aﬂ—f{f;kj—(quvj )k§}+zw Mp2 - ( L as A)kf]
w, 1+ 1+ x

/ 4
x {(a)— if,fkf) (w iRk - 2k2>}
w, ' 3p 7

4 Vi
—4Q% (a)2 iRk - T2k3> + {k§k3 (A2 _ X ”‘)’70)}
3p ° ' © 1+ x 3p

k2 Vi '
X |:<a)—l Z]:hz) { <3Cs2|| C: + XA >+%—T2”=0. (3.16)
w, w, ‘ 1+ x 3p

Equation (3.16) represents the general dispersion relation of a self-gravitating
anisotropic quantum plasma consisting of viscosity tensor, spin-induced magnetisa-
tion and finite electrical resistivity in CGL limits. The shear Alfvén mode is modified
to firchose mode due to pressure anisotropy in the system. The firchose mode (F7) is
modified due to the spin magnetisation effects x. In the limit of weak magnetisation
(x — 0), it gives the classical firehose instability C > C? + V2. As magnetic sus-

sl
ceptibility x increases, the Alfvén velocity-dependent term in F7 decreases. Thus, the
spin magnetisation helps to make the firehose modes more unstable. The dispersion
relation is different from that of Lundin et a/. (2008) due to the consideration of
pressure anisotropy, rotation, viscosity and finite electrical resistivity. The above
dispersion relation in the limit n =ny=£ =0 and in the isotropic limit C3|| =

C?, = C? reduces to the dispersion relation that is derived by Lundin ez al. (2008).
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However, there are some extra C; terms in the above dispersion relation because we
consider the plasma to be a CGL fluid. In the isotropic limit and considering the
system to be non-rotating (2 = 0), our dispersion relation becomes identical to the
dispersion relation that is derived by Sharma & Chhajlani (2014). In the weak mag-
netisation limit, ignoring viscosity effects (x — 0, o = 0), equation (3.16) reduces to
the dispersion relation of Bhakta & Prajapati (2018). In the above dispersion rela-
tion, the Alfvén velocity term depends on magnetic susceptibility. Thus, the firehose
instability criterion and growth rate of the instability will be significantly modified
due to magnetisation effects. Since the medium is rotating as a whole, the terms
containing 2 signify the presence of Coriolis force in the dispersion relation.

4. Results and discussion

The perturbed state of degenerate plasmas in the interior of dense stars excites
low-frequency waves, instability and turbulence. The behaviour of quantum correc-
tions to the properties of low-frequency CGL waves and instabilities in anisotropic
plasmas exhibits different features depending upon the direction of propagation of
wavevector k. It will be easy to analyse the dispersion properties of distinct propa-
gation modes to visualise the effects of various considered parameters. The general
dispersion relation (3.16) is discussed in the transverse (k L B) and longitudinal
(k | B) propagation modes.

4.1. Transverse propagation (k L B)

Let us discuss the dispersion properties of the system in the transverse mode by
putting k, = k, k. = 0 in the dispersion relation. The simplified form of the dispersion
relation (3.16) can be written as

K> i V2
o' ot +iot— + 2R (02 + A ) a2 -2 (42— X v2) =0
3p o, 1+ 1+
(4.1)

The first factor of the above equation gives w =0, which suggests the non-
propagating mode called the entropy mode. This is a universal mode in plasmas
because the density gradient is the driving force of this mode (Rogers, Zhu &
Francisquez 2018). Another mode which consists of the effects of various considered
parameters is obtained by putting w =io:

o’ +k’ (n + ;’—0) o’ + (A2k2 + X Vik* + ;7—077/6‘ +CH Kk + 492> o
o o
(4.2)
+ ok (A2k2 — X yyey 492) =0,
1+ x
where x = (1 — x)/(1 + x).

This shows a damped viscous Alfvén mode modified due to magnetisation, rota-
tion and Ohmic dissipative effects. The viscous damping and frictional dissipation
play a major role in the MHD wave dissipation in the solar atmosphere. The source
of viscous damping is the momentum transfer during the thermal motion of particles,
and the frictional dissipation is represented by the electrical resistivity (Gordon &
Hollweg 1983; Khodachenko et al. 2004). The Jeans instability and gravitational col-
lapse described in the transverse mode are significantly affected by the consideration
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of magnetisation and rotation in quantum plasmas. In the quantum regime, these
effects may give rise to new dissipative modes. In the absence of spin magnetisation
and viscosity (x =n =0), we get the dispersion relation (24) of Bhakta & Prajapati
(2018). Ignoring the role of pressure anisotropy for the isotropic quantum plasma
and rotation (§2 = 0), this mode becomes identical to equation (22) of Sharma &
Chhajlani (2014).

According to the Routh-Hurwitz criterion, the constant part decides the stability
of the system. The necessary stability condition demands the constant part to be
positive; otherwise, the system will be unstable. Hence, the condition of instability
derived from (4.2) for the system is given by

K> (A2 _ %vj) +42% <0. 4.3)

Therefore, the critical Jeans wavenumber is given by

1/2
I m; 4n*(rGp — 2
k31 = mzm (Cszi - LV:) X (1 + (e ) 2) -1
h 1+ x mem; (C2, — (x /(14 x)V3)

(4.4)

The conditions (4.3) and (4.4) respectively show the modified Jeans instability
criterion and expression of the critical Jeans wavenumber in anisotropic quantum
plasmas. The presence of uniform rotation, quantum diffraction and magnetisa-
tion directly influences the Jeans instability criterion. For perturbation wavenumber
k <k, the system will be unstable, which means that for perturbation wavelength
A > X, the system will become gravitationally unstable. Interestingly, if the rotation
exceeds a critical value £2. = /7w Gp, the system will be entirely stable. This criterion
is similar to that given by Tandon & Talwar (1963) for classical anisotropic plasmas.
Thus, the threshold wavenumber that determines the Jeans instability has been modi-
fied significantly at the quantum scale. We calculate the critical rotational frequency
of a white dwarf taking the mass density parameter p =3 x 10’ kg m~ (Shukla,
Mendis & Krasheninnikov 2011) which is measured to be £2. ~ 0.8 s~!. We have the
fastest-rotating white dwarfs with a time period of approximately r, =25 s (Pelisoli
et al. 2021), giving a rotational frequency of about £2 =0.25 s~!'. The rotational
velocity value of even the fastest-rotating white dwarf does not satisfy the condition
of complete stability (£2 > £2.) due to rotation. This suggests that the Coriolis force
alone does not predict the gravitational stability of white dwarfs.

Along with this, we have an additional condition which determines the instabil-
ity of the considered system. If the magnetised system is such that the condition
C,. =x/(1+ x)V, is satisfied, then the system will be a gravitationally stable
system against all the perturbation wavenumbers. The effects of the magnetic field
appear in the condition of instability because of the magnetisation in the plasma,
making the equation more realistic. The instability criterion is unaffected due to
the viscosity and resistivity effects, which confirms the results of previous works
(Sharma & Chhajlani 2014; Sangwan & Prajapati 2023). The analytical results can
be applied to understand the Jeans instability in quantum plasmas of magnetised
dense white dwarfs. To measure the Jeans wavelength and Jeans mass, we take
the plasma parameters in the interior of the white dwarf as shown in table 1. The
calculated values of critical Jeans wavenumber k,; ~3.76 x 10”7 m~! and corre-
sponding Jeans wavelength 1, >~ 1.8 x 10° km suggest that white dwarfs must have
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Physical quantity Symbol Value Units
Gravitational constant G 6.67 x 10~ 11 N m? kg2
Ton mass mi 4%6.67x 10727 kg
Electron mass ne 9.1 x 10731 kg
Perpendicular sound speed Csi 4 % 108 ms~!
Magnetic field B 103 T
Alfvén velocity Va 1.6 x 103 ms~!
Rotational frequency 2 0.25 s~
Magnetic susceptibility X 3 Unitless

TABLE 1. Plasma parameters of magnetised degenerate white dwarfs (Lou 1995; Lundin et al.
2008; Shukla et al. 2011; Pelisoli et al. 2021).

a radius larger than this value to be gravitationally unstable. Corresponding to the
above Jeans length, the estimated Jeans mass is M, = 0.04M, which is in the range
of that of some known white dwarfs. The Jeans frequency for a white dwarf is
w; >~ 1.6 57!, which shows that the time of collapse is very short.

The magnetic susceptibility x depends upon the magnetic field, density and
temperature. A gradual change in these parameters will change xy and charac-
terise plasmas to be unmagnetised (x = 0), paramagnetic (x < 1) and ferromagnetic
(x > 1). The Jeans instability criterion and gravitational collapse will differ in
these limiting cases. For unmagnetised plasmas (x, V4 =0), the Jeans wavenum-
ber becomes independent of the magnetic field and dependent on C,; on V, as
defined in expression (4.4) for the system to be gravitationally unstable. In the
strong magnetisation limit (x >> 1), the gravitational instability criterion (4.4) is sat-
isfied provided that C,, > V,, which holds well in the degenerate stellar interior
(Lou 1995). From criterion (4.4), it is clear that in the strong magnetisation limit
(x > 1), the term x /(1 + x) — 1, and thus the Alfvén velocity term becomes inde-
pendent of . In this case, an increase in the magnetic field (Alfvén velocity) will also
increase k;,, which will enhance the growth rate of instability. On the other hand,
the effect of weak magnetisation (y < 1) reduces the value of the magnetic field,
making k,, smaller and stabilising the growth rate of the instability. Such an effect
of the magnetic field on the growth rates in both weak and strong magnetisation
limits is observed later in figure 4.

The dispersion relation (4.2) is discussed in limiting cases of interest to examine
the influence of various physical parameters. Let us discuss it for the case of infinitely
conducting quantum plasmas, i.e. n =0, which gives

k* 1—
2+ M o A% (K ) VA PR+ 4022 =0 (4.5)
3p 1+ x
The condition of instability can be written from the constant term as
elay (22 vep e Liagr <o (4.6)
1 + X A s

This condition is modified due to the effects of rotation and pressure anisotropy
in CGL plasmas. In an isotropic quantum plasma neglecting rotation, the
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above instability condition becomes identical to the instability condition (18) of
Lundin et al. (2008). The modified expression of Jeans wavenumber is
obtained as

2m.m;

h2

2 _
k;, =

s (xGp—2?) \"
(2C2 + xVy) (1 + 2) —13y. (47
m,m; (2C2 + x V)

The two distinct Jeans instability criteria (4.4) and (4.7) are obtained for resistive
and non-resistive plasmas, respectively. In the case of resistive quantum plasmas
(n #0), without magnetisation effect (x = 0), the effects of the magnetic field dis-
appear from the instability criterion (4.4). On the other hand, in the non-resistive
quantum plasma (n = 0), the effects of the magnetic field remain in the condition
of Jeans instability even when x =0. Therefore, electrical resistivity determines
the role of the magnetic field in the Jeans instability criterion for the considered
system.

To study the growth rate of Jeans instability, we plot the normalised growth
rate versus the normalised wavenumber and vary different parameters like quan-
tum diffraction parameter, viscosity, magnetisation, etc., and study the impact of
these quantities on the growth rate of Jeans instability. The dispersion relation
(4.2) is normalised by dividing it by Jeans frequency w; (=+/4wGp) and written
in dimensionless form as

* 2 1,%4 1
0_*3 +k*2 (77* 4 @) O’*2+ ( 1 +2k*2 -1 +)—<V:2k*2+ §’73ﬂ*k*4+49*2) O’*

3
H*Zk*4
ok (T - ﬁv;zk*z L 49*2> —0. (4.8)

The dimensionless parameters used here are given as

., O ., kCsi . ho; . No;
of=—, k= , = N ==
w; ; Jmim.C; | C:
w; 2 Vv
n = 770_2_,’ 2*=" and Vi=-2. (4.9)
IOCsL a)J CSJ—

In figure 1, the effects of quantum correction and viscosity coefficient are
illustrated on the growth rate of the Jeans instability versus wavenumber.
Equation (4.8) gives three distinct roots, out of which real roots of o* give the
unstable modes in a gravitating plasma called the growth rate of the Jeans instabil-
ity. To calculate the roots, the constant values of the parameters are chosen to be
n*=4.0, £2*=0.5, V;=2.1 and x =3. From the subplots, it is obvious that the
growth rate of Jeans instability is decreased due to an increase in the viscosity param-
eter for all values of the quantum correction parameter (H*). Further, the quantum
correction parameter stabilises the unstable region by suppressing the growth rate
of the instability. The instability region is reduced due to increased values of H*.
For the considered wavenumber regime, the peak values of the growth rates also
decrease due to an increase in the viscosity and quantum diffraction parameters.
Thus, viscous dissipation and quantum effects significantly affect the gravitational
collapse rate of dense stars. The quantum effects are most significant corresponding
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FIGURE 1. The various subplots show the combined effects of viscosity and quantum diffraction
parameters on the growth rate of Jeans instability (Re o*) versus the normalised wavenumber
(k*) in transverse mode. The constant values of other parameters are taken to be n* = 4.0, 2% =
0.5, Vi=2.1and x =3.

to the higher values of perturbation wavenumbers or the lower values of pertur-
bation wavelengths. As the quantum diffraction parameter increases, the instability
gets suppressed when we move towards larger values of k*.

In figure 2, the effects of uniform rotation along with electrical resistivity are
shown on the growth rate of the Jeans instability. The growth rate is plotted with
the normalised wavenumber by varying the rotation and resistivity parameters and
keeping other normalised parameters n; =2.0, V;y=1.8, H*=0.5 and x =20 to
be fixed. The curves with n* = 0 illustrate the growth rate for the non-resistive quan-
tum plasmas. In this case, the growth rate falls rapidly with an increase in the
wavenumber, which means that in such a case the system is more stable towards
Jeans instability. The pulsation period of a star is a measure of its rotation. The
fastest-rotating neutron star has a period of r, =5 ms. The rotation provides the
centrifugal force, which assists the internal pressure against the gravitational pres-
sure. The same effect is noticeable from the curve, which shows that rotation in the
system suppresses the growth rate of Jeans instability for both non-resistive and resis-
tive plasmas. The suppression in the growth rate due to rotation is notably fast in
the shorter-wavenumber regime. As we move towards large values of wavenumbers,
the suppression in the growth rate becomes weak.

White dwarfs have a wide range of rotational periods from years to a few minutes,
the rotational velocity tending to increase with increased magnetic field strength
(Ferrario & Wickramasinghe 2005). The merger of two white dwarfs can enor-
mously increase the rotational velocity. EUVE J0317-853, a result of merging two
white dwarfs, is an example of a highly rotating white dwarf (Ferrario et al. 1997).
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FIGURE 2. The various subplots show the combined effects of rotation and resistivity for strong
magnetisation (x = 20) on the growth rate of Jeans instability (Re o*) versus the normalised
wavenumber (k*) in transverse mode. The constant values of other parameters are taken to be
nb“ =20, Vi=18and H*=0.5.

The rotational effect provides extra stability to this white dwarf against gravitational
collapse. The increase in the resistivity parameter has an almost negligible change in
the growth rate of instability. The growth shows a similar pattern of instability region
for all the resistivity parameter values except for n* =0.0. Thus, highly rotating
and non-resistive quantum plasmas lead to a more stable state against gravitational
collapse.

The magnetisation in quantum plasmas is associated with the enhanced influence
of magnetic fields on the behaviour of charged particles, incorporating quantum
effects such as Landau quantisation. It is challenging to achieve and maintain a
strong magnetic field experimentally. However, the present theoretical analysis can
be used to discuss the Jeans instability and gravitational collapse in strongly mag-
netised white dwarfs. Graphically, the effects of magnetisation in non-resistive and
resistive quantum plasmas on the growth rate of Jeans instability are illustrated in
figure 3. The normalised growth rate is plotted for magnetic susceptibility parameter
x =0.5, 3.5, 6.5 and 9.5 taking electrical resistivity parameter n*=0.0, 2.0, 4.0
and 6.0. In the case of a non-resistive quantum plasma with a weak magneti-
sation effect (n*=0.0, x — 0), the growth rate is completely suppressed, and
the instability region has disappeared. The weakly magnetised system is found
to be more stable towards Jeans instability. The magnetisation effect significantly
enhances the growth rate of the instability in both resistive and non-resistive quan-
tum plasmas. The strong magnetisation in a quantum plasma plays a crucial role
in modifying wave propagation characteristics and Jeans instability. In figure 3,
it is found that the resistivity parameter has an almost negligible change in the
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FIGURE 3. The various subplots show the combined effects of magnetisation and resistivity on
the growth rate of Jeans instability (Re o*) versus the normalised wavenumber (k*) in trans-
verse mode. The constant values of other parameters are taken to be n;’)‘ =1.5 2*=0.5, V/’{ =
4.0, H*=1.0.

growth rate. In non-resistive quantum plasmas n*=0.0 (figure 3a), the instabil-
ity region is clearly distinguishable from the resistive case n* #0 (figure 3(b-d)).
However, if we compare the growth rates among the subplots, figure 3(b-d), of resis-
tive plasmas, we find that there is almost negligible change in the growth rates of
instability.

The effects of the magnetic fields in terms of Alfvén velocity on the growth rate
of Jeans instability in both weak and strong magnetisation limits are illustrated. The
results are very interesting as we get both a stabilising and destabilising influence of
magnetic fields on the growth rate of instability. Figure 4 is plotted for the growth
rate of Jeans instability in the case of non-resistive quantum plasma (n* = 0.0) and
keeping various other normalised parameters as n; =0.2, £2*=0.02, H*=0.01.
In the weak magnetisation limit (x =0.5), the growth rate decreases as the
Alfvén velocity increases. However, in the strong magnetisation limit (y = 3.0),
we get the reverse effect of the Alfvén velocity on the growth rate, observing its
destabilising effect. Since magnetisation itself has a destabilising effect (figure 3),
the increase in the magnetic field (i.e. Alfvén velocity) aligns all spins in the
same direction which enhances the growth rate of the Jeans instability. It is also
evident from the dispersion relation (4.8) that the appearance of parameter x
gives rise to both stabilising and destabilising influence of the Alfvén velocity. In
the weak magnetisation limit, ¥ remains positive. Thus, it shows the stabilising
behaviour similar to rotation, quantum diffraction and viscosity parameters. But,
in the strong magnetisation limit (x > 1), x becomes negative, which turns the
damped Alfvén mode into the growing modes supporting the growth of the Jeans
instability.
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FIGURE 4. Effects of magnetic field on the growth rate of Jeans instability in weak (x < 1) and
strong (x > 1) magnetisation limits keeping n* = 0.0, n5 =0.2, £2*=0.02 and H* =0.01 to
be fixed.

4.2. Longitudinal propagation (k | B)

In the transverse mode, the firechose instability is not observed in the dispersion
relation of Jeans instability. To discuss the firehose instability and the role of pressure
anisotropy, the general dispersion relation (3.16) must be discussed in different orien-
tations. Let us simplify the dispersion relation (3.16) for the longitudinal propagation
mode by putting k, = k and k, = 0. In this way, we get

4 2 2
® (a)2 T + gkz) [(a) - ’—f,f) _ 492] —0. (4.10)
p ,

The dispersion relation gives a non-propagating entropy mode corresponding to
@ = 0. The first factor of (4.10) can be simplified and written by putting w =ic as

212
az+@kza+k2< Ik +3cz—ﬂ>=o. (4.11)
3p m,m; s k2
This dispersion relation shows the influence of viscosity and quantum corrections
on the Jeans instability in the longitudinal mode. No effects of spin magnetisation
and Ohmic diffusivity were observed as seen in the transverse mode (see (4.1)).
Thus, the dispersion characteristics and Jeans instability criterion will differ in the
longitudinal and transverse modes. A comparison of the growth rates will show the
influence of various parameters in these modes. The Jeans instability criterion can
be derived using the Routh-Hurwitz method and given by

6C2m.m; 47h2Gp \'°
=ty ) 4.12
J3 hz { ( + 9C;t”mgmi) ( )
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The system will be gravitationally unstable in the longitudinal mode for all pertur-
bation wavenumbers k < k,,. This instability criterion (4.12) is identical to the con-
dition as derived by Sangwan & Prajapati (2023) putting polytropic index g = 3 (for
CGL plasmas) in that case. The expression shows that the quantum term affects the
instability criteria, whereas it is unaffected due to the magnetisation in the plasmas.

The growth rate of Jeans instability, which is mainly responsible for the structure
formation in the universe, is calculated in the longitudinal mode of propagation by
normalising (4.11). The normalised equation is given as

470k> HY%* .
a*z—l—%a*—F( 1 +3k2—1>=o. (4.13)

The various quantities are defined as

~  kC; n haw: ) A
o= k= = (4.14)
w; w;j m,-meCX” ,OCX”
The second factor of (4.10) can be simplified and written as
V2
ot + 2nk*e’ + {n2k4 +482° - 2k <C52” -Cc} -4 )} o’
I+ x
2 2 2 2 2 Vj
+2nk” 42° —k* | C,, — C:, — o
e (e
4 2,2 2 2 VAZ ’
+ k" {482 +<C5”—Cu—1+x> =0. (4.15)

The above dispersion relation represents a fourth-order polynomial, including the
effects of rotation, spin magnetisation, Ohmic diffusivity and pressure anisotropy,
independent of self-gravitation and viscosity. Once the pressure anisotropy becomes
sufficiently large, the firehose instability is triggered. In the absence of rotation
(£2 =0) and resistivity (n =0), we get the fundamental firehose instability criterion
(p; > pL+ B*/2u0). The pressure anisotropy turns the pure Alfvén mode into the
unstable firechose mode. In the absence of magnetisation (y = 0), the dispersion rela-
tion (4.15) becomes identical to the dispersion relation (18) of Bhakta & Prajapati
(2018) neglecting effects of Hall current in that case.

The condition of firehose instability from (4.15) is written as

V2
>C? +—=2 (4.16)

C? )
14+ x

sl

The fundamental firehose instability criterion is modified due to the effect of spin
magnetisation. If this condition is satisfied, the system will be dynamically unstable
and show the firehose instability. The parameters resistivity, rotation and quantum
diffraction do not affect the firehose criteria, whereas spin magnetisation supports
the firehose instability. Thus, a strongly magnetised system is dynamically more
unstable towards the firehose instability.

To study the growth rate, we normalised the dispersion relation (4.15), dividing it
by C? k* throughout. The growth rate is studied with respect to normalised Alfvén
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FIGURE 5. Influence of pressure anisotropy (A) on the growth rate of firehose instability in weak
(x =0.5, solid lines) and strong (x = 2.5, dashed lines) magnetisation limits keeping 7 = 0.1
and 2 =0.1 fixed.

velocity by varying the anisotropy in the system. The normalised dispersion relation

is given as
- V2
ot + 256 + {ﬁ2+492—2(A2——A— 1)}52
1+ x
- V2 -
+27 {492 — <A2 -4 1)}& + 47> 2*
1+ x
V2 ’
- Az——A—l) =0. 4.17
( 1+ x @17
The following dimensionless parameters are used here:
_ o _ T}k = $2 - VA Cs”
= , =—) = , = d A=—. 4.18
? k CA’L 7 CA‘L k CsL A Csi . CSL ( )

In white dwarfs, the degenerate plasma pressure is isotropic on average. In the
presence of a magnetic field, the electron gas becomes anisotropic because the pres-
sure and the behaviour of electrons depend on the direction relative to the magnetic
field. The effect of the strong magnetic field in compact stars is the main reason
for producing pressure anisotropy which causes the deformation of these dense stars
(Terrero et al. 2019). In addition, the rotational effects in white dwarfs can also
introduce anisotropy. The centrifugal force due to rotation causes a white dwarf to
become oblate, leading to different pressure gradients in different directions. Let us
study the impact of pressure anisotropy on the growth rate of firehose instability in
dense magnetised quantum plasmas. In figure 5, the growth rate of firchose insta-
bility (o) is depicted versus the normalised Alfvén velocity (V,) for various values
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FIGURE 6. Influence of resistivity (77) on the growth rate of firehose instability in weak (x =
0.5, solid lines) and strong (x = 1.5, dashed lines) magnetisation limits keeping £2 = 0.1 and
A = 6.0 fixed.

of pressure anisotropy parameter A =2.0, 4.0, 6.0, keeping the other normalised
parameters fixed as 7 = 0.1, §£2 =0.1. The curves are plotted in both the strong mag-
netisation limit taking x = 2.5 (dashed curves) and the weak magnetisation limit with
x = 0.5 (solid lines). The curves show that as the pressure anisotropy of the system
increases, the instability region becomes larger, showing that the highly anisotropic
system is more favourable to the firehose instability. In the strong magnetisation
case, the instability region is observed to be larger than in the weak magnetisation
case. The peak value of the growth rate also increases due to increased pressure
anisotropy. Thus, pressure anisotropy, together with spin magnetisation, destabilises
the growth rate of firehose instability in dense quantum plasmas.

In figure 6 the normalised growth rate (o) versus the normalised Alfvén veloc-
ity (V,) is plotted for various values of normalised resistivity 7 = 0.1, 0.2 and 0.3,
keeping the normalised rotational velocity £2 =0.1 and anisotropy A =6.0 to be
constant. The curve is plotted for both strongly magnetised (dashed lines) and weakly
magnetised (solid lines) systems. The growth rate of firchose instability decreases
with an increase in the resistivity of the system for both strongly and weakly mag-
netised systems. The highly magnetised systems are less stable towards the firehose
instability than weakly magnetised systems. The Alfvén velocity is higher in strongly
magnetised plasmas for which the firehose instability growth rate is completely
suppressed.

In figure 7, the firechose growth rate versus the normalised Alfvén velocity is
plotted for various values of normalised rotational velocity £2 = 0.5, 1.0 and 1.5
keeping the normalised resistivity 7 = 0.15 and anisotropy A = 6.0 to be constant.
The growth rate of firehose instability is greater for systems having larger rotational
velocity and high intrinsic magnetisation. The instability growth shows a large diver-
gence in both strongly and weakly magnetised systems, suggesting that there is a
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FIGURE 7. Influence of rotation (£2) on the growth rate of firehose instability in weak (x =
0.5, solid lines) and strong (x = 2.5, dashed lines) magnetisation limits keeping 7 =0.15 and
A =06.0 fixed.

cutoff Alfvén velocity at which growth rates increase sharply, making the system
highly firehose unstable. The firehose instability region is extended towards higher
values of the Alfvén velocity in a strong magnetisation limit. There are sudden spikes
in the growth rate of firchose instability at some specific values of Alfvén velocity
which points out the possibility of some resonance effects between the particles and
Alfvén waves in the plasmas. The firehose instability is sensitive to the velocity dis-
tribution of particles. There are some values of Alfvén velocity over which certain
populations of particles interact strongly with the wave modes associated with the
firehose instability, leading to a sudden increase in the growth rate of instability.
These specific Alfvén velocities can vary with the rotational velocity and also with
the magnetisation in the system.

In figure 8, the effects of the quantum term on the growth rate of Jeans instability
are compared in transverse mode (solid lines; using (4.8)) and longitudinal mode
(dotted lines; using (4.13)). The normalised growth (c*) rates versus the normalised
wavenumber (k* and 12) are plotted by keeping other parameters 1, =n; =2.0, n* =
1.0, Vi =4, £2*=0.02 and x =0.5 to be fixed. In both modes, the growth rate is
suppressed due to the quantum diffraction parameter. Since the quantum effects
are important for small wavelengths, they effectively suppress the Jeans instability
growth rate in both longitudinal and transverse modes for smaller wavelengths. In
the longitudinal mode, the growth rate is completely suppressed, whereas in the
transverse mode the instability growth rate seems to diverge for small H*. The cutoff
wavenumbers at which the growth rate becomes zero in the longitudinal mode are
smaller than in the transverse mode. The region of instability is smaller for the
transverse mode due to the presence of rotation, resistivity and magnetic field which
reduces the instability region. In the transverse mode, the growth rate of instability
is completely suppressed if the quantum term is large. Otherwise, the growth of the
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FIGURE 8. The effects of quantum parameter with comparison of growth rates of Jeans insta-
bility in longitudinal mode (dotted lines) and transverse mode (solid lines) keeping the constant
values rjp =5 =2.0, n* =1.0, Vi =4, 2*=0.02and x =0.5.

Jeans instability seems to diverge. Thus, the nature of instability completely depends
upon the orientation of wave propagation and other physical parameters.

5. Conclusions

This paper investigates the pressure-anisotropy-driven firehose and gravitational
instabilities in spin-magnetised dense quantum plasmas considering the effects of
Ohmic diffusion and viscosity stress tensor. The general dispersion properties of
waves and instabilities have been discussed in the longitudinal and transverse propa-
gation modes. In the transverse mode, in addition to the entropy mode, the modified
dispersion relation of the Jeans instability is obtained, which results in a significant
change in the Jeans instability criterion and Jeans wavenumber. In non-resistive
quantum plasmas, the Jeans instability criterion depends on the magnetic field, even
when spin magnetisation is neglected. The growth rate of Jeans instability in non-
resistive quantum plasmas is sensitive to spin magnetisation. In a weak magnetisation
limit, the magnetic field suppresses the growth rate of instability, whereas in a strong
magnetisation limit, it enhances the growth rate of Jeans instability. The quantum
diffraction, viscosity and rotation parameters play a crucial role in reducing the
growth rate, while spin magnetisation enhances the growth rate of the Jeans instabil-
ity in anisotropic quantum plasmas. In resistive quantum plasmas, there is a trivial
change in the growth rates due to an increase in the Ohmic diffusion coefficient.
However, it gives an additional wave mode in the dispersion relation by modify-
ing the instability criterion. The Jeans instability region is smaller in the transverse
mode than in the longitudinal mode up to the cutoff wavenumbers, beyond which it
is enhanced due to additional factors present in the dispersion relation.

In the longitudinal mode, the dispersion properties of Jeans instability remain inde-
pendent of spin magnetisation and Ohmic diffusion effects. The firehose mode has
been modified due to rotation, spin magnetisation and electrical resistivity. The spin
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magnetisation and pressure anisotropy have a destabilising influence on the growth
rate of the firehose instability. In the case of strong magnetisation, the growth rate
of the firehose instability is increased due to the Ohmic diffusion coefficient. The
presence of rotation plays a crucial role in determining the stability of the plasma
system. If the rotation exceeds a particular value £2, =0.8 s=!' for a white dwarf,
then it will be completely stable against the gravitational collapse due to inhomo-
geneities. For typical white dwarfs, the measured Jeans length A, ~ 1.8 x 10° km
and Jeans mass M, =0.04M point out the possibility of gravitational collapse.
More specifically, these results can be applied to understand the gravitational col-
lapse of the hottest known highly magnetised white dwarf RE J0317-853, which has
effective temperature 7 =5 x 10* K and magnetic field B =340 MG (Barstow et al.
1995). The strongly magnetised and rapidly rotating systems are more sensitive to
firehose instability than weakly magnetised plasmas and slowly rotating systems. The
quantum effects, viscosity and centrifugal forces due to rotation help to stabilise the
plasma from further collapse due to gravitational instability. The growth of the fire-
hose instability achieves its peak value at a cutoff value of the Alfvén velocity, after
which it is completely turned off. The results are interpreted in white dwarfs by mea-
suring the Jeans length, Jeans mass and Jeans frequency and showing the possibility
of excitation of the low-frequency CGL waves, firchose instability and gravitational
instability in anisotropic quantum plasmas.

It is interesting to note that the density-dependent viscosity in non-Newtonian
fluids has a significant impact on the transport properties of complex plasmas (Ivlev
et al. 2007; Banerjee et al. 2013). Thus, in future works, we will consider the role
of non-Newtonian viscosity effects on the Jeans instability of isotropic magnetised
quantum plasmas.
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