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A drift-diffusion model for charge transport in an organic bulk heterojunction solar cell,

formed by conjoined acceptor and donor materials sandwiched between two electrodes, is

formulated. The model accounts for (i) bulk photogeneration of excitons, (ii) exciton drift and

recombination, (iii) exciton dissociation (into polarons) on the acceptor–donor interface, (iv)

polaron recombination, (v) polaron dissociation into a free electron (in the acceptor) and a

hole (in the donor), (vi) electron/hole transport and (vii) electron–hole recombination on the

acceptor–donor interface. A finite element method is employed to solve the model in a cell with

a highly convoluted acceptor/donor interface. The solutions show that, with physically realistic

parameters, and in the power generating regime, the solution varies little on the scale of the

micro-structure. This motivates us to homogenise over the micro-structure; a process that

yields a far simpler one-dimensional effective medium model on the cell scale. The comparison

between the solution of the full model and the effective medium (homogenised) model is very

favourable for applied voltages less than the built-in voltage (the power generating regime)

but breaks down as the applied voltages increases above it. Furthermore, it is noted that the

homogenisation technique provides a systematic way to relate effective medium modelling of

bulk heterojunctions [19, 25, 36, 37, 42, 59] to a more fundamental approach that explicitly

models the full micro-structure [8, 38, 39, 58] and that it allows the parameters in the effective

medium model to be derived in terms of the geometry of the micro-structure. Finally, the

effective medium model is used to investigate the effects of modifying the micro-structure

geometry, of a device with an interdigitated acceptor/donor interface, on its current–voltage

curve.

Key words: Shockley model, drift diffusion, asymptotic analysis, photovoltaic,

homogenisation.

1 Introduction

Organic photovoltaics (OPVs) are a relatively new technology [24] that offers the prospect

of cheap mass produced solar cells manufactured by printing techniques such as roll to
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roll processing [28]. The energy efficiency of these devices has increased rapidly within

the past 10 years [13] and they are rapidly approaching the point at which they will be

able to compete in the commercial market with standard inorganic devices; currently they

have maximum power conversion efficiencies in excess of 13% [13].

Photovoltaics are typically formed from two (or possibly more) semiconducting mater-

ials with different electrical properties that give the device the characteristics of a diode.

Thus, positive charge carriers (holes) move readily across the device in one direction, but

not in the other, while negative charge carriers (free electrons) move easily in the opposite

direction, but not in the same direction as the holes. The device functions by absorbing

light to create charge pairs (in the form of free electrons and holes) which then separate

because the two types of charge carrier move preferentially in different directions. This

gives rise to a flux of positive charges onto one electrode and of negative charges onto

the other electrode that may be used to drive a current around a circuit.

Here, we outline the important physical processes involved in the operation of OPVs

(noting that a detailed review of the physics of can be found in [12, 20]). Charge pair

generation typically occurs in a three step process. First, a photon (with an appropriate

energy) is absorbed within one of semiconductors to create a tightly bound excited charge

complex (exciton). This migrates within the material, by a diffusive process, and may

either recombine losing its energy to the device (releasing it as heat or light) or reach the

interface between the two semiconductors. If it reaches this interface, it forms a geminate

pair that, because of the differences in ionisation potential and electron affinity between

the two materials, is much less tightly bound than the exciton and so can separate into

a free electron in the acceptor and a free hole in the donor. However, geminate pair

recombination is thought to be a significant loss mechanism in organic devices [16, 26].

Once the charges have been separated they can either recombine on the interface (non-

geminate pair recombination) or migrate to the contacts where their charge can be

harvested to give useful electrical energy. Notably, non-geminate recombination is fairly

insignificant at short-circuit (V = 0, J = Jsc) but becomes much more significant towards

open circuit (V = Voc, J = 0) [16] in the regime that a solar cell typically operates.

A significant problem that arises in the design of organic devices is that the diffusion

lengthscale of an exciton (i.e., the typical distance an exciton diffuses before it recombines

and loses its energy) is much shorter, at around 10 nm [24], than the thickness of

semiconductor required to absorb a significant fraction of the incident light, which is

about 200 nm [24]. Consequently bilayer devices (see Figure 1(a)), formed from planar

slabs of acceptor and donor materials separated by a planar interface, are always very

inefficient [47] because if they are thick enough to absorb most of the incident light energy

a large majority of the excitons created will be too far from the interface to stand much

chance of diffusing to the interface before they recombine. Conversely, a device that is

sufficiently thin to allow most of the captured excitons to diffuse to its interface is only

capable of absorbing a small fraction of the incident light.

