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Abstract

For Maxwell’s equations with nonlinear polarization we prove the existence of time-periodic breather solutions
travelling along slab or cylindrical waveguides. The solutions are TE-modes which are localized in one (slab case)
or both (cylindrical case) space directions orthogonal to the direction of propagation. We assume a magnetically
inactive and electrically nonlinear material law with a linear x V- and a cubic X(3)—contribution to the polar-
ization. The X(l)—contribution may be retarded in time or instantaneous whereas the X(3)—contribution is always
assumed to be retarded in time. We consider two different cubic nonlinearities which provide a variational struc-
ture under suitable assumptions on the retardation kernels, in particular we require that for time-periodic solutions
Maxwell’s equations are invariant under time-inversion. By choosing a sufficiently small propagation speed along
the waveguide the second order formulation of the Maxwell system becomes essentially elliptic for the E-field so
that solutions can be constructed by the mountain pass theorem. The compactness issues arising in the variational
method are overcome by either the cylindrical geometry itself or by extra assumptions on the linear and nonlinear
parts of the polarization in case of the slab geometry. Our approach to breather solutions in the presence of time-
retardation is systematic in the sense that we look for general conditions on the Fourier-coefficients in time of the
retardation kernels. Our main existence result is complemented by concrete examples of coefficient functions and
retardation kernels.

1. Introduction

We show existence and regularity of spatially localized, real-valued and time-periodic solutions (called
breathers) to Maxwell’s equations

V-D=0, VXE-=-B, n
V-B=0, VxH=D,,
without charges and currents. (1) is posed on all of R? with an underlying material that is either a slab
waveguide or a cylindrically symmetric waveguide. We look for solutions that are travelling parallel to
the direction of the waveguide, and which are transverse-electric, i.e. the electric field E is orthogonal
to the direction of travel. We assume that the material satisfies the constitutive relations

B = uoH, D = &E + P(E), 2
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where g, €9 € (0, 00) are the vacuum permeability and permittivity, respectively. This means that the
material is magnetically inactive. However, the displacement field D depends nonlinearly on the electric
field E through the polarization field P(E), which is modelled as a sum of a linear and a cubic function
of E. Both parts are local in space but nonlocal in time (cf. [1] for a physical motivation) and are given
by

P(E)(x,7) = & /OOOX“)(X, Ex, 7 -7)]dr

€ / / / X(3) (Xy T1, T2, 23) [E(X9l Zl)s E(X,l— 22), E,(X’l — T3)]dTldedT\ .
0 0 0 3

Here x = (x,,7) denotes the spatial variable, the susceptibility tensor x (V) (x,7): R3 — R? is linear
and y ) (x, 71,12, 73): R X R® x R3 — R3 is trilinear. Higher order terms y (**!) which are 2k + 1-
linear in E can in principle also occur. Even order terms vanish for materials (e.g. silica glasses) which
have the inversion symmetry that ¥V (-x,...) = y((x,...) and that —E(—x, r) solves the problem
whenever E(x, r) does so. In this paper we only consider the trilinear term and discuss two scenarios of
its possible shape below. Comments on other scenarios are given below (before the literature section).

By taking the curl of Faraday’s law V x E = —B;, we obtain from (1), (2) the second order form of
Maxwell’s equations

V x V x E + 00’E + ugd*P(E) = 0. 4)

While (4) is an equation only for E, the other electromagnetic fields can be recovered if (4) holds: B is
obtained from V X E = —B, by time-integration, and H, D are then determined by the material laws (2).
Next, B is divergence-free if it is divergence-free at time 0 since d;V - B = =V - (V X E) = 0. Lastly,
D = gE + P(E) will be divergence-free because of the choices of E, P made later.

We assume that the material is either a slab waveguide or a cylindrical waveguide. In the first case,
the susceptibility tensors y ) remain constant as x moves parallel to the slab. Assuming that the slab is
given by {x = 0}, this means that

X(l)(x, T) =)((1)(x, T), )((3)(X, T1,T2,T3) =)((3) (x, 71,72, 73). 5.1

If instead the underlying material has a cylindrical waveguide geometry, we assume that the suscepti-
bility tensors y) depend only on the distance from x to the cylinder core which we assume to be given
by {x =y = 0}, so that

X(l)(x, T) :)(m(r, T), /\((3)(X, T1, T2, T3) :/\((3)(;", T, T2, T3). 5.2)

where r = /x2 + y2. The restriction to waveguide geometries allows us to choose ansatz functions for
the electric field E which are divergence-free, cf. (7.1), (7.2). This not only satisfies the requirement of a
divergence-free displacement field D but it is also advantageous since it simplifies the curl-curl operator
in (4) to —A and thus drastically reduces its kernel. Waveguide geometries with more general cross-
sections will make it necessary to deal with specific difficulties of the curl-curl operator and require a
greatly enlarged technical effort, e.g., by Helmholtz decomposition, cf. [21]. It is an open problem if
these difficulties can be mastered in the context of polychromatic breathers.
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With 7 we denote the 3 x 3 identity matrix. We assume that the materials are isotropic, i.e.
XV &0V = 0¥V xDVL xP (% 71,72,73) [00,0v,0w] = 0x P (x, 71,72, 73) [w, v, W]

holds for O € SO(3). This means that y (") (x,7) € RI. For y®) a variety of isotropic scenarios are
possible, but in this paper we only consider two kinds of nonlinear material responses: either

X (%, 71,72, 73) [W, v, W] = A(X)v(11)8 (12 = 71)8 (13 — 71) (W, V) W (6.0)
or
X (%, 71,72, 13) [W, v, W] = A(X)v(11)v(12)v(13) (W, V) W (6.i1)

where § denotes the Dirac measure at 0, ( -, - ) is the standard inner product on R3, and h, v are given
real-valued functions.

For these material laws, we will see that (4) can be viewed as a variational problem, and we will use a
simple mountain-pass method in order to construct breather solutions to (1), (2). We deal with the kernel
of the curl operator in (4) by looking for breather solutions in special divergence-free ansatz spaces that
we discuss next. For the slab geometry (5.1) we make the TE-polarized traveling wave ansatz

0
E(x,1) = w(x, t - %z) -1 (7.1
0

where w: RXR — R is periodic in the second variable, which we again denote by . For the cylindrical
geometry (5.2) we instead consider the circular TE-polarized traveling wave ansatz

—y/r
E(x,t) =w(r,t - %z) | x/r (7.2)
0

with r = 4/x2 +y2 and w: (0,00) x R — R being periodic in . Both ansatzes for the electric field are
divergence-free, so that VX VX E = —AE holds, and are of a simple, essentially two-dimensional form,
which greatly simplifies the discussion. More specifically, for the slab ansatz (7.1) problem (4) reduces
to

(=02 = 507w + o007 w + o7 P(w) = 0 (8.1)

and for the cylindrical ansatz (7.2) to

(=0} = 10, + L — L07)W + o007 w + pod} P(w) = 0. (8.2)
Here, depending on the choice of the nonlinear susceptibility tensor, the scalar polarization P is given
either by
P(w)(x,1) = € / YV (x, T)w(x, 1 — 7)dT + eoh(x) / w(x,t —1)3v(r)dr 9.1)
0 0
or by

3

Pw)(x,1) = ¢ '/Om)((l)(x, T)w(x, t — 7)dt + €h(Xx) (/000 w(x,t—1)v(r)dr (9.ii)
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for susceptibilities (6.1) and (6.ii), respectively. The simple form of the nonlinearity in P(w), especially
that the variables x and 7 appear separated, are needed in order to obtain a variational problem. We
denote by * the convolution in time and normalize the speed of light to c(z) = (eopo)~' = 1. Then
problem (8.1) with polarization (9.1), which we discuss as an example, becomes

(<024 (1= 4 xD4) 82) wt h0O (v x 02w =
Inverting the convolution operator v = 63 formally', we then obtain

(v*a,z)_l (—a§+(1 —C%+X“)*) 63)w+h(x)w3=0. (10)

Given our assumptions, we can ensure that the linear operator is symmetric when restricted to suitable
spaces of time-periodic functions. Hence solutions formally are critical points of the functional

J(w):/(%w~(v*6,2)_1(—6f+(1 ¥ )62)w+ Lh(x)w )d(x ). (11)

Using the mountain-pass method, we will find critical points and then show that they are breather solu-
tions to Maxwell’s equations (1), (2). Using a different but equivalent variational method also opens
the door for numerical treatment of breather solutions. We comment on this at the end of Section 3. We
also mention that the cubic nonlinearity in (10) can be replaced by any odd nonlinearity of power larger
than 1 without any changes in our method. A replacement of the cubic nonlinearity z(x)w> by any other
odd Carathéodory-type nonlinearity f(x,w) cannot be achieved without substantial reworking of our
arguments. We suspect that a condition of the type |[f (x,w)| < C(1+ |w|P) for some p > 1 together with
f(x,w) = o(1) as w— 0 and an Ambrosetti-Rabinowitz condition 0 < (p + 1)F(x,w) < f(x,w)w for
w # 0 and all x € R where F(x,w) = fow f(x,z)dz might be necessary. In view of our comments on
the model at the beginning of this introduction, where we argue that the cubic nonlinearity is of most
importance, this question is more of mathematical than of practical interest.

In the literature, there are several papers treating existence of breather solutions of (4). Many authors
have considered monochromatic solutions, i.e. solutions of the form E(x, ) = £(x)e'“’ + c.c., where
the complex conjugate is necessary in order to make the E-field real valued. This is a viable approach
if one ignores the higher-order harmonics e*3” coming from the nonlinear part of the polarization, or
if one considers a nonlinear susceptibility tensor given by

X2 (%, 11,72, 13) [V, W] = ph(X) Vo) (T)8(72 = 71)6(73) (W, v) W, (12)
where T = =2 is the period of the breather E. Both approaches lead to the nonlinear curl-curl problem
VX VXE-wgx)E—wh(x)|E*E =0, (13)

which is variational provided g(x) = fom 1D (x, 7)e!®Tdr is real valued. Instead of the cubic nonlinear-

ity h(x) |E |? £, saturated nonlinearities i(x, |€|*)E, which grow linearly as |£| — oo, are also of interest
and were first investigated by Stuart et al. [20, 27-33]. In these papers divergence-free, traveling, TE- or
TM-polarized ansatz functions similar to (7.2) were used to reduce the Maxwell problem to an elliptic
one-dimensional problem and to solve it via variational methods. An extension of Stuart’s approach to
more general wave-guide profiles was given in [22]. Standing monochromatic breathers composed of
axisymmetric divergence-free ansatz functions were considered in [2, 3, 6]. The next step forward to

Irigorous considerations are given later
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overcome special divergence-free ansatz functions was accomplished by Mederski et al. [4, 21, 23, 24]
who considered the full curl-curl problem (13), also for more general nonlinearities dgh(x, £). The diffi-
culties arising from the infinite-dimensional kernel of Vx were overcome by a Helmholtz decomposition
and suitable profile decompositions for Palais-Smale sequences. Alternative approaches used limiting
absorption principles [17], dual variational approaches [18, 19], approximations near gap edges of pho-
tonic crystals [10], and monochromatic time-decaying solutions at interfaces of metals and dielectrics
[8, 9, 11]. In the latter series of papers, also time-periodic solutions can be found if one additionally
assumes P7T -symmetry of the materials.

If one does not want to rely on very specific retardation kernels as in (12) or if one wants to take higher
harmonics into account then one is naturally led to polychromatic breather solutions, i.e. time-periodic
solutions which have multiple (typically infinitely many) supported frequencies in time-domain. In the
context of instantaneous material laws they have recently received increasing attention. As a model
problem consider

VXV xE+g(x)E+h(x)*(EPE) =0,

For this problem, rigorous existence result for travelling breathers in the slab geometry (5.1) where either
g or h contains delta distributions are given in [15] by variational methods and in [7] via bifurcation
theory. Even earlier in [26] the authors used a combination of local bifurcation theory and continuation
methods in a partly analytical and partly numerical study on traveling wave solutions where the linear
coefficient g is a periodic arrangement of delta potentials. Another rigorous existence result for breathers
on finite but large time scales can be found in [12] for a set-up of Kerr-nonlinear dielectrics occupying
two different halfspaces. In our recent paper [25] we proved the first (to the best of our knowledge)
existence result for polychromatic breathers in the context of nonlinear Maxwell’s equations without
presence of any delta-potentials. The y (!)-part of the polarization was instantaneous and the y ®)-part
was compactly supported in space and either instantaneous or retarded. Due to the compact support in
space both variants of the nonlinearity could be treated with the same variational method. Beyond this
result we are not aware of any rigorous treatment of polychromatic breathers in the context of nonlinear
Maxwell’s equations with time retarded material laws.

1.1. Examples

In two theorems below, we give examples of susceptibility tensors y (1), y(3) for which breather solutions
of Maxwell’s equations (1), (2), (3) exist. For simplicity, we choose an instantaneous linear response
while the nonlinear response has to be retarded. These examples are special cases of a general existence
result given later in this chapter, cf. Theorem 1.3. Let us note that in contrast to some of the previously
mentioned results, our breather solutions are generally polychromatic in nature and the potentials con-
sidered are bounded functions. Since our breathers lie in suitable Sobolev spaces they are sufficiently
differentiable to solve Maxwell’s equations pointwise, and they decay at infinity in an L”-sense. They
may have higher-order space-derivatives depending on smoothness of the material coefficients in space.
They are also infinitely differentiable in time because the material properties do not change over time.
We begin with an exemplary result for the slab geometry (5.1).

Theorem 1.1 Let T > 0 denote the temporal period, w = 27” the associated frequency, and ¢ € (0, 1)
the speed of travel of the breather solution. Assume that the linear susceptibility tensor is given by
YD (x, 1) = g(x)8(1)1, and the nonlinear susceptibility tensor x 3 is given by (6.i) or (6.ii) with

h(x) = h(x),  v(1) = (2 - [sin(wT)]) {07 (7).
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Moreover, assume that the potentials g,h € L™ (R) have periodic backgrounds gP®, hP*" € L*(R) with
a common period, i.e.

g(x) — g™ (x) = 0, h(x) =P (x) > 0 asx — oo,
and that the inequalities
g <g  esssuppg< -1,  HT<h  WPTZO

are satisfied. Then there exist nonzero time-periodic solutions D, E, B, H of Maxwell’s equations (1),
(2), (3) where E is of the form (7.1). They satisfy

O'E e W (Q:R?),  9'B,d'He W'P(Q:R%),  9'D e [P(QR?)

Joralln € Ny, p € [2,00] and all domains Q =R X [y,y+ 1] X [z,z+ 1] X [t,t + 1], with norm bounds
independent of y, z,t.

The potentials g, & describe the spatial dependency of the polarization field. In the above theorem we
have required them to be asymptotically periodic at +co. This periodic structure helps us to overcome
noncompactness of embeddings on R. The assumption on the ordering g > gP*, h > hP®" is a standard
tool to resolve noncompactness issues also for the nonperiodic problem. The upper bound CLZ —long
and the choice of v ensure that (4) is elliptic. One aspect of the choice of v is that its Fourier coefficients
are positive. This aspect will become very important in the general result of Theorem 1.3. Ellipticity
will ensure that the associated energy has a mountain-pass geometry, and a mountain-pass method will
be used to construct breather solutions. Note also that breathers are localized in the x-direction (in the
I7-sense stated above), but not in y, z, or ¢, which is due to the ansatz (7.1), since all solutions satisfying
this ansatz necessarily are independent of y and periodic in both z and ¢.

Similar to Theorem 1.1 for the slab geometry, below we give an exemplary result with cylindrical
geometry (5.2).

Theorem 1.2 Let T > 0 be the period of the breather, ¢ € (0, 1) be its speed, and g, h € L* ([0, c0)) be
material coefficients. Define the linear susceptibility by yV (x,7) := g(r)8(7)I and let the nonlinear
susceptibility x 3 be given by (6.i) or (6.ii) with h(x) = h(r),v(t) = (2 - |sin(wT)|)1 [o.7](T) where

ro= AJx2 +y2, w = 27” Further let

esssupRg<Cl2—1, h £0.

Then there exist nonzero time-periodic solutions D, E, B, H of Maxwell’s equations (1), (2), (3) where
E is of the form (7.2). They satisfy

OE e W (Q:R?),  9'B,o'He W'P(Q;R%),  9'DelP(QR?),

foralln € Ny, p € [2, 0] and all domains Q = R> X [z, z+ 1] x [t, t+ 1], with norm bounds independent
of z,t.

In contrast to Theorem 1.1, in Theorem 1.2 we do not need any asymptotics for the potentials g, /.
This is because the cylindrical setting itself comes with compactness, as we discuss in Section 5. To
illustrate this, recall that the Sobolev embedding H' (R?) < LP(R?) for p € (2, o) becomes compact
when restricted to radially symmetric functions. Lastly, the ansatz (7.2) is periodic in both z and ¢, so
breather solutions in the cylindrical setting decay in the x and y directions orthogonal to the direction
of propagation.
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1.2. Main theorem

Before stating the main theorem, we fix some notation.

1.2.1.  Measures on torus and real line, periodic reduction of a measure

Since breathers are time-periodic, the natural time domain is the torus T := R/rz with period 7, and we
denote the canonical projection by Pr: R — T. With M(T), M (R) we denote the set of all R-valued
measures A on the Borel o-algebra of T and R, respectively, and we equip it with the total variation norm
Il = [2|(T) or [|4]| = |A|(R). The push-forward map P} : M(R) — M(T) is defined as follows: for
1 € M(R) we set P;(1) € M(T) by PL(A)(E) = A(PTFI(E)) for any Borel subset £ C T. The new
measure P7(1) € M(T) is called the periodic reduction of A. In this way, the torus is equipped with
the measure df = %P;‘r(ﬂ [0,r1d7), where d7 denotes the Lebesgue measure on R.

1.2.2.  Instantaneous vs. retarded y'"V -contribution

While the nonlinear susceptibility tensor y(3) necessarily represents a retarded material response, cf.
(6.1) or (6.1i), the X“)—contribution to the material response may be instantaneous or retarded. The first
case is given by y V) (x,7) = g(x)d()I or yV(x,7) = g(r)6(7)I from Section 1.1. The second case
may be written in the form y (! (x, 7)dr = dG(x)(7)I where for fixed x € R? we have that G(x) € M (R)
is an R-valued Borel measure. Mathematically, the second case comprises the first and hence in the
following an instantaneous y ‘!)-contribution is subsumed in the retarded case.

1.2.3.  Fourier transform

Let us fix a convention for Fourier series and Fourier transform. For a time-periodic functionv: T — C
we define its Fourier coefficients by ¥y = Fi[v []1., verdr with ey (1) := e, w = 2—” . Thus the inverse
isv(t) = F7'[x] = Yiez Vrex(r). For a function v depending on space and 7- perlodlcally on time,
v will always denote the (discrete) Fourier transform in time. In the same way we define the discrete
Fourier transform in time A of a measure 1 € M(T). Finally, a function v : T — R or a measure
A € M(T) is called positive semidefinite if the sequence ¥ = (¥)gez or A = (A)rez, respectively,
consists of nonnegative entries.

Similarly we fix the notion of the spatial (continuous) Fourier transform of a space- dependent func-

tion v: R — C, writing Felv fRd v(x)el G )d/z with inverse F ! ./Rd v(é)eré (271)d/2
The spatial (continuous) Fourler transform of a function depending on both space and time is defined
analogously, and we omit indices of F, 7~! when they are clear from the context.

1.2.4. Cvylindrical and slab geometry

We say that a map A : R> — Y possesses cylindrical symmetry if A(x) = A(X) for all x = (x,y,2),X =
(%,7,2) € R withx?+y? = ¥2+72. In this case we write A(x) = A(r) with r = y/x2 + y2. Likewise we say
that a map A : R® — Y possesses slab symmetry if A(x) = A(X) for all x = (x,y,2),X = (x,9,Z) € R?
and write A(x) = A(x) in this case.

Having clarified our notation, we now present the main theorem of this paper.

Theorem 1.3 Let T > 0 denote the temporal period, w = 27” the associated frequency, and ¢ € (0, 1)
the speed of travel of the breather solution. We make the following assumptions:

(Al) The linear susceptibility tensor 'V is given by yV(x,7)dt = dG(x)(7)I where G: R?> —
M(R) is measurable. The nonlinear susceptibility tensor x3) is given by (6.i) or (6.ii) where
h e L®(R3) and v € M(R).

(A2) G and h both have either cylindrical or slab geometry.

(A3) supyeps IGX) | pq(r) < o0 and h £ 0.
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(A4) The periodic reduction G(X) of G(X) is even in time for all x € R3 and satisfies
SUPycr3 kez FRIG(X)] < Ciz -1
(A5) The periodic reduction N of v is even in time, % 0, and |k| ™ < Fi[N] < |k|™® forall k € Z\ {0}
with Fi[N] # 0 and some B > a > a* where a* = 1 in the slab geometry and a* = % in the
cylindrical geometry.
(A6) In case of the slab geometry, one of the following holds in addition:
(A6a) h(x) — 0 asx — *oo,
(A6b) G(x) = GP(x) + G'°(x) and h(x) = hP°"(x) + h'°°(x) where GP*'(x), h(x) are periodic
with common period, and we have ||g1°c (x)”M(T) — 0 and h'°(x) — 0 as x — +oo.
Moreover, G'°(x) is positive semidefinite for all x € R and h'*® > 0, hP*" £ 0 hold.

Under these assumptions, there exists a nontrivial breather solution D, E, B, H of Maxwell’s equations
(1), (2). It satisfies

O'E e W (Q:R%),  9'B,d"He W'P(Q:R%,  9'De LP(QR?)

fJoralln € Ny, p € [2,00] and all domains Q that are of the form Q = RX [y, y+ 1] X [z,z+ 1] X [t,t+1]
in the slab case and Q = R> X [z, z+ 1] x [t, t+ 1] in the cylindrical case, with norm bounds independent

ofy,z,t.

Remark 1.4. Letus comment on the assumptions (A1)—(AS) on the structure of the linear and nonlinear
retardation kernels. They can be seen as a systematic attempt to find out what can be done in a variational
setting. The main assumptions are expressed via the Fourier coefficients of G(x) and V.

(a) The fact that both G(x) and N have real Fourier coefficients stems from their evenness in time. This
in turn implies that the operators v and y !« are symmetric on time-periodic functions of period
T which is necessary for the variational formulation of (10). Another way to interpret this fact is
that along T-periodic solutions, Maxwell’s equations are invariant under time-inversion.

(b) Assumption (A5) is on the smoothness of the nonlinear convolution kernel A/, which should be
approximately between a- and B-times differentiable.

(c) In assumption (A4) the upper bound on F; [G(x)] is effectively a smallness condition on the prop-
agation speed c. It is exactly this assumption which makes the linear operator in (10) elliptic, and
combined with positive definiteness of N it makes the quadratic part in (11) positive definite.

(d) The condition & £ 0 is necessary for breathers to exist with small speeds. Indeed, for 4 < 0 problem
(10) only has the zero solution since both terms are negative.

(e) The propagation speed c has been chosen between 0 and 1, so that the breather does not propagate
faster than the speed of light. A choice ¢ > 1 would be mathematically possible — but at the expense
of the linear refractive indices F; [G], which must be negative everywhere.

Remark 1.5. If in the setting of Theorem 1.3 the set R := {k € Z \ {0} : Fx[N] # 0} is infinite then
we moreover have existence of infinitely many nontrivial breathers with the stated properties.

Remark 1.6. The sign assumptions on G'°°, 41 in (A6b) of Theorem 1.3 yield a strict relation between
the mountain-pass energy level of the problem compared to the energy of the “periodic” problem,
(i.e. with G, h replaced by GP®', hP®"), see Lemma 3.7 for a precise formulation. This energy inequal-
ity gives us some compactness which is crucial for showing existence of breathers. For (A6a) the decay
of the intensity 4 of the nonlinearity again generates some compactness.
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The exemplary Theorems 1.1 and 1.2 satisfy (A1)—-(A6). For (A5) this is true because

2- %’ k= 03
FiNT = Fel2 - Isin(wt)]] = {0, k odd,
ﬁ, k # Oeven.

Breather solutions are more regular when the material coeflicients G, i have higher regularity. For
Q ¢ R* we denote by C) (Q:R?) the space of j-times differentiable functions mapping into R* with
bounded derivatives, and abbreviate CZ(Q; R?) == W (Q:R?) N C, (Q:R?).

Corollary 1.7. Ifin the context of Theorem 1.3 we additionally have
(R) g € Cll’(Rz';/\/l(R)),h € Cé(R3)f0r some | € Ny,
then the regularity improves to
O'E € CHI(Q;RY), 9'B,o/H e C,M(Q;R?), 9D e Ch(Q;RY)

with norm bounds independent of y, z, 1.

1.3. Outline of paper

We begin by investigating the slab geometry (5.1). In Section 2 we convert Maxwell’s equations
into the Euler-Lagrange equation of a suitable Lagrangian functional, and show that this functional
has mountain-pass geometry. Using the mountain-pass theorem, in Section 3 we show that the
Euler-Lagrange equation admits a ground state solution. The convergence of Palais-Smale sequences
approaching the ground state level is unclear in general because the spatial domain is unbounded, and
thus our arguments depend on the particular form of the potentials in (A6). For (A6a), the nonlinear-
ity is compact which makes this the easiest case. For (A6b) we first rely on translation arguments in
space for the purely periodic case. Then we use comparison arguments for the perturbed periodic case.
After having shown existence and multiplicity of breathers, we investigate their regularity in Section 4.
Finally, Section 5 details the arguments for the cylindrical geometry (5.2) and highlights the differences
to the slab geometry.

2. Variational problem

From now on, we always assume that the assumptions of Theorem 1.3 are satisfied. We transform (8.1)
into a problem for a surrogate variable u, which we then treat using the mountain pass method. We only
consider the slab problem (8.1) as the cylindrical problem (8.2) can be treated similarly. In Section 5
we discuss the differences between the slab and the cylindrical problem, and how to treat the latter.
Using the periodic reduction G(x), N of g(x), v we can rewrite the scalar polarization (9.i) as

P(W)(5,1) = & /0 (1 = 7)dg(0)(7) + oh(x) /0 (et = 1) dv(e)
o /T w(x, t = 7)dG (x) (1) + oh(x) /T W(x 1 — 7)%dN (1)
since w is T-periodic in 7. We abbreviate this by writing
P(w) = €(G *w) + egh(N = w?)
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where * denotes convolution of a measure with a function on T. Similarly, the polarization (9.ii) can be
written in the form

P(w) = €(G = w) + h(N = w)3,

Next we define the projection Pg onto the set R := {k € Z \ {0} : Fx[N] # 0} of “regular” frequency
indices by

Py[v] = F ' [Tken Fr[v]].

as well as the projection onto the “singular” frequency indices S = Z \ R by Pglv] :=
F! [ﬂkggfk[v]] = (I — Pg)[v]. Note that d;, G*, Py, and Pg mutually commute since they all act
on ¢ as Fourier multipliers. We apply both to (8.1) for time-periodic w to obtain the two problems

(<02 + 021 = & +.G=)) Pulwl + ho?Px[N(w)] =0,
(02 +82(1 = & +Gn)) Pelw] + ha2Pe[N(w)] =0,
where the cubic nonlinearity N(w) is given by
Nw)=Nsw> or  Nw)=WNx*w)
corresponding to (6.1) and (6.ii), respectively.

Let us first consider the nonlinearity N (w) = A s w>. Using P (/N +) = 0 and that the linear operator
(—63 +07(1 - %5+ g*)) is injective®, we can further simplify this to

(—63+6t2(1—Clz+g>k))w+h312(./\/*w3)=0, Pglw] =0.

Observe that the convolution operator N is formally invertible on ker Pg since F;[A] # O for k € R.
Therefore we may rephrase this problem as

(~0PN) ™ (<02 + 02(1 = &+ Go)) u—hPuli] =0, Palu] =0 (14)

with u :=w.
For the second nonlinearity N (w) = (N * w)> we set u := A * w and therefore get

(~0PN9) ™ (<02 + 02(1 = L+ Go)) u—hPuli] =0, Pelu] =0,
(15)
(<02 + 21 = &+ Gx)) Pelwl + ho?Psu] = 0.

Note that the first of the two equations above is (14). Hence, also for the second nonlinearity, it is
sufficient to solve (14) for 1 and then use the second equation to determine the missing values of F [w]
fork € G.

2The operator is uniformly elliptic due to assumption (A4).
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We first focus our attention on investigating the “effective problem” (14), which using
V(x) :=Cl2—1—g*
we can write as
(—02N%)"! (-aﬁ - V(x)@,z) w—hPe[’] =0,  Pelu] = 0. (16)

Since G, N are even in time, the differential operator above is symmetric, and therefore solutions of
(16) formally are critical points of the functional

J(u) = /M (%u (=PN#)! (—af - V(x)af) " }Jl(x)u“) d(x,1),  Pslu] = 0.

Next we properly define the domain H of the functional J sketched above, and we investigate
embeddings H — L”.

Definition 2.1. We define the space
H:={ue*RXT): i =0forkeZ\R, lul|2, := (u, uhpp < oo}

where

(ROYESY m /]R (a,;ﬁwzkzg@) dx.

keR

Note that Vi(x) := %2 — 1 = F[G(x)] is bounded and strictly positive by assumption (A4), so that

1 — —
vy =y ——— / WV + Wk Vi (x) iy vy ) dx
H ];{wzszk[/\/] R( kYk )

defines an equivalent inner product on H.

Assumption (A5) on the decay of the Fourier coeflicients of A/ ensures that H continuously embeds
into LP(R x T) for all p € [2,p*) where p* > 4, as we show below in Lemma 2.4. Boundedness of
H < L*>(RxT) helps to show that H is a Hilbert space. Indeed, if («")) is a Cauchy sequence in H, then
from the embedding we have ) — u in L?>(R x T) and from the definition of H also F[u] — v
in H'(R) for some v, € H'(R) and each k € R. Then v = it holds from which one finds u € H and
u — uasn — co.

The Hilbert space H allows us to write

um=%me—i/

RXx

h(x)utd(x,t) for wueH,
T
and to define solutions u € H of (14) in the following way.

Definition 2.2. weak solution A function u: RxXT — R is called a weak solution fo (14) ifu € H and

(u, vy — /]R Th(x)u3vd(x, =0

forallv € H. This is equivalent to J' (u) = 0.
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It is standard to verify the validity of the following density result for H, which will prove very useful
for some approximation arguments.

Lemma 2.3. The set {u € CP(RxT): i =0 foralmostall k € Z} N H is dense in H.

Lemma 2.4. Foranyp € [2,p*) withp* := 5= (p* = o0 ifcy > 2)and a > 1 from (AS5), the embedding
H — I[P(R x T) is continuous and the embeddmg H — I’ (R xT) is compact.

loc

Proof. Let us first show continuity. For this, we calculate

W?k2Fi [N] 2 + wk?
lully < [|Fexlidll oy S Pkl : mff,k[u] < lully

L' (RXR) L2(RxR)
where % = % - % < 4 and the first factor is finite since by (A5) we have
r 1
W2 F [N RN
62 + w2k2 Z 62 + w2k2 df
Lr(rxw) KER
1\ o
= / (2—1) d¢ - Z |wk| Fi[NT7* < Z k'"F < oo
R f + keR keR

In order to show compactness, define for K € Nyqq the projection onto “small” frequencies Px: H — H
by Px[u] = F! [1] [k|<kFk [u]]. Then on PxH the norm ||u||; is equivalent to

el = " Nitellz s -

keR
|k|<K

Since the embedding H! (R) — LfOC(R) is compact for any p € [2, o] and the sum above is finite, it

follows that Px: H — Lﬁ) (R xT) is compact. Next, the calculations above show for u € H that

e = P [ulll, < € > 1K™ Jlully

keR
|k|>K

for some C >0 independent of K, so that Py — [ in B(H;LP(R x T)) as K — oo. Thus H embeds

compactly into L 10c (R xT). O
We show that low-order (fractional) time-derivatives of u also lie in L” in Corollary 2.6 as a general-

ization of the embedding of Lemma 2.4. This regularity gain will be used in Section 4 for a bootstrapping

argument. We first give a definition of these derivatives.

Definition 2 5. For s € R we define the fractional time-derivative |0,|’

|01 v(1) = Fi [ wkl” .

as the Fourier multiplier

Corollary 2.6. As in the proof of Lemma 2.4 we see that for p € [2,p*) and ¢ > 0 sufficiently small
(depending on «,p), the map |0,|° : H — LP(R X T) is bounded and |0,|° : H — LfOC(R x T) is
compact.
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Let us recall the notion of a Palais-Smale sequence.

Definition 2.7. A sequence (u,) in H is called a Palais-Smale sequence for J if J' (u,) — 0 in H' and
J(uy) converges in R as n — oo, If lim,— J (1) = ¢, we call (u,) a Palais-Smale sequence at level c.

In the following lemma we show a variant of the concentration-compactness principle that will be a
useful tool for extracting a nonzero limit from Palais-Smale sequences.

Lemma 2.8. Let (u,) be a bounded sequence in H, r >0 and p € [2,p*) such that
sup ”un”[f’([x—r,x+r]><’ﬂ‘) —0
x€R

asn — oo, Then u, — 0in L’ (R X T) for all p € (2,p*).

Proof. By Holder’s inequality and Lemma 2.4 it suffices to show the result for p = 2 and one p € (2, p*),
which we shall choose so close to 2 that 2 < g := ﬁ < p*.Let ¢,,: R — [0, 1] be a smooth partition

of unity with supp ¢,, C [(m—1)r, (m+1)r], ||¢,’n||oo < % Using that at any point of R at most 2 of the
¢, are nonzero, we calculate
Z Omlin

gl = /
RxT meZ
<! / (mital? (. 1)
RXTZ

mezZ

-1
=27 i gmall)

mezZ

-1 2 -2
<270 N bmttal2 Nl mianlll

mez

P
d(x, 1)

p—2 2
S igg ”u””Lz([x—r,x+r]><T) rg‘% I|¢mun“H :

Moreover, since

’ o~ ~r |2 ~
¢muk + ¢muk| + w2k2 |¢muk|2) dx

2 _ ! /
Ifminlliz = /;t W2 Fi[N] Jr (

<CZ 1 ‘/'(m+1)r(|A,|2+ 2k2|A |2)d.x
=" LR RINT U, e TR

m—1)r

it follows that ;.7 ||¢mu,,||,21 < 2C ||u||f1. Thus, from the assumptions we obtain [|u,||, — 0 as
n— oo. m|

3. Existence of ground states

In the following, let J be given by Definition 2.2. We call the energy level

= inf J
Ces ueH\ {0} ()
7 (u)=0
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the ground state energy level, and any solution u € H \ {0} of J'(u) = 0 with J(u) = cgs a ground state
of J. Note that cgs = +o0 if there are no nonzero critical points of J. Next we present the main result of
this section. The rest of this section is dedicated to its proof.

Theorem 3.1 There exists a ground state of J.
We first note that the following necessary condition for existence of ground states holds.

Lemma 3.2. ¢y > 0.

Proof. By Lemma 2.4 with p =4 we have J' (1) [u] = (u, u) z+O( ||u||};) as ug. In particular, for a critical
point u € H of J we have 0 = ||u||%_1 + O(Ilullz), and therefore there exists ¢ >0 such that ||ul|y > ¢

for every critical point in H \ {0}. The claim follows from this since every critical point u of J satisfies
J(u) = J () = 3" () [u] = § (u,u)y. o

We will extract the ground state as a limit of a suitable Palais-Smale sequence. Next we use the
mountain-pass theorem to obtain a particular Palais-Smale sequence.

Proposition 3.3. There exists ug € H with J(ug) < 0. For such ug, the mountain-pass energy level

P inf sup J(y(s))
mp yeC([0:1]:H) se[OPl] 7
¥ (0)=0,y (1)=up

is positive and there exists a Palais-Smale sequence for J at level cyp.
Proof. For the construction of a suitable uy we choose ¢ € C°(R) with /R he*dx > 0, which exists

since & £ 0 and C(R) is dense in L*(R). We then choose ug(x, ) = r Re[¢(x)ex, (¢)] for some ko € R
and r > 0. This implies that

J(uo) = 5% (Re[o(x)ex, ()] Relo(x)exy (0]}, — 57 /R htdx

is negative, provided r has been chosen sufficiently large. By the embedding H < L* we moreover
have

Jw) =L )y - O (||u||;;)

as up. Thus cyp > 0 and by the mountain pass theorem, cf. [35], there exists a Palais-Smale sequence
(uy) at level cpyp. O

Lemma 3.4. Any Palais-Smale sequence for J is bounded.

Proof. Let (u,) be a Palais-Smale sequence at level c. Then

(it ) p = 4 () = J" (un) [1n] = 4c +0(1) + o(|[unll )

as n — oo, which shows that (u,) is bounded in H. O

Next we show the following result on weakly convergent Palais-Smale sequences in our setting.
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Lemma 3.5. Let (uy,) be a Palais-Smale sequence for J with J(u,) — c and u, — uin H. Then u is a
critical point of J and J(u) < c. Moreover, if ug and ¢ = cgs then u is a ground state and u, — u in H.

Proof. By Lemmas 2.4 and 3.4 we have u,, — u in Lﬁ; .- Thus for compactly supported v € H it follows
that

J () [V] = Cttns V) —/R Th(x)uf’,vd(x, 1) = (U V)y —/R Th(X)bﬁvd(x, 1 =J ulv]

X X

so that J'(u)[v] = 0. By a density argument (cf. Lemma 2.3) it follows that u is a critical point of J.
Next we calculate

J(u) =J(u) - %J’(u)[u] = }1 (u,u)y < }1nh_>n30 (U Uy gy = }er;](un) - %J’(un)[un] =c.

If ¢ = cg, then we have J(u) > ¢, since u # 0 by assumption, and thus from the above inequality we
find J(u) = cgs and in addition (u,, u,)y — (u, u)y. Combined with u, — u in H this shows u, — u
in H. |

In many situations, e.g. in a translation-invariant setting, there are always Palais-Smale sequences
converging weakly to 0. Therefore the main task in the following will be to find a Palais-Smale sequence
with u, — u # 0. The arguments for this (and the proof of Theorem 3.1) differ between the types of
nonlinearity, and are split into subsections accordingly.

3.1. Proof of Theorem 3.1 for (A6a) and the purely periodic case of (A6b)

First we show how to extract a nonzero limit from a given Palais-Smale sequence.

Lemma 3.6. Assume (A6a) or (A6b) with G°°, h'°¢ = 0. Let (u,) be a Palais-Smale sequence for J at
level ¢ > 0. Then there exists a critical point u € H \ {0} of J with J(u) < c.

Proof. Part 1: We consider (A6a). Up to a subsequence we have u,, — u in H and u, — u in L{‘O . by

Lemmas 2.4 and 3.4, where Lemma 3.5 guarantees that u is a critical point of J. Moreover, since % is
bounded and A (x) — 0 as x — oo by (A1) and (A6a), we have h(x)u] — h(x)u’ in L*3(R x T). This
implies for v € H that

U = V) = ' () V] = T () [V] + /

h(x) (1 = u)vd(x, 1) = o(|[v]l)
RxT

as n — oo. So u,, — u in H, and in particular J(u) = c and u # 0 hold.
Part 2: We now consider (A6b) with G'°°, 41°° = 0. Since

/ h(x)u:td(x, 1) = 4J (u,) — 2J" (u,) [u,] — 4c,
RXT

we have u,, /> 0in L*(R x T). Let X > 0 denote the period of G and /. By Lemma 2.8 there exist x,, € R
with

lir?l)ioglf||”n||L4([x,,—X,x,,+X]><T) >0 (17)
and w.l.0.g. we may assume x, € XZ. Let us define a new sequence u, by i, (x,t) = u,(x — x,,1), SO

that J (&) = J(u,) — ¢ and J'(it,) — 0. Up to a subsequence we have &1, — u in H where u # 0 by
(17). The claim now follows from Lemma 3.5 applied to (iz,). m]
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Proof of Lemma 3.1 for (A6a) and (A6b) with G'°°, ¢ = 0. Combining Proposition 3.3 and Lemma 3.6
we see that there exists a nonzero critical point of J. Thus c¢gs < o and by definition of ¢ there exists
a sequence (u,) of critical points of J with J(u,) — cg. Since ¢ > 0 by Lemma 3.2, applying
Lemma 3.6 to (u,) we find a ground state of J. O

3.2. Proof of Theorem 3.1 for (A6b)

We call the problem with G,k replaced by GP¥, hP®" the periodic problem and denote it with the
superscript “per”. The previous subsection guarantees the existence of a periodic ground state uP*" of
JPer,

Note that both J and JP*' are defined on the same Hilbert space H. The assumption (A6b) implies
that J < JP' on H and, assuming (G'°¢, h'°°) # 0, the inequality is even strict on functions which
do not have zero sets of positive measure. For our nonlocal problem (14) we do not know whether or
not a unique continuation theorem holds, which is why we cannot rule out that a critical point of J or
JP®* could have a zero set of positive measure. Nevertheless, the subsequent arguments work without a
unique continuation theorem and are based on the comparison of energy levels between our current and
the periodic problem.

Lemma 3.7. Assume that no ground state of J°® is a critical point of J. Then there exists ug € H with
J(ug) < 0 such that the mountain-pass energy level

Cr = inf sup J(y(s
mp yeC([0,1]:H) Se[ol,oll e
¥(0)=0,y(1)=up

satisfies 0 < cpyp < cggr.

Proof. Let uP®" be a ground state of JP°". As uP°" is not a critical point of J, we have G'°° % uP*" £ 0 or
hl°¢(uPer)3 # 0. By the assumptions on the signs of G'°¢, #!°° we moreover have

(WP, uPy < (WP, WY and / h(x) (uP)*d(x, 1) = / P () (uP) Hd (x, 1)
RXT RXT

where at least one inequality is strict. In particular, J(suP®) < JP*(suP®') holds for s #0. Now set
ug = V2uP'. Then J(ug) < JP (ug) = 0 and

cmp < max J(sug) < max JP (sup).
P = elo] (stt0) s€[0.1] (stt0)

Moreover, the degree 4 polynomial s +— JP (suP®") has the critical points 0, 1, —1 since 0, uP®", —uP
are critical points of JP®'. Together with J(0) < JP'(uP®) = JP'(—uP°") we see that the latter two points
are the global maxima of the polynomial. Therefore

per
Cgs -

cmp < max JP"(sug) = JP(uP®) =
s€[0,1]
Positivity of ¢y, was already shown in Proposition 3.3. O

Similar to Lemma 3.6 of the previous subsection, we require a result on convergence of a given
Palais-Smale sequence, which we present next.

Lemma 3.8. Assume (A6b). Let u,, be a Palais-Smale sequence for J at level ¢ € (0, ch’Sr). Then there
also exists a critical point u € H \ {0} of J with J(u) < c.
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Proof. We denote by X the spatial period of GP*, hP®". As in the proof of Lemma 3.6, Part 2, we have
that u,, 7 0in L*(R x T) and that a sequence x,, € XZ exists such that

Hmiinf [l |+ (12, ~x.x,+x1) > O-

We claim that u,, / 0 in Lﬁ)c along any subsequence.
Assume for a contradiction that there exists a subsequence of (u,), which we again denote by (u,,),

such that u,, — 0 in Lﬁ)c Since u, /> 0in L*, we necessarily have |x,| — oco. We define i, by

U, (x,1) = uy(x — x,,¢). Then up to a subsequence we have i, — u in H and i1, — u in Lﬁ) . for some
u € H \ {0}. For compactly supported v € H we set v, (x, 1) = v(x + x,, t) and calculate

I ) 9] = Gt v)sg — /R Hd

= (V) —/ IR (x) v, d(x, 1)
RxT

loc _—
B Z fk g (X)] (]:k [Mn]]:k [Vn])dx - / thC (x)uzvn d(-x7 t)
RxT

ken /R

= (ilp, v>per / hper(x)u vd(x,1)

}—k gloc(x x")] S 1T vl loc ~3
3 [P Al AL - [ s inde

keR

= (u, 2" —/ IR () vd (x, 1) = (JP) (u) [V]
RXT

where we used |x,| — oo and G'°°(x) — 0, h'°°(x) — 0 as x — =+oo. This shows that u # 0 is a critical
point of JP**, and in particular JP* (i) > ch; holds. However, for fixed R > 0 we have

Zm/ (1Flul 1P + w2 VP (x) | Fic[u] ) dx

keR

. 1 R 2, 252 -
<1 £y Fili,] K2VP (%) | Fe[itn] |7 dx
D e ] [ AL P+ V0 1Al

o 1 Tn+R 2 2,2, per 2
=timint 3 / (B P V) |l P

1

Xp+R
— lim inf F n/2+ ZkZV F n2dx
lrfglolol o w2k2]:k[N] </X;R (l k[u ] | w k(x)| k[u ]l )

< liminf (up, uy) g
n—oo

from which {(u, u)%er < liminf, o (Up, u,) 5 follows in the limit R — oco. This implies

¢ < che < TP(u) = TP (u) — (TP () [u] = § (uu)yy
< Jliminf (,, )y = iminfJ (u,) = £ () [ua] = c,
n—00 n—oo
a contradiction.

Thus we have shown the claim. By Lemmas 2.4 and 3.4 up to a subsequence we have u, — uin H
and u, — u in Lfoc, where we now know u # 0. Applying Lemma 3.5 completes the proof. O
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Proof of Theorem 3.1 for (A6b). Assume first that ¢, < ch holds. Let u, be a sequence of critical
points of J with J(u,) — cg. From Lemmas 3.2 and 3.8 it follows that there exists a ground state of J.
In the general situation, we distinguish between two cases.

Case 1: If there exists a ground state uP®" of JP* which also is a critical point of J then clearly
Cgs < cg‘;‘ holds. If ¢gs < clg):r there is nothing left to show, and when ¢y = cg? then uP*" is a ground
state of J.

Case 2: If no ground state of JP*' solves J'(u) = 0, then by Lemma 3.7 there exists a Palais-Smale
sequence u, for J at some level cmp € (0, s ). Since cgg < cmp by Lemma 3.8, this shows ¢y < ¢mp <

per
Cgs - [m}

We finish this section with an alternative formulation which may be useful for finding breathers
numerically. Due to the simple structure of the functional J an alternative characterization of the
mountain pass level ¢y, is given by

1
Cmp = Min maxJ(su) =
m = i, S () 2max =1 fo o POOUtd(x, 1)

which means that is suffices to maximize foT h(x)u*d(x,t) of the unit sphere in H. This can be
done numerically by the method of constrained steepest increase. Further, one can relax the constraint
to ||u|| < 1 since all maximizers lie on the boundary of the norm-ball of radius 1. The numerical
approximation of breathers is part of our ongoing work.

4. Regularity

So far we have shown existence of a ground state to (14) in the slab geometry. In this section, we
discuss its regularity properties. The necessary modifications for the cylindrical geometry are explained
in Section 5.2.

We proceed in two steps. First, we show regularity for the solution « to (16): it is infinitely differ-
entiable in time, twice differentiable in space, and derivatives lie in L2 N L®. We also show that if the
material parameters are [ times continuously differentiable, then u is [+ 2 time differentiable in space
and derivatives lie in L2 N Cy.

Then we transfer this regularity from the function u to the electromagnetic fields D, E, B, H since
these can be expressed as functions of u.

We begin by showing infinite time differentiability in the space H, see Lemma 4.2, which we prepare
with an auxiliary result.

Lemma 4.1. Let s> 0 and u, |9;|° u € LP (R x T) where p € [3, o]. Then |8;|° (u®) € LP3(R x T).
Proof. By [6, Proposition 1] the estimate

llo:* (VW)”L’(T) < 10 vl e (T) Iwll Lo (Ty T ”V”LPZ(']I‘) |||6t|sw||L‘12(’]T)

holds for all r, p;, g; € [1, c0] with } = ,;Lj + ql and v € C*(T). By a density argument we obtain
]

“|at|s (”3)||U/3(Rx1r) = ”szls (”3)||Lp/3(1r)||u/3(R)
S |||||31|S”||U’(T) ||”2“u/2(1r) + ”““U’(T) H|at|s (u2)||U'/2(T)“LP/3(R)
< ”l”arls ’/‘”U’(T) ||u||%}7(T)||Lp/3(R)

< |6 F° ull o )|

U’(R)H'lM”U’(T)l'Z’(R)'
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Lemma 4.2. Let u € H be a critical point of J. Then |0;|° u € H for all s € R.

Proof. Since u € H, |0;°u € H holds for s < 0. Moreover, if |3;|*u € H then |0,| u € H for all
o < 5. By Corollary 2.6 there exists € > 0 such that |9,|° : H — L*(R x T) is bounded. We show by
induction that |9;|"® u € H holds for n € Ny. So assume |9;|"¢ u € H for fixed n € Ny. Let v € H with
16,V € H. Then we have

0=J"(w][la,| " v]
=<u,|0,|("+1)£v> —/ R0 - 18]V v d(x, 1)
H RXT

=<|5tl"£u,|3rISV>H—/ h(x) 18" () - 18,17 v d(x, 1).
RxT

X

By Lemma 4.1 with p = 4 and a density argument (cf. Lemma 2.3) we see that the map v
foT h(x) |6;" (1) - 10;|° v d(x,) extends to a bounded linear functional on H. Hence there exists
w € H with

W,y =/R Th(X) 10" (1) - 18417 v d(x, 1) = [0 ,18,1° )y
X

for v € H with |8,|"*"? v € H. Again by density we get |8;| "% u = w. O

In order to proceed we need the following little result on the mapping properties of Fourier multiplier
operators.

Lemma 4.3. Let Mv = F~'[my¥;] be a Fourier multiplier with symbol |my| < |k|” of polynomial
growth and let u be a function with |0,|* u € H for all s € R. Then |6;]° Mu € H for all s € R. The same
holds for H replaced by LP (R X T) with p € [1, o] if we require ity = 0.

Proof. In the Hilbert space setting we have

1101 Ml < (sup o okl ™) 16, ul], < oo.
€

In the L7 (R x T) case, the series u(t) = Yiez\ (0} "% |wk|~7 =" e (¢) converges in L' (T). Hence
1041° Mul, = [l = 16177+ ], < Ml 164177 ], < .
Note that Lemma 4.3 applies to the multipliers A+, G(x)* and by (A5) also to (N*)~.
Continuing our regularity analysis we show that « and its derivatives lie in L> N L*. This also shows

that u satisfies (14) strongly.

Proposition 4.4. Let u € H be a critical point of J. Then |8,°u € W?>?(R x T) for all s € R and
p € [2, 0], and it satisfies the equation

gy — V(x)0Pu + h(x)8? (N . u3) = 0. (18)

If (R) holds, we moreover have |3,|° u € W?**2(R x T) N Cg”(R x T).
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Proof. We remark that equation (18) formally follows by applying —92N * to (14).
Part 1: We first show |9;]° u € L? (RxT). Because of boundedness of the embedding H < L?(RxT)
and interpolation, it suffices to give the result for p = co. Similarly as in the proof of Lemma 2.4 we

calculate
10 ull o rry S [kl Fe kLl ety
_ 2k2 Fi [NV . &2 + w2k?
< k 12 |W i k s+1/2 F
|wk] &2 + w2k? |wk] W2 Fi [N ealu]

L2(RxR) 12 (RxR)

where the first factor is finite since 0 < F;[N] < |k|™“, @ > 1, and the second factor is equivalent to
H|at|x+l/2 u
Part 2: Next we show |9;|° u, € L*(R x T):

108 s ey = Y, | Tk i a

keR

Y and thus finite by Lemma 4.2.

|wk|2s+2 a A _a )
S Z RN i ar < flag ¥ ol <o

Now let v € H with |8,**> N v € H. As A is even by (A5), we have
0=J u)[|d)>N %]
= Z IwkIS/z),’cA,’(+w2k2Vk(x)f4kﬂdx—/ h(x)u® - 8,15 N v d(x,1)
RXT

keR

- / 10h]° - ved(x, 1) + / 19,2+ (V(x)u — BN = u3) vd(x,1).
RxT RxT
Since v was arbitrary, by density it follows that
001 e = 18,2 (V) = h()Pu [N < '] 19)

holds. The term on the right-hand side lies in L” (R X T) by Lemmas 4.1 and 4.3 and the first part of the
proof. Thus, |8;|* ux, € LP(R x T) and |9;|* u € W>(R x T).

Part 3: Assume (R),i.e. G € Cé(R; M(T)), h e C})(R). First, we have |0,|° u € C,(R X T) by Part 1
and Sobolev’s embedding. Continuity of G, 7 shows that the right-hand side of (19) is continuous, so
|0;|° uxr € Cp(R X T) holds, and in particular |9;|° u € CE(R X T).

For [ > 0 we argue by induction over k = 0, ..., l. We use that by (19) we have

21,1 u = 9k |92 (V(x)u — ()N * u3)

where the right-hand side lies in L>(R x T) N C; (R X T) by the product rule and the induction hypothesis.
This allows us to conclude |§,|° u € W**2(R x T) N C;**(R x T). o

Recall for the first type of nonlinearity (6.i) that the profile w of the electric field is given by w = u.
For the second type of nonlinearity (6.ii), by (15) the profile satisfies Pg [w] = (N *)~'u where Pg[w]
solves a differential equation. Therefore we need to discuss next the regularity of w for the second type
of nonlinearity, which is done in the following analogue to Proposition 4.4.
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Proposition 4.5. Let u € H be a critical point of J. Define w = w| + wy where
wi=Pylwl = (W) "u, wa = Pew] = (=87 = V(0)3)) ™ (h(0) 9} Ps[]).
Then w satisfies |0;° w € W>P(R x T) for all s € R, p € [2, o] and solves
(=0% = V(x)dH)w + h(x)O2 (N = w)* = 0.
If (R) holds, we moreover have |8;|°w € W*2(R x T) N CI%”(R x T).

Proof. First, by Lemma 4.3 and Proposition 4.4 we see that the function w; := (N¥)lu :=
DkeR ﬁﬁk (x)ex (1) satisfies |9, wy € WP (R x T) for s € R, p € [2, o0], with additional regularity

if G, h fulfills (R). Applying (M)~ ! to (18) we see that w solves
(=02 = V(x)0?)w1 + h(x)0?Px [u’] = 0.
Let us now turn our attention to w, and define the space
Hy:={ve H' (RXT): % =0for ke RU{0}}.

Since Vi (x) is bounded and positive, the Riesz representation theorem provides w, € H, with

Awy - Oy + V(x)dwa - 8y d(x,1) = — / h(x)8?Ps[u’] - vd(x,1) (20)
RXT

RXT
forallv € H,.

Similarly as for solutions u of J'(u)[v] = 0 for v € H, we obtain regularity for the solution w, to
(20). In contrast to J, where critical points satisfy a truly nonlinear equation, the right-hand side of (20)
is independent of w, and its regularity properties have been established in Proposition 4.4. Let us sketch
the arguments:

Asin Lemma 4.2 we find |9,|° wy € H, for s € R. Using that the 0-th Fourier mode of /(x)3?Pg [u?]
vanishes, w, satisfies

—02 10, wa = V(x) 02 |0,]° wa = —h(x)37 10, I* Pe[u’] (21)

By the fractional Leibniz rule from Lemma 4.1, the regularity properties of u# from Proposition 4.4 and
the boundedness of the Fourier symbol of Pg we find that the right-hand side of (21) lies in L2. Therefore
16;° wr € W22(R x T) € L*(R x T) holds for s € R and (21) shows |8;|* wo € W2?(R x T) for s € R,
p € [2, 00]. The additional regularity when G, & satisfy (R) can then be shown as in Proposition 4.4 by
iteratively applying space-derivatives to (21). O

Lastly, we discuss the regularity of the corresponding electromagnetic fields.

Proof of Theorem 1.3 for slab geometries. Let u be a nontrivial critical point of J. If the nonlinearity
is given by N(w) = N % w? then we set w := u. If otherwise N(w) = (N * w)? then let w be from
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Proposition 4.5. Then we define W := 8,”!w and reconstruct the electromagnetic fields by

0 Iw(x,t-12)
E(x,t) =w(x,t— %z) 111, B(x,t) = - 0
0 W(x,t—1z)
0
D(x,t)=eg(W+Gxw+h(x)Nw)) -|1], H(x,t) = #lOB(X, 1).
0

Due to Propositions 4.4 and 4.5 we have the inclusions

O'E e W (Q:R?),  9'B,d'He W'P(Q;RY),  9'DelP(QR?),
and assuming (R) we moreover have

O'E e C;(RY),  9'B,o/He C,"'(Q;RY),  9'D e C)(QRY)

for any domain Q = R X [y,y+ 1] X [z,z+ 1] X [t,t+ 1] and all n € N, p € [2,00] with norm
bounds independent of y, z, t. By direct calculation one checks that the fields E, D, B, H solve Maxwell’s
equations (1), (2). m]

Proof of Remark 1.5. To show that there exist infinitely many solutions, we search for breather solutions
with time period % instead of T. If we define the corresponding time-domain T, := R/z, then the k-

th Fourier coefficient of a %-periodic function f, when understood as a T-periodic function, satisfies
Filf: T, —» R] = Fulf: T — R]. Therefore, by the above arguments there exists a %-periodic
breather solution (E,,D,, B,, H,) to (1), (2) with minimal period 7,, > O for all such n € N where R N
nZ # (. By assumption, the set {n € N: R N nZ # 0} is infinite. Since T}, is a divisor of% the minimal
period T,, goes to O for n — oo. Hence infinitely many among the breather solutions (E,,D,,B,, H,)
must be mutually distinct. O

5. Modifications for the cylindrical geometry

In this section, we discuss the cylindrical problem, that is, we consider equation (8.2) instead of (8.1).
The only difference between the two problems is in the spatial differential operator, where we now
work with —6,2 - %6, + rLZ on the domain r € [0, o) instead of —6x2 for x € R. The differential operator
-0% - %6, is the 2d Laplacian for radially symmetric functions, and riz is an additional positive term.
Hence it is natural to equip the domain [0, co) with the measure rdr, and to identify functions on it with
radially symmetric functions of the variables (x,y) € R? via r = 4/x2 + y2. We use the subscript “rad”
to denote spaces of functions that are radially symmetric in (x, y). Since the term fooo ':—; rdr cannot be
controlled by the Hrlad—SoboleV norm of u (recall that Hardy’s inequality fails in two dimensions) we
need to add this term in the form domain of the differential operator.

We will discuss how the arguments from Sections 2 to 4 have to be adapted to treat the cylindrical
problem. We use the same structure as in these sections. In order to not repeat the previous chapters,
we discuss in detail only results that require new techniques to adapt them to the cylindrical geometry
and roughly sketch the other results.

5.1. Modifications for Sections 2 and 3

In analogy to Definitions 2.1 and 2.2, we define the functional of interest J and its domain H (replacing
J and H).
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Definition 5.1. We define the space

= {u € L2([0,00) X T; rd(r, 1)) : = 0 for k € Zeven U S, [lull? = (u )y < oo}

with the two equivalent inner products

I T =
(RS AT /0 (a,;a; +(5+ wzkz)itkf/k) rdr

keR
1 = ~ N
(U, vy == Z PETERAT] /) (i v, + (ri2 + W kK2 Vi (7)) i) rdr.
keR

where Vi(r) = }2 — 1= F[G(r)]. On H, we define the functional

J(u) =3 (uuyy - }1/ h(x)u*rd(r,t) for ueH

[0,00)XT

so that its critical points u € H satisfy

j’(u)[v]z(u,v)g—/[o )Th(x)u3vrd(r,t)=0 for veH.

As a first step, we discuss the embedding properties of H.

Lemma 5.2. For any p € (2,p*) with p* = 7% (p* = 0 if & > 3), the embedding H — L ([0, %) X
T; rd(r, 1)) is compact. Moreover, H < L*([0, 00) X T; rd(r, 1)) is continuous and H < leoc([O, o0) X

T; rd(r,t)) is compact.
Proof. We interpret a function u: [0, c0) X T — R as a function of the three variables (x, y, t) which is
radially symmetric in (x,y) via r = y/x2 +y2. Let o, be the surface measure of the sphere S, € R? of

radius p centered at 0, normalized such that 0,,(S,) = 1, and continued by 0 to a Borel measure on RZ,
Using the Hansen-Bessel formula (cf. [34, equation 9.19]), we see that its Fourier transform is given by

1 2 ) ) 1
—1 _ — S _
(@) = [ &g = o)
where J is the Bessel function of first kind. Using |Jo(s)| < s~ for 6 € [0, %] (cf. [13]) we obtain

||r9u||L°°(R2><T) S |||§|79 ff’k[u]“Ll (R2xZ)

where we used that Fgx[u] is radially symmetric in &. Note also that we have |lull;2rexr)y =
||]-" £ [u] || L2(R2XZ)" This allows us to use the Riesz-Thorin interpolation theorem (cf. [16]) and get (with
d+# denoting the counting measure) that the map

T L (R2XZ|§720dé @ d#) — LP (R*x T;r729d(x, 1)),
Voo rg]-'(‘x’ly)’t(|§|‘9v)
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is bounded for all p € [2, oo]. To see this note that with v = |§|’9]-'§,k [u] we have

_ -6
”v”LP'(szz;|§|‘29d§®d#) = | Fexlullé] 0||U’(R2><Z;d§®d#)

2]
TVl p (r2xsr20a(x0)) = 17 ullr (R2xTid (x))

(p=2)
p

where 0y = 0 ranges through [0, % - 117] as 6 runs through [0, %] Thus we have

Hreou“l}’(sz’]I‘) < |||§|—90 Fek [M]“LP' (R2xR)

_oy |WHRFN] €% + w2k?
< |§| t ||2+—k2kz jsz[N]}-f’k [u]
S 0k ¢ L2 (R2xR)
where % = % - ]l) < ¢ By the choice of p* and assumption (AS5), the L"-norm is finite provided 6y is

chosen sufficiently small, and the L>-norm can be estimated against ||u|| i

For the particular choice 6y = 0, this shows that the embedding H — Lf . d(R2 x T) is continuous.
Moreover, we can argue similarly as in the proof of Lemma 2.4 to verify that the local embedding
H— 1L d10c (R X T) is compact.

It remains to show that H < Lf od (R? x T) is compact for p # 2. For R > 0 consider the compact map

Eg: H — Lfad(R2 x T), u — ulpg,o)xr. Using the above inequality we have

— 6,
|Egu — ull, < SR |ullg

(5)" u
4

so by choosing any admissible 8y > 0 and taking the limit R — co we see that the embedding : H —
Lf ad (R? x T) is compact as the uniform limit of a sequence of compact operators. O

Notice that, unlike in the slab setting (cf. Lemma 2.4), the embedding of Lemma 5.2 is compact for
p > 2. This is why we do not require additional assumptions (A6a) or (A6b) in the cylindrical setting.
One can then show existence of ground states similar to the “compact” case (A6a) of Section 3. The

4/3 (R? x T) is guaranteed

only difference is that existence of a convergent subsequence of 4(r)u; in L.

by the compact embedding instead of decay properties of 4.

5.2. Modifications for Section 4

In the following, we show in Propositions 5.3 and 5.4 two regularity results that are the cylindrical
counterparts to Propositions 4.4 and 4.5.

Here, arguments will get more difficult since the cylindrical geometry is effectively 2-dimensional
in space (compared to 1d for the slab problem). For some arguments it will be advantageous to view the

rLZ not as an additional order O term, but as part of the differential operator. From [3] we use the identity

o} +16, - L =160, (22)

which means that up to the multiplicative factors r,% we are dealing with %6rr36r, which is the

Laplacian of a radially symmetric function in 4 dimensions.
Similar to Proposition 4.4 we show that « and its derivatives lie in L> N L*.
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Proposition 5.3. Let u € H be a critical point of J. Then the terms
max {r, 1} [, (¥),  max{r,1}18°0,(4),  rlal° 67 (%)
lie in LP ([0, 00) X T; rd(r,t)) forall s € R and p € [2, ], and u solves pointwise
(=0} =10, + L = V()8 u+ h(x)8} (N *u®) = 0.
If (R) holds, then the terms
max {r, 1} [0,]" 8] (%) for 0<n<lI+1 as well as r|6t|s6,l+2(%)

lie in L*([0, 00) X T; rd(r, 1)) N Cp([0, 00) x T). Moreover, the second term vanishes at r = 0, and the
same holds for the first term when n is odd.

Proof. Part 1: First, following the proof of Lemma 4.2 we obtain |3|* u € H for all s € R.
Next, for p € [2, ) we calculate

101 ull, < ekl® Fekll,r goreary

1w F N L€+ w?k? .
< |lwkl ™' [—H——= lwk|"™ \| S5 Feklul < 1615 ) -
2 21,2 212 k H
L IR VTN L2 (R2xR)
Here 1 — ]l) = pi = % + %, and the L"-norm is finite since r > 2 and therefore
zszk 1 2-r z 2-1r
P df = - L Dk FINTE ) kP < o,
keR l€1° +w k r2\[E]7+1 ker e

Part 2: Arguing as in part 2 of the proof of Proposition 4.4 we have that |9;|" u;, 118,15 u € L2([0, 00)x
T; rd(r,t)) for s € R and

01ty + 11001y = 51001 w = 18,12 (V(r)u = h(r) PN =] 23)

holds pointwise. From now on arguments differ depending on if r is large or small, and we discuss these
cases in part 3 and part 4, respectively.

Part 3a: Let r > Ry for fixed Ry > 0. Then part 1 combined with (23) shows that A, |8;|* u :=
(0% + %8,) |0,° u € LP([Ry, 00) X T; rd(r, 1)) for p € [2, o). Now choose a cutoff yy; € C®([0, o)) with
supp ¥ C (Ry,o0) and 1 = 1 on [R,, o) for R, > R;. Then, interpreting v; := 1 (r)u as a function
of the three variables (x,y, ) via r = x> + y? and continuing by zero, we have |8;|° vi € L? (R? x T)
and

Ay 101 vi = Ay - 10, u+ 20,1 - 0,10, u+ 1 - A |0, w € LP(R* X T).
This shows |8,|°v, € H? d(R2 x T), and by Sobolev’s embedding we in particular have |9,|° u
L®([Ra, ) X T), |6;|° u, € LO([Ry, 00) X T; rd(r,1)).
Similar to above, but now with a smooth cutoff ¢, such that supp ¢, C (R, ), ¥, = 1 on [R3, o)
for R3 > R,, we see that vy 1= 5 (r)u satisfies A,y |0,|° v2 € Lfa : (R? x T) where again (23) was used.
Thus |0;]° v, € Wrza’c?(R2 X T) by LP-boundedness of the Riesz transform, cf. [14, Corollary 5.2.8]. By
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Sobolev’s embedding we have 8, |9;|° u € L*([R3, ) X T), and then A, |3;|° u € L™ ([R3, ) X T) by
(23). So far we have shown

10/° u, |8, |° ey, |05|° try € L*([R3, 00) X T; 7d(r, 1)) N L™ ([R3, o) x T).

This shows the first part of Proposition 5.3 for r > R3, where R3 > 0 can be chosen arbitrarily.

Part 3b: We assume (R), i.e. G,h € C!, and still consider large r. From Part 3a we obtain
|0/1° u, |0|° uy, € Cp([R,00) X T) from the high Sobolev regularity and therefore also |0;|° u, €
Cp([R,o0) X T) by applying (23). Now |8,|° 0"u € L*([R,0) x T;rd(r,t)) N Cp([R,0) x T) for
2 < n £ 1+ 2 can be shown iteratively by applying space-derivatives to (23) and using that all terms
except the highest order space-derivative term lie in L>([R, co) X T; rd(r,1)) N Cp([R, o) X T) by the
induction hypothesis.

Part4a: Let us now consider small 7. We use the representation via the 4d Laplacian, i.e. we consider
U:R*XT >R, UX,1) =U(X1,X0,X3,X4,1) = |TIIM(IXI ,1). Notice that the L?-norms are equivalent,
ie.

| rax1.0 = V2r I 2 ompsracrn)

L2 (BR XT)

holds with Bz C R* denoting the ball of radius R centered at 0. Multiplying (23) by %, setting r = |X]|,
and recalling (22) we have

Ax 10,5 U = V(1) |8, U = 2219, 12 PR [N + ] (24)

By part 1 the right-hand side of (24) lies in L2(R* x T). Therefore |3,° U € H*(R* x T), which by
Sobolev’s embeddings shows |3, 8,U € L5 (R* x T), |8, U € L'°(R* x T). Now let R; > 0 and
Y1 € C2([0,R;)) be a smooth cutoff function with i1 = 1 on [0, R;] for some 0 < Ry < R; and set
vi =¥ (|X|)U. Then, since

Ax |0 vi = Axpy - 0P U + 0,1 - 0, 10" U + 4y - Ax |0,]" U
and since we may write (24) as
Ax 16,1 U = V(r) 18,2 U = r?h(r) 1,1 Py [N = U], (25)

we have Ay |9;|° vi € L'3(R* x T) which by L”-boundedness of the Riesz transform implies |d;|* v| €
W21053(R*x T). From Sobolev’s embedding we have |9;|° U € L*(Bg, xT), Vx |6, U € L'°(Bg, xT).
Repeating this argument with 0 < R3 < R, and a cutoff function ¢, € C°([0,R2)), ¢; = 1 on [0, R3]
shows Vy |6;|° U € L*(Bg, x T). Using (25), regularity of the terms in the claim of Proposition 5.3
follows since

0" % =10,]°U € L*, 10,]° 0,(%) =% . Vx |8, U € L™,
10 92(4) = rAx [0,° U = 3% - Vx |9, U e L™.

The IP-estimates follow from these since Bg, X T has finite volume.

Part4b: Assume (R), and again consider small r. First, |9;|° U, Vx |9;|° U are continuous by Sobolev’s
embedding, and continuity of Ay |9;|* U follows from this by (25). Existence and continuity of higher
derivatives

VSZ(AX AREA V;l(ﬂ ARIA V;l( AR

for 0 < n < [ can again be shown using induction and repeatedly applying Vx to (25). This
implies continuity of all terms except the highest order one in Proposition 5.3 since |0;[" 9] (%) =

https://doi.org/10.1017/jnw.2025.10010 Published online by Cambridge University Press


https://doi.org/10.1017/jnw.2025.10010

Journal of Nonlinear Waves 27

(Vi lo:1" U) [’7(, ey %]. Moreover, odd r-derivatives of ¥ vanish at » =0 since U is radially symmetric.
For the highest order term we have

(ViAx 16 U)X, ... X1 =18, 872 (%) +16, 8, (30,(4)),

which shows that |9;|* 6:72( “) is continuous away from 0. To see the behaviour of the highest order term
near 7 =0 we use the differentiability properties of U and a Taylor expansion of |d|* (%) about 7 =0 as
follows. Let [0;]° (%) = T141(]0;]° (%);0) +f be the Taylor expansion of [J;|* (%) of degree [+ 1 about
r =0 with remainder f. Then we have

3(=D' o] (%)-(0
00" 81Co,2)) = 0! (20, [T ol :0)]) ! (2af) = 2SO o) o)

as r — 0 since |9;]" (£),(0) = 0 by radial symmetry. This shows that r |9;|* 6£+2(%) —0asr—0. O
Next, in Proposition 5.4, similar to Proposition 4.5 we discuss the second nonlinearity (6.ii).

Proposition 5.4. Let u € H be a critical point of J and let the nonlinearity be given by N(w) = N s w?.
Define w = wy + wy where

wi = Pylwl = (N#)lu, wa=Pglwl = (=07 = 10, + 5 = V(&)™ (h(0)0} P [u’]).
Then the functions
max {r, 1} 10" ¥, max {r, 1}]9,]* 0,(%), r|3;|‘yc'),2(%)
liein LP([0,00) X T; rd(r,t)) forall s € R and p € [2, ], and w solves
(=0} =10, + L = V(x)87)w + h(x) 87 (N = w)® = 0.
If (R) holds, then the terms

max {r, 1}19,/° /(%) for 0<n<l+1  aswellas  rl|d| 97> (%)

lie in L>([0, 00) X T; rd(r, 1)) N Cp([0, c0) x T). Moreover, the second term vanishes at r = 0, and the
same holds for the first term when n is odd.

Proof. We follow Proposition 4.5, and define w, by
wy € Hy := {v € H' ([0, c0) X T; rd(r,1): %v € L*([0, c0) X T; rd(r, 1)), 9 = 0 fork e R U {O}}

and

/ (a,wz -0 v+ rlzwz v+ V(r)owy - (9,v) rd(r,t) = —/ (h(r)c’)tng [u?] - v) rd(r, 1)
[0,00) XT o

,00) XT

for all v € H,. Regularity of wy follows from Proposition 5.3, and the arguments therein can also be
used to show regularity of w,. O

As the last part of this chapter, we discuss regularity of the electromagnetic wave profiles.
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Proof of Theorem 1.3 for cylindrical geometries. Part 1: Let u € H be a nontrivial critical point of J.
For the nonlinearity N(w) = A/ w? set w := u, else let w be from Proposition 5.4. Define W := 9, 'w
and the electromagnetic fields by

—y/r —y/r
Dx,t)=e(W+Gx=w+h(r)Nw)) -| x/r |, E(x,0) =w(r,t=12) - x/r |,
0 0
x/r 0
B(x,))==1w-|y/r|-(AW+Ww,)-|o], H(x,z):ﬂLOB(x,t).
0 1

By a straightforward calculation one sees that E, D, B, H solve Maxwell’s equations (1), (2), so it
remains to show their regularity. For simplicity we only consider E and only discuss spatial deriva-
tives. Abbreviating p(x) = (-, x,0), denoting the Euclidean scalar product in R by (-, -} and the
space derivative by Dy, we have

E=—p

wp
=r—-,
rr

DE[h] = %Dxp[h] + 15, (%) (x,h)p
w w\ X \ P
= Duplhl 40y () ()
DL, ha) = 20, (%) [(x. 1) Daplha] + (%, ha)Dxp U] + (s oo
+(20) (%) () (s o),

= 0, () (X m)Duplia] + (X ) Diplin] + (11,1 2

197 (2)-0 G| G

so Propositions 5.3 and 5.4 show that these terms lie in L” for p € [2, oo].

Part 2: Let us now assume (R). We need to show that higher order derivatives exist, are continuous
and square-integrable. Away from r =0, this is clear by Propositions 5.3 and 5.4, so it remains to show
continuity of derivatives in r =0. First, by induction one can show that for 0 < n < [ + 2 the derivative
D!E can be written as a sum

w
r

DE= Y Loy (%) o
="

where p,, j(X): (R3)" — R? is symmetric, n-multilinear, and its coefficients are homogeneous polyno-
mials of degree 2j + 1 — n in x. We use Taylor approximation and write ** = 7,1 (*; 0) +f with Taylor
polynomial 7;,—; (*; 0) and remainder f.

Let us next consider summands with j < 7. Recall that all odd Taylor coeflicients are zero, so g, :=
(;a,)fT,,,, (%30) is an even polynomial. In addition, we can estimate the remainder via (%6,)1']‘ =
o(r"17%) as r - 0. Thus

(F0 (2) - Py = @as (1) + 00"~ ))pj = 410y (0)
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as r — 0. Now let j =n. Similar to the above arguments, one can show

[(%@)" - %3;'] (%) = Gun(r) +o(r™ 1)

as r — 0 for some polynomial g, ,. Thus

1 n n
DYE = —0/(5) pun+ D duj(Ipaj®)+0(1) = > 4uj(0)pnj(0)
e e

as r — 0 by Propositions 5.3 and 5.4. Since the argument for existence of infinitely many solutions is the
same as for slab geometries at the end of Section 4, this completes the proof. Observe that p,;(0) = 0
forj # %, so in particular all even derivatives of E vanish at 0. m]

Data availability statement. No data was produced.
Author contributions. Both authors contributed to and approved the final submitted draft.

Funding statement. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) — Project-ID
258734477 — SFB 1173.

Competing interests. None.

Ethical standards. The research meets all ethical guidelines, including adherence to the legal requirements of the study country.

References

[1] Agrawal GP (2013) 5th ed. Nonlinear Fiber Optics, Amsterdam: Elsevier, Academic Press.

[2] Azzollini A, Benci V, D’Aprile T and Fortunato D (2006) Existence of static solutions of the semilinear Maxwell
equations. Ricerche di Matematica 55, 0035-5038.

[3] Bartsch T, Dohnal T, Plum M, and Reichel W (2016) Ground states of a nonlinear curl-curl problem in cylindrically
symmetric media. NoDEA Nonlinear Differential Equations Appl., 23 52, 34.

[4] Bartsch T and Mederski J (2017) Nonlinear time-harmonic Maxwell equations in domains. Journal of Fixed Point Theory
and Applications 19, 959-986. doi: 10.1007/s11784-017-0409-1

[5] Benci V and Fortunato D (2004) Towards a unified field theory for classical electrodynamics. Archive for Rational
Mechanics and Analysis 173, 379-414. doi: 10.1007/s00205-004-0324-7

[6] Bényi A, Oh T and Zhao T (2023) Fractional Leibniz Rule on the torus., arXiv:2311.07998. [math.CA]

[7] Briill G, Idzik P and Reichel W (2022) Traveling waves for a quasilinear wave equation. Nonlinear Analysis: Theory,
Methods & Applications 225, 113115. doi: 10.1016/j.na.2022.113115.

[8] Dohnal T and He R (2024) Bifurcation and asymptotics of cubically nonlinear transverse magnetic surface plasmon
polaritons. Journal of Mathematical Analysis and Applications 538, 128422. doi: 10.1016/j.jmaa.2024.128422

[9] Dohnal T and Romani G (2021a) Eigenvalue bifurcation in doubly nonlinear problems with an application to surface
plasmon polaritons. Nonlinear Differential Equations and Applications 28, 9, 30. doi: 10.1007/s00030-020-00668-2

[10] Dohnal T and Romani G (2021b) Justification of the asymptotic coupled mode approximation of out-of-plane gap solitons
in Maxwell equations. Nonlinearity 34, 0951-7715. doi: 10.1088/1361-6544/ac0485

[11] Dohnal T, and Romani G (2023) Correction to: eigenvalue bifurcation in doubly nonlinear problems with an application
to surface plasmon polaritons. Nonlinear Differential Equations and Applications 30, 9, 5.

[12] Dohnal T, Schnaubelt R and Tietz DP Rigorous Envelope Approximation for Interface Wave Packets in Maxwell’s
Equations with Two Dimensional Localization. SIAM Journal on Mathematical Analysis 55, 6898—6939. doi: 10.1137/
22M1501611.

[13] Gradstejn IS and Ryzik IM (7th ed.) (2007) Table of integrals, series, and Products, Academic Press.

[14] Grafakos L (2014) Classical Fourier analysis. Third edition. Graduate Texts in Mathematics, 249, Springer, New York,
p-xviii+638. doi: 10.1007/978-1-4939-1194-3

[15] Kohler S and Reichel W (2022) Breather solutions for a quasi-linear 1+1-dimensional wave equation. Studies in Applied
Mathematics 148, 689-714. doi: 10.1111/sapm.12455

[16] Lunardi A (2018) Interpolation theory. Appunti. Scuola Normale Superiore di Pisa (Nuova Serie)., 16, Edizioni della
Normale, Pisa, Third edition.

https://doi.org/10.1017/jnw.2025.10010 Published online by Cambridge University Press


https://doi.org/10.1007/s11784-017-0409-1
https://doi.org/10.1007/s00205-004-0324-7
https://doi.org/10.1016/j.na.2022.113115
https://doi.org/10.1016/j.jmaa.2024.128422
https://doi.org/10.1007/s00030-020-00668-2
https://doi.org/10.1088/1361-6544/ac0485
https://doi.org/10.1137/22M1501611
https://doi.org/10.1137/22M1501611
https://doi.org/10.1007/978-1-4939-1194-3
https://doi.org/10.1111/sapm.12455
https://doi.org/10.1017/jnw.2025.10010

30

(171

[18]

[19]

[20]

[21]
[22]

[23]
[24]

[25]

[26]
[27]
[28]
[29]

[30]

(31]

(32]

[33]
[34]

[35]

Sebastian Ohrem and Wolfgang Reichel

Mandel R (2019) Uncountably many solutions for nonlinear Helmholtz and curl-curl equations. Advanced Nonlinear
Studies 19, 569-593. doi: 10.1515/ans-2019-2050

Mandel R (2022a) CRC1173 Preprint. A simple variational approach to nonlinear Maxwell equations. 2022/82. Karlsruhe
Institute of Technology Available at https://www.waves.kit.edu/downloads/CRC1173_Preprint_2022-82.pdf. doi: 10.5445/
1R/1000154207

Mandel R (2022b) Ground states for Maxwell’s equations in nonlocal nonlinear media. Partial Differential Equations and
Applications (PDEA) 3, 22, 16. doi: 10.1007/s42985-022-00159-2

McLeod JB, Stuart CA and Troy WC (1992) An exact reduction of Maxwell’s equations. In Nonlinear diffusion equations
and their equilibrium states, 3 (Gregynog, 1989). Progress in Nonlinear Differential Equations and Their Applications
(PNLDE), (Birkhduser Boston, Boston, MA, pp. 391-405).

Mederski J (2015) Ground states of time-harmonic semilinear Maxwell equations in R> with vanishing permittivity. Archive
for Rational Mechanics and Analysis 218, 825-861. doi: 10.1007/s00205-015-0870-1

Mederski J and Reichel W (2023) Travelling waves for Maxwell’s equations in nonlinear and nonsymmetric media.
NoDEA - Nonlinear Differential Equations and Applications 30, 22, 38. doi: 10.1007/s00030-022-00824-w

Mederski J, and Schino J (2022) Nonlinear curl-curl problems in R3. Minimax Theory and its Applications T, 339-364.
Mederski J, Schino J and Szulkin A (2020) Multiple solutions to a nonlinear curl—curl problem in R3. Archive for Rational
Mechanics and Analysis 236, 253-288. doi: 10.1007/s00205-019-01469-3

Ohrem S and Reichel W (2024) CRC 1173 Preprint. Existence of traveling breather solutions to cubic nonlinear Maxwell
equations in waveguide geometries. 2024/15 Karlsruhe Institute of Technology. Available at. https://www.waves.kit.edu/
downloads/CRC1173_Preprint_2024-15.pdf. doi: 10.5445/IR/1000172960.

Pelinovsky DE, Simpson G and Weinstein MI (2012) Polychromatic solitary waves in a periodic and nonlinear Maxwell
system. SIAM Journal on Applied Dynamical Systems 11, 478-506. doi: 10.1137/110837899

Stuart CA (1990) Self-trapping of an electromagnetic field and bifurcation from the essential spectrum. Archive for Rational
Mechanics and Analysis 113, 65-96. doi: 10.1007/BF00380816

Stuart CA (2004) Modelling axi-symmetric travelling waves in a dielectric with nonlinear refractive index. Milan Journal
of Mathematics 72, 107-128. doi: 10.1007/s00032-004-0035-4.

Stuart CA and Zhou HS Axisymmetric TE-modes in a self-focusing dielectric. SIAM Journal on Mathematical Analysis
37, 218-237. doi: 10.1137/S0036141004441751

Stuart CA and Zhou HS (1996) A variational problem related to self-trapping of an electromagnetic field.
Mathematical Methods in the Applied Sciences 19, 1397-1407. doi: 10.1002/(SICI)1099-1476(19961125)19:17<1397:
AID-MMAS833>3.0.CO;2-B

Stuart CA, and Zhou HS (2001) Existence of guided cylindrical TM-modes in a homogeneous self-focusing dielectric.
Annales de I’Institut Henri Poincaré C Anal. Non Linéaire 18, 69-96. doi: 10.1016/S0294-1449(00)00125-6

Stuart CA and Zhou HS (2003) A constrained minimization problem and its application to guided cylindrical TM-
modes in an anisotropic self-focusing dielectric. Calculus of Variations and Partial Differential Equations 16, 335-373.
doi: 10.1007/s005260100153

Stuart CA and Zhou HS (2010) Existence of guided cylindrical TM-modes in an inhomogeneous self-focusing dielectric.
Mathematical Models and Methods in Applied Sciences 20, 1681-1719. doi: 10.1142/S0218202510004751

Temme NM (1996) Special functions: An Introduction to the Classical Functions of Mathematical Physics., New York:
Wiley.

Willem M (1996) Minimax theorems. vol. 24. Progress in Nonlinear Differential Equations and their Applications
(Birkhauser Boston, Inc. Boston, MA x+162). doi: 10.1007/978-1-4612-4146-1

Cite this article: Ohrem S and Reichel W (2025) Travelling breather solutions in waveguides for cubic nonlinear Maxwell equations with retarded
material laws. Journal of Nonlinear Waves, 1-30. https://doi.org/10.1017/jnw.2025.10010

https://doi.org/10.1017/jnw.2025.10010 Published online by Cambridge University Press


https://doi.org/10.1515/ans-2019-2050
https://www.waves.kit.edu/downloads/CRC1173_Preprint_2022-82.pdf
https://doi.org/10.5445/IR/1000154207
https://doi.org/10.5445/IR/1000154207
https://doi.org/10.1007/s42985-022-00159-2
https://doi.org/10.1007/s00205-015-0870-1
https://doi.org/10.1007/s00030-022-00824-w
https://doi.org/10.1007/s00205-019-01469-3
https://www.waves.kit.edu/downloads/CRC1173_Preprint_2024-15.pdf.
https://www.waves.kit.edu/downloads/CRC1173_Preprint_2024-15.pdf.
https://doi.org/10.5445/IR/1000172960
https://doi.org/10.1137/110837899
https://doi.org/10.1007/BF00380816
https://doi.org/10.1007/s00032-004-0035-4
https://doi.org/10.1137/S0036141004441751
https://doi.org/10.1002/(SICI)1099-1476(19961125)19:17<1397: AID-MMA833>3.0.CO;2-B
https://doi.org/10.1002/(SICI)1099-1476(19961125)19:17<1397: AID-MMA833>3.0.CO;2-B
https://doi.org/10.1016/S0294-1449(00)00125-6
https://doi.org/10.1007/s005260100153
https://doi.org/10.1142/S0218202510004751
https://doi.org/10.1007/978-1-4612-4146-1
https://doi.org/10.1017/jnw.2025.10010
https://doi.org/10.1017/jnw.2025.10010

	Travelling breather solutions in waveguides for cubic nonlinear Maxwell equations with retarded material laws
	1. Introduction
	1.1. Examples
	1.2. Main theorem
	1.2.1. Measures on torus and real line, periodic reduction of a measure
	1.2.2. Instantaneous vs. retarded χ(1)-contribution
	1.2.3. Fourier transform
	1.2.4. Cylindrical and slab geometry

	1.3. Outline of paper

	2. Variational problem
	3. Existence of ground states
	3.1. Proof of Theorem 3.1 for (A6a) and the purely periodic case of (A6b)
	3.2. Proof of Theorem 3.1 for (A6b)

	4. Regularity
	5. Modifications for the cylindrical geometry
	5.1. Modifications for Sections 2 and 3
	5.2. Modifications for Section 4

	References