In order to circumvent this difficulty it is customary to make OPVs in the form

of bulk heterojunctions (see Figure 1(b) and (c)). These devices are sufficiently thick to

absorb most of the incident sunlight (>200 nm) but which possesses a highly convoluted

acceptor/donor interface with the property that most regions of the device are within an

exciton diffusion length of the interface (∼10 nm). Such convoluted interface geometries
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Figure 1. Schematic cross-sections of (a) a bilayer device, (b) a bulk heterojunction manufactured

by spin-coating, and (c) a bulk heterojunction manufactured by controlled vapour-deposition.

ensure that most of the excitons generated reach the interface and separate into electron

hole pairs rather than recombining. Three-dimensional images of bulk heterojunctions,

based on scanning electron microscopy and simulations of the annealing process used to

form the devices, are shown in [46]. Bulk heterojunctions can either be grown, for example,

by spin-coating and phase separation of the acceptor and donor in a drying solution (with

subsequent annealing to control domain size) [41] or by controlled organic vapour phase

deposition [60]. The former process leads to a uniform mixed thin film in which acceptor

and donor regions are intermingled (see Figure 1(b)), whereas the latter can be used to

produce a graded thin film in which a mixed layer separates donor and acceptor layers

(see Figure 1(c)). A notable advantage of manufacturing a device with capping layers of

pure donor and pure acceptor (as illustrated in Figure 1(c)) is that these can block the

transport of holes to the upper (electron extracting) electrode and conduction electrons

to the lower (hole extracting) electrode. Without capping layers the direction of charge

transport in the heterojunction is typically controlled by using electrodes with different

work functions [24].

Many theoretical studies of such bulk heterojunction devices have applied drift-

diffusion charge transport models to realistic device geometries focussing on the role

of the convoluted interface morphology in determining the electrical behaviour and ef-

ficiency of the device [8, 35, 38, 39, 58]. Other studies have used effective medium type

models in order to obtain a picture of the average electrical behaviour of solar cell on

the device lengthscale (∼200 nm) while smearing out the effects of the convoluted in-

terface (∼10 nm) [19, 25, 36, 37, 42, 59]. From a numerical viewpoint it is far easier to

solve the one-dimensional partial differential equations (PDEs) that result from pursuing

the effective medium approach than the two- or three-dimensional, highly heterogeneous,

PDE model that is a consequence of pursuing the more fundamental approach adopted

in [8,35,38,39,58]. Indeed, Kodali et al. [35] note that solving over a bulk heterojunction

geometry with physically realistic parameters requires the use of an extremely fine grid and

parallelised computational methods. However, the effective medium approaches employed

in [19,25,36,37,42,59] are ad-hoc and so unable to relate the coefficients in their equations

to the geometry of the micro-structure, or systematically account for the capping layers of
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unadulterated donor (or acceptor) material (seen for example in the devices manufactured

by [46, 60]).

It remains an open question when, and whether, an effective medium approach is

capable of genuinely approximating the full description of the device applied on a real

morphology. It is the aim of this work to address this question. We start with a drift

diffusion model that was formulated in [21,49], to describe a bilayer organic solar cell, and

validated against real data.1 We apply this model to a convoluted two-dimensional device

geometry and solve it numerically. We then compare the numerical solutions, for the two-

dimensional device geometry, to the results of a one-dimensional effective medium model

that is systematically derived from the full model by use of homogenisation techniques.

The results show that in the power generating regime (the regime of interest) the effective

Debye length of the material is large compared to the fine scale morphological structure

of the device, and there exists a good agreement between the solution to the full model

and the effective medium model. However in sufficiently strong forward bias, the applied

voltage exceeds the built-in voltage and there is a build-up in electron and hole density

because the electrons are driven away from the acceptor contact and the holes move away

from the donor contact. This increase in electron and hole density causes a corresponding

decrease in the effective Debye length until eventually it is reduced to the scale of the

fine structure and the effective medium approach breaks down. In this limit, we suggest

an alternative approach to approximating the full model. We finish by using the effective

medium model that we have derived to calculate the profiles of charge carrier densities

and the electric potential across the device and to calculate typical current–voltage

curves.

Before proceeding with the formulation of drift-diffusion model, we note that there is

also a considerable body of literature that investigates charge transport (and generation) in

OPVs with Monte-Carlo simulations (see, for example, [26,27,32,44,45]). These simulations

are particularly useful for examining the details of phenomena occurring on the molecular

scale, such as carrier trapping by heterogeneities in the HOMO2 and LUMO3 levels and

geminate pair recombination.

2 Model formulation

2.1 Governing equations

We begin by writing down the dimensional equations that model charge transport within

the cell and denote all dimensional variables by a ∗ superscript.

2.1.1 Electron and hole transport in the semiconductors

Consider a simple drift-diffusion model for the motion of holes and electrons in an

organic semiconducting device. This takes the usual form for such devices (see, for

1 This model is similar to the previous drift diffusion models for organic diode [17, 18].
2 Highest occupied molecular orbital: the analogue of the valence band edge in an inorganic

semiconductor.
3 Lowest unoccupied molecular orbital: the analogue of the conduction band edge in an inorganic

semiconductor.
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example, [8, 17, 18]) with the notable simplifications that there is no doping and that

hole density in the acceptor and electron density in the donor are negligible, a result

of the large differences in electron affinity and ionisation potential between the ac-

ceptor and donor materials. More details are provided in [21, 49]. The model consists

of conservation equations for the free electron number density n∗ and the hole number

density p∗

n∗ = 0 and q
∂p∗

∂t∗
+ ∇∗ · j∗

p = 0 for (x∗, y∗) ∈ Ωd, (2.1)

p∗ = 0 and q
∂n∗

∂t∗
−∇∗ · j∗

n = 0 for (x∗, y∗) ∈ Ωa, (2.2)

in which j∗
p is the hole current density, j∗

n is the electron current density, and the domains

Ωd and Ωa are those occupied by the donor and acceptor materials, respectively, as

illustrated, for example, in Figure 3.

The motion of both the holes and electrons is assumed to be governed by the standard

drift-diffusion model so that the electron and hole current densities are given by

j∗
p = −qDp

(
∇∗p∗ +

q

kT
p∗∇∗φ∗

)
, (2.3)

j∗
n = qDn

(
∇∗n∗ − q

kT
n∗∇∗φ∗

)
. (2.4)

Here, φ∗ is the electric potential, k is Boltzmann’s constant, T is absolute temperature,

and Dp and Dn are the hole and electron diffusion coefficients, respectively.

The electric potential φ∗ is governed by Poisson’s equation, which, on allowing for the

difference in permittivity between the two materials, gives

∇∗ ·
(
εd∇∗φ∗) = −qp∗ for (x∗, y∗) ∈ Ωd, (2.5)

∇∗ ·
(
εa∇∗φ∗) = qn∗ for (x∗, y∗) ∈ Ωa, (2.6)

where εd and εa are the permittivities of the donor and acceptor, respectively.

2.1.2 Boundary conditions at the contacts

There are two cases to be considered. In the first of these (illustrated in Figure 1(c))

blocking layers stop contact between the acceptor and the lower (hole extracting) electrodes

and between the donor and the upper (electron extracting) electrodes; appropriate Ohmic

boundary conditions therefore consist of imposing the electric potential φ∗ and electron

concentration n∗ on the upper electrode (y∗ = L), whilst imposing φ∗ and the hole

concentration p∗ on the lower electrode (y∗ = −L) such that

φ∗|y∗=−L =
V − Vbi

2
, φ∗|y∗=L = −V − Vbi

2
, (2.7)

p∗|y∗=−L = p−, n∗|y∗=L = n+. (2.8)

Here, Vbi is the built-in voltage across the device at equilibrium, arising from the difference

in the Fermi levels of the two semiconductors (in isolation), while V is the applied voltage
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across the device, and p− and n+ are known constants that depend upon the properties

of the contacts, see (2.20) and the discussion preceding it, for further details. In scenarios

in which the acceptor contacts the hole extracting lower electrode and the donor contacts

the electron extracting upper electrode (as illustrated in Figure 1(b)), the Ohmic boundary

conditions on the carrier concentrations (2.7) are replaced by

p∗|{y∗=−L}∩Ωd = p−, n
∗|{y∗=−L}∩Ωa = n−, p

∗|{y∗=L}∩Ωd = p+, n
∗|{y∗=L}∩Ωa = n+. (2.9)

It will be shown that (2.9) does not provide a particularly good description of the

behaviour of devices with the structure shown in Figure 1(b) and corrections to these

conditions will be considered in Section 6.

2.1.3 Exciton generation and recombination in the semiconducting materials

Excitons are generated on absorption of photons in both donor and acceptor materials,

although the rate of photon absorption (and thus also exciton generation) is typically

considerably larger in the polymeric donor material than in the acceptor,4 see, for example,

[36, 53]. Thus, if Aa and Ad are the fraction of photons absorbed in the acceptor and

donor per unit depth of material, and Q∗ is the photon flux, then the rate of exciton

generation per unit volume is AaQ
∗ in the acceptor and AdQ

∗ in the donor. In order to

calculate the photon flux as a function of position across the cell, we average the rate of

absorption across the cell from the acceptor and donor. Assuming that these have volume

fractions (as a function of depth y∗) of F(y∗) and 1 − F(y∗) and that the angle of

the incident radiation to the cell surface normal is θ (depicted in Figure 1(a)), the rate

of photon absorption per unit width of the cell is (AaF(y∗) + Ad(1 − F(y∗)))/ cos θ.

Furthermore, if the incident radiation intensity is Q0, then the photon flux striking the

surface of cell y = −L is Q0 cos θ. It follows that Q∗ satisfies the following initial value

problem in y∗:

∂Q∗

∂y∗
= − (AaF(y∗) + Ad(1 − F(y∗)))

cos θ
Q∗, Q∗|y∗=−L = Q∗

0 cos θ. (2.10)

We note that a more comprehensive treatment of light absorption and exciton gen-

eration would also account for frequency dependent variations in the absorption

spectrum.

Excitons are mobile and diffuse in the device until they either recombine (losing their

energy as they do so) or meet the acceptor/donor interface on which they are absorbed

and separated into a coulombically bound charge pair on either side of the interface (a

geminate pair). Assuming recombination rates of αa and αd, in the acceptor and donor

regions, respectively, and using similar notation for the exciton diffusion coefficients Da

and Dd, leads to conservation laws for the exciton number densities c∗a and c∗d in the

4 These are frequently formed from a C60 compound.

https://doi.org/10.1017/S0956792516000541 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792516000541


Effective medium equations for bulk heterojunction organic solar cells 979

acceptor and donor regions, respectively,

∂c∗a
∂t∗

= Da∇∗2
c∗a +

Aa

cos θ
Q∗(y∗) − αac

∗
a in Ωa, (2.11)

∂c∗d
∂t∗

= Dd∇∗2
c∗d +

Ad

cos θ
Q∗(y∗) − αdc

∗
d in Ωd. (2.12)

Furthermore, we assume that there is no flux of excitons from the contacts, so that

∂c∗d
∂y∗

∣∣∣∣
y∗=−L

= 0 and
∂c∗a
∂y∗

∣∣∣∣
y∗=L

= 0, (2.13)

and that any exciton that reaches the acceptor/donor interface ∂Ωi is immediately ab-

sorbed (forming a electrostatically bound geminate charge pair) so that

c∗a |∂Ωi
= 0, c∗d |∂Ωi

= 0. (2.14)

Here, we denote the sections of the boundaries to Ωa and Ωd that are common to both

(i.e., the acceptor/donor interface) by ∂Ωi.

One of the keys to understanding the efficiency of the device is the fate of the geminate

charge pairs. These may either recombine (geminate recombination), resulting in the loss

of their energy, or separate into a free electron in the acceptor and a free hole in the

donor which can be subsequently harvested at the contacts. The theoretical treatment of

this process is beyond the scope of this work but we note that there have been a number

of works that simulate it via Monte-Carlo methods, see, for example, [26, 27, 44, 57]. The

results of these treatments can be summarised by a single parameter γeff , which gives

the fraction of excitons absorbed onto the interface that eventually dissociate into a free

electron (in the acceptor) and hole (in the donor). The fate of the remaining fraction 1−γeff
is geminate recombination on the boundary. Furthermore, the simulations conducted by

Offermans et al. [44] suggest that γeff is field dependent (larger in reverse bias than

forward bias) but that at room temperature this is not a large effect.

2.1.4 Jump conditions on the donor/acceptor interface ∂Ωi

There is assumed to be no significant surface charge on the interface ∂Ω, implying

continuity of both electric potential and the normal component of the electric displacement

on ∂Ωi,

[φ∗]∂Ωi
= 0,

[
εN · ∇∗φ∗]

∂Ωi
= 0. (2.15)

Here, N is the unit normal to the interface (pointing from the donor into the acceptor).

Charge conservation at the interface implies continuity of current across ∂Ωi, that is,

j∗
n · N |∂Ωi

= j∗
p · N |∂Ωi

. (2.16)

In addition, we need to account for interfacial conservation of electrons and holes. These

are created in pairs by the dissociation of excitons (resulting in equal fluxes j∗phot/q of
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electrons into the acceptor and holes into the donor) and destroyed (in pairs) by non-

geminate recombination (resulting in equal fluxes R∗(n∗, p∗) of electrons onto the interface

from the acceptor and holes onto the interface from the donor). These arguments lead to

the interfacial conservation laws:

j∗
n · N |∂Ωi

= j∗
p · N |∂Ωi

= qR
(
n∗|∂Ωi

, p∗|∂Ωi

)
− j∗phot. (2.17)

As noted above generation at the interface occurs as a result of incident excitons

forming interfacially bound geminate pairs of which only a fraction γeff dissociate into an

electron a hole, with the remaining fraction 1 − γeff undergoing geminate recombination

(and losing their energy to heat or light). On accounting for the fluxes of excitons onto

the interface, the generated flux j∗phot/q of electrons and holes away from the interface is

given by

j∗phot = qγeff

(
Da

∂c∗a
∂N∗

∣∣∣∣
∂Ωi

− Dd

∂c∗d
∂N∗

∣∣∣∣
∂Ωi

)
. (2.18)

Here, we consider only a constant rates of geminate recombination but this could easily

be modified to cover field dependent rates of dissociation (as described in [5]) by making

γeff a function of the electric field on the boundary.

2.1.5 The (non-geminate) recombination rate and its relation to thermodynamically

consistent Ohmic boundary conditions

We now examine the model and ensure that the parameters are consistent with the

idea that when the device is in equilibrium, detailed balance reinforces no current flow.

Typically, recombination rates are modelled by an algebraic expression that depends on

local electron and hole concentrations (such as the Shockley Read Hall rate, see, e.g., [42])

that accounts for flow of charge carriers into intermediate trapped states. Here, we write

the interfacial recombination in the generic form

R
(
n∗|∂Ωi

, p∗|∂Ωi

)
=

(
n∗|∂Ωi

p∗|∂Ωi
−N2

i

)
Θ

(
n∗|∂Ωi

, p∗|∂Ωi

)
, (2.19)

noting that, at thermal equilibrium, the term (n∗|∂Ωi
p∗|∂Ωi

− N2
i ) ensures a balance

between thermal generation and recombination of the form n∗|∂Ωi
p∗|∂Ωi

= N2
i . It is

modulated by the function Θ(n∗|∂Ωi
, p∗|∂Ωi

), which accounts for the particular mechan-

isms involved in recombination [33]. In all the simulations we present, we consider a

Langevin recombination along ∂Ωi (as is standard in the literature, e.g., [8, 36]) of the

form R
(
n∗|∂Ωi

, p∗|∂Ωi

)
= n∗|∂Ωi

p∗|∂Ωi
Θ

(
n∗|∂Ωi

, p∗|∂Ωi

)
in which we neglect the thermal

generation term N2
i because it is, in physically realistic regimes, vanishingly small.

In order for the device to have an equilibrium that satisfies detailed balance, there must

be a solution (n∗eqm(x), p∗eqm(x∗), φ∗
eqm(x∗)) to the model at zero applied potential V = 0 and

zero generation j∗phot ≡ 0 for which the electric currents are identically zero everywhere

j∗
n ≡ 0 and j∗

p ≡ 0. In particular, this requires that R(n∗eqm, p
∗
eqm) ≡ 0 along the entire
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interface ∂Ωi. Such an equilibrium solution takes the form

n∗eqm = n∗+ exp

(
q

kT

(
φ∗ − Vbi

2

))
in Ωa, p

∗
eqm = p− exp

(
− q

kT

(
φ∗ +

Vbi

2

))
in Ωd.

If the recombination R(n∗, p∗) along the interface is to be zero, it is necessary that

np|∂Ωi
= N2

i . Substitution of the above formulae for n∗eqm and p∗eqm into this yields the

following relations between the parameters in the Ohmic boundary conditions (2.8) and

(2.9) and the quantities Ni and Vbi:

n− = NiΥ exp
(
− qVbi

2kT

)
, p− = Ni

Υ
exp

(
qVbi
2kT

)
, n+ = NiΥ exp

(
qVbi
2kT

)
,

p+ = Ni

Υ
exp

(
− qVbi

2kT

)
,

(2.20)

for some dimensionless parameter Υ .

2.2 The non-dimensional model

Typical heterojunction devices are characterised by two lengthscales, namely the device

lengthscale L and the micro-structure lengthscale, denoted by h. Motivated by the use of

this device to generate current under illumination, we non-dimensionalise electron and

hole current densities j∗
n and j∗

p with the typical photogenerated current. This is calculated

by noting that the typical number of excitons generated per unit cross-sectional of the

device (normal to the y-axis) is Q0AdL; assuming that a significant number of these go

on to generate electron–hole pairs that lead to an estimate of the photogenerated current

density of qQ0AdL. Assuming that a significant portion reaches the acceptor/donor

interface and balancing the diffusive terms in (2.11)–(2.12) with the generation terms, over

the micro-structure lengthscale h, leads to an estimate of the exciton number density c

of h2Q0Ad/D̄ (where D̄ is a typical exciton diffusivity). On choosing to scale the electric

potential with the thermal voltage kT/q and distances with the cell half-width L, we

obtain the following scalings:

x∗ = Lx, t∗ =
L2

D̄
t, n∗ =

Q0AdL
2

D̄
n, p∗ =

Q0AdL
2

D̄
p, Θ∗ =

D̄2R0

Q2
0A2

dL
4
Θ,

φ∗ =
kT

q
φ, c∗a =

h2Q0Ad

D̄
ca, c∗d =

h2Q0Ad

D̄
cd, j∗

n = qQ0AdLjn,

j∗
p = qQ0AdLjp, R∗ = R0R, Q∗ = Q0Q, j∗phot = qQ0AdhJphot.

(2.21)

Substitution of the above scalings into (2.1)–(2.8) and (2.10)–(2.18), the model for a device

with blocking layers (cf., Figure 1(c)) yields, on setting D̄ = (DaDd)
1/2 and D̄ = (DnDp)

1/2
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and enforcing the detailed balance relation (2.20), the dimensionless equations

∂p

∂t
+ ∇ · jp = 0

jp = −κ (∇p+ p∇φ)

δ2ν
∂cd
∂t

= δ2χ∇2cd + Q(y) − βdcd

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
in Ωd, (2.22)

∂n

∂t
−∇ · jn = 0

jn =
1

κ
(∇n− n∇φ)

δ2ν
∂ca
∂t

=
δ2

χ
∇2ca + GaQ(y) − βaca

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
in Ωa, (2.23)

∇ ·
((

EHd +
1

E (1 −Hd)

)
∇φ

)
=

1

λ2
((1 −Hd)n−Hdp) in Ωd ∪ Ωa, (2.24)

∂Q

∂y
= − K

cos θ
((1 − F(y)) + GaF(y))Q in Ωd ∪ Ωa, (2.25)

jn · N |∂Ωi
= jp · N |∂Ωi

= δ(ΓR(n, p) − Jphot), ca|∂Ωi
= 0, cd|∂Ωi

= 0, (2.26)

φ =
Φ− Φbi

2

p =
n̂

Υ

Q = cos θ

∂cd
∂y

= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
on y = −1, and

φ = −Φ− Φbi

2

n = n̂Υ

∂ca
∂y

= 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
on y = 1. (2.27)

In the case of a device without blocking layers (cf., Figure 1(b)), substitution of the

scalings (2.21) into (2.1)–(2.7) and (2.9)–(2.18) yields identical dimensionless equations

with the exception that the boundary conditions on the electron and hole concentrations

now read

n|{y=−1}∪Ωa = n̂Υ e−Φbi , p|{y=−1}∪Ωd =
n̂

Υ
, n|{y=1}∪Ωa = n̂Υ , p|{y=1}∪Ωd =

n̂

Υ
e−Φbi . (2.28)

The interfacial recombination rate R(n, p) and the characteristic function Hd are defined

by

R(n, p) = Θ(n, p)(np− n̂2e−Φbi ) (2.29)

and Hd = 1 in Ωd and Hd = 0 in Ωa, (2.30)

and the interfacial photocurrent by

Jphot = δγeff

(
1

χ
∇ca

∣∣∣∣
∂Ωi

− χ∇cd

∣∣∣∣∣
∂Ωi

)
· N . (2.31)
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The dimensionless parameters are defined by

n̂ =
Ni(DnDp)

1/2

Q0AdL2
eΦbi/2, κ =

(
Dp

Dn

)1/2

, Φ =
q

kT
V , Φbi =

q

kT
Vbi,

E =

(
εd

εa

)1/2

, ν =

(
DpDn

DaDd

)1/2

, χ =

(
Dd

Da

)1/2

, Γ =
R0

Q0Adh
,

K = LAd, λ =
Ld

L
, δ =

h

L
,

βa =
αah

2

(DaDd)1/2
, βd =

αdh
2

(DaDd)1/2
, Ga =

Aa

Ad

,

where Ld is the Debye length defined (in terms of the typical charge density in the device,

ρtyp, arising from charge carrier generation) by

Ld =

(
(εaεd)

1/2kT

qρtyp

)1/2

where ρtyp = q
Q0AdL

2

(DnDp)1/2
.

Henceforth, for simplicity of notation, we drop the ∗’s from the dimensionless variables.

2.2.1 Parameter estimates

We estimate the size of the dimensionless parameters in the model primarily on the

basis of the work by Koster et al. [36] who consider a representative polymer/fullerene

heterojunction device made from the organic semiconductors PPV and PCBM (Poly (p-

phenylene vinylene) and Phenyl-C61-butyric acid methyl ester, respectively). The material

parameters given therein are

εa = 3 × 10−11 As V−1 m−1, εd = 3 × 10−11 As V−1 m−1, Dn = 6.5 × 10−9 m2 s−1,

Dp = 7.8 × 10−10 m2 s−1, Vbi = 1.34V, Ni exp

(
qVbi

2kT

)
= 2.5 × 1025 m−3,

L = 120 × 10−9 m Q0Ad = 5.4 × 1027 m−3 s−1.

Exciton diffusion lengths (Dd/αd)
1/2 in PPV are around 5 nm [40], and although we have

no direct information about h the size of the device micro-structure, we expect that, since

it is able to convert most of the light it absorbs in reverse bias, h is smaller or comparable

to 5 nm. We take h = 3 nm. In addition, the generation of excitons, via the absorption

of light, is typically significantly higher in a polymeric donor material than in a fullerene

acceptor (e.g., [53]) so that Ga < 1, although this depends strongly on the frequency of

the incident radiation. In light of the above discussion, we make the following estimates

of important parameters in the model:

λ = 0.1, κ ∼ 0.35, δ = 0.025, Φbi = 50, n̂ ∼ 720, E = 1, βd ∼ 1, βa ∼ 1.

Furthermore, Koster et al. [36] asserts that the light absorption length is much greater

than the width of the device, so that K � 1.
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3 Numerical solution to the full model in an interdigitated device

In order to solve the dimensionless equations (2.22)–(2.31) over a region with an interdi-

gitated interface, ∂Ωi (such as that depicted in Figure 3), we use a finite element scheme

based on a piecewise linear approximation to the solution. The full details of this scheme

are outlined in Appendix B.

The main difficulty that arises in approximating the model numerically arises because

p and n are defined only in the domains Ωd and Ωa, respectively, and are related solely

by a condition along the common interface between these two domains ∂Ωi. In turn, this

interface lies in the interior of the domain Ωd ∪ Ωa on which c and φ must be solved.

The two main methods for tackling such problems are known as fitted and unfitted finite

element methods. In the former the mesh is isoparametrically fitted to the interface ∂Ωi

whereas in the latter the mesh is independent of ∂Ωi; a detailed description of these

methods is given in [4]. Here, we opt for a fitted finite element method and for simplicity

we take our triangulated mesh, T h, of Ω to be such that the curve ∂Ωi is approximated

by a piecewise affine curve ∂Ωh
i that is comprised of triangle edges so that each triangle

of T h lies either entirely in Ωd or Ωa. A further difficulty that arises, in some parameter

regimes, is the appearance of large gradients in the solution in the neighbourhood of the

interface, and in order to deal with this we employ a non-uniform mesh.

The model (2.22)–(2.31) comprises of a system of strongly coupled partial differential

equations; however, by using a semi-implicit backward Euler finite element approximation

it can be reduced to an uncoupled system of linear equations, (B 7)–(B 11), for the

approximate solutions ckh, φ
k
h, p

k
h and nkh. In order to obtain the solution at the k-th time

step, from the data for pk−1
h , nk−1

h and ck−1
h at the k − 1-th time step, we first solve (B 7)

and (B 8) for ckh, before solving (B 9) for φkh and finally use these results (together with the

data from the k − 1-th time step) to solve (B 10) and (B 11) for pkh and nkh.

Numerical simulations of bilayer devices with sinusoidal interfaces have previously

been presented in [9] and simulations for more realistic devices with complex active layer

morphologies can be found in [35]. In [7], numerical examples showing the steady-state

device behaviour, calculated from different applied potentials, of the organic photovoltaic

bilayer devices are presented, whereas in [19] the authors apply Rothe’s method, which

is an advanced time-step control technique, to accurately estimate photocurrent transient

times. The software package WIAS-TeSCA [23] has very efficient numerical procedures

for solving two- and three-dimensional finite element approximations of drift-diffusion

and photovoltaic models; the main ideas of these procedures are given in [22]. In

[2], three-dimensional simulations, using WIAS-TeSCA, of a thin film heterojunction

solar cell with a point contact/defect passivation structure at the heterointerface are

presented.

3.1 The geometry

In order to illustrate the nature of the solutions in a typical micro-structured geometry

we solve in the domain Ω between contacts at y = −1 and y = 1 and with a 2δ-periodic

interface ∂Ωi, separating the acceptor and donor regions (Ωa and Ωd, respectively), given

by the curve y = 0.7 cos(πδx), see Figure 3.
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3.2 Results

In all the simulations we present, we consider a Langevin recombination along ∂Ωi,

e.g., [8, 36], of the form

R(n, p) = np (3.1)

in which we neglect the thermal generation term −n̂2e−Φbi because it is, in physically

realistic regimes, vanishingly small. We choose the other parameters in the problem to be

given by, what we believe to be, physically realistic values:

δ = 0.025, λ = 0.4, κ = 0.35, n̂ ∼ 750, E = 1, βd = 1, βa = 1, K = 0.1,

Γ = 2 × 10−8, γeff = 0.75, Ga = 0.3, ν = 1, χ = 1, δ = 0.025, Υ = 1, (3.2)

and we took the incident radiation to be normal to the cell so that θ = 0. On noting

that the solution depends only on the dimensionless applied bias Φ and built-in voltage

through their difference Φ − Φbi, we choose to illustrate the nature of the solution by

looking at three values of this quantity, namely Φ−Φbi = −6, Φ−Φbi = 0 and Φ−Φbi = 3,

representing regimes in which the applied potential is held below, at, and above the built-

in voltage, respectively. The results of three simulations are shown in Figure 2, where,

for ease of visibility, the domain Ω has been rescaled so that its length is the same size

as its height. Here, contour plots of the stationary solution for p (left hand), n (centre)

and φ (right hand) are presented, with Φ − Φbi = −6 (upper), Φ − Φbi = 0 (centre) and

Φ − Φbi = 3 (lower). It is notable that for Φ − Φbi = −6, the solution is almost entirely

independent of x, i.e., it does not ‘see’ the fine details of the micro-structure. In fact this

is a characteristic feature of all solutions for which Φ < Φbi, and indeed it can be seen

that even for Φ = Φbi the dependence of the solution on x is relatively weak. However,

this feature of the solution changes rapidly as Φ increases above the built in voltage;

thus, we see, where Φ− Φbi = 3, the development of boundary layers about the interface

(∂Ωi) between the acceptor and donor, even though in dimensional terms of the applied

potential, has only exceeded the built-in voltage by 3 thermal voltages (corresponding to

0.075 V at room temperature).

4 Derivation of the homogenised equations as δ→0

A noteworthy feature of the numerical solution to the (full) model of the bulk hetero-

junction is that, for applied potentials Φ less than the built-in voltage Φbi, the solution

does not change significantly over the dimensions of the micro-structure, and so for the

interdigitated morphology that we considered in Section 3.2, the solution is almost entirely

independent of the spatial variable x. This suggests that, at least in the regime Φ < Φbi, it

is appropriate to use the method of homogenisation to derive effective medium equations

for the device. Since the regime Φ < Φbi typically corresponds to the power generating

regime of the device, the resulting effective medium equations can be used to accurately

characterise its electrical behaviour relevant to its use as a solar cell. Considerable savings

in numerical time and effort can be obtained by using effective medium equations in

place of the full model (which, as discussed in Section 3.2, is hard to solve). Furthermore,

use of effective medium equations, in which an intricate micro-structure is replaced by
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Figure 2. Stationary solutions of the full dimensionless model, with parameter values given in

(3.2), ph, (left), nh, (centre), φh, (right) for Φ− Φbi = −6 (upper), Φ− Φbi = 0 (middle), Φ− Φbi = 3

(lower).

functions representing averaged features of this micro-structure, has the advantage that it

allows device behaviour to be understood in terms of the gross (averaged) micro-structural

features.

Here, we consider the derivation of homogenised equations from the non-dimensional

model (given in (2.22)–(2.31) based upon the disparity between the scale of the device

micro-structure h and its width L; formally, we take the limit δ = h/L→0. We treat

two separate scenarios, one in which the device has an interdigitated structure (as de-

picted later in Figure 3) and the other in which the device has a locally periodic

three-dimensional structure (such as that depicted later in Figure 6). These two scenarios

are described in Sections 4.1 and 4.2. The first of these scenarios is considerably easier

to treat mathematically and is so described in detail in the main text, whereas the de-

tails of the derivation for the locally periodic structure (whilst more pertinent to bulk

heterojunctions) are relegated to Appendix A. In both cases, however, the homogenised

equations have the same form. Comparison between the results of the homogenised model
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y = −1

Donor

Acceptor

Ωd

Ωa

y = 1

y = f(x/δ)

∂Ω

Figure 3. The geometry of the cell.

derived in Section 4.1 and the full non-dimensional equations (2.22)–(2.31) is then made in

Section 3.

4.1 Homogenisation for an interdigitated device

4.1.1 The geometry of the device

Consider a device with a two-dimensional, highly convoluted, interdigitated interface

between the two semiconductors that is given by the periodic curve

y = f(ξ), where x = δξ and f is a two-periodic even function.

The problem can then be considered on a periodic subdomain, as shown in Figure 4, with

suitable periodic conditions on the left and right boundaries. Here, it is helpful to express

this curve in terms of its inverse ξ = 1 − F(y), where y ∈ (α, β) and ξ ranges between

0 and 1 (see Figure 4). Note that F(y) can, as in equation (2.25), be identified as the

volume fraction of the acceptor material at depth y. With this definition of the interface

in 0 < ξ < 1, the unit normal to the interface can be expressed in the form

N =
∇(ξ − (1 − F(y)))

|∇(ξ − (1 − F(y)))| =
ex + δF ′(y)ey√

1 + δ2F ′(y)2
, (4.1)

where ex and ey are unit vectors in the direction of positive x and y, respectively, and a

prime denotes a derivative with respect to y. In (4.1), the gradient operator is considered

with respect to x and y, and in terms of the variables ξ and y, it takes the form

∇ =
ex
δ

∂

∂ξ
+ ey

∂

∂y
.

4.1.2 Homogenised equations from the two-dimensional model

We homogenise over the micro-structure of the device in the region α < y < β, where

acceptor and donor materials interpenetrate (see Figure 4). We follow standard procedure

and assume that the micro-structure lengthscale δ � 1 and that the function (ΓR(n, p) −
Jphot) and parameters λ, Φ, Φbi, E , K , βa, βd, ν, κ and χ are all formally O(1).
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ξ = 1 − F (y)

β

1

0 ξ

α

Ωd

N̂

Donor

y

1

-1

Acceptor

Ωa

Mixed
Region

Figure 4. A schematic of the subdomain over which the model is solved.

Asymptotic expansion

We write jn = unex + vney and jp = upex + vpey and expand as follows:

n = n0(y, t) + δ2n2(ξ, y, t) + · · · , p = p0(y, t) + δ2p2(ξ, y, t) + · · · ,
φ = φ0(y, t) + δ2φ1(ξ, y, t) + · · · , Jphot = Jphot,0 + · · · ,

cd = cd,0(ξ, y, t) + · · · , ca = ca,0(ξ, y, t) + · · · ,
un = δun,1(ξ, y, t) + · · · , vn = vn,0(y, t) + · · · ,
up = δup,1(ξ, y, t) + · · · , vp = vp,0(y, t) + · · · .

On substitution into (2.23)–(2.24), this yields, to leading order in the region α < y < β,

∂n0

∂t
− ∂un,1

∂ξ
− ∂vn,0

∂y
= 0 for 1 − F(y) < ξ < 1, (4.2)

∂p0

∂t
+

∂up,1
∂ξ

+
∂vp,0
∂y

= 0 for 0 < ξ < 1 − F(y), (4.3)

vn,0 = κn

(
∂n0

∂y
− n0

∂φ0

∂y

)
for 1 − F(y) < ξ < 1, (4.4)

vp,0 = −κp
(

∂p0

∂y
+ p0

∂φ0

∂y

)
for 0 < ξ < 1 − F(y), (4.5)

∂

∂ξ

(
(
1

EH(ξ − 1 + F(y)) + EH(1 − F(y) − ξ))
∂φ1

∂ξ

)
+

∂

∂y

(
(
1

EH(ξ − 1 + F(y)) + EH(1 − F(y) − ξ))
∂φ0

∂y

)
=

1

λ2
(H(ξ − 1 + F(y))n0 −H(1 − F(y) − ξ)p0) , (4.6)
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χ
∂2cd,0

∂ξ2
+ Q(y) − βdcd,0 = 0, for 0 < ξ < 1 − F(y), (4.7)

1

χ

∂2ca,0

∂ξ2
+ GaQ(y) − βaca,0 = 0, for 1 − F(y) < ξ < 1, (4.8)

Jphot,0 = γeff

(
1

χ

∂ca,0
∂ξ

∣∣∣∣
ξ=(1−F(y))+

− χ
∂cd,0
∂ξ

∣∣∣∣
ξ=(1−F(y))−

)
. (4.9)

The symmetry of the problem and the interface conditions (2.26)–(2.27) give

∂n2

∂ξ

∣∣∣∣
ξ=1

= 0, un,1|ξ=1 = 0,
∂φ1

∂ξ

∣∣∣∣
ξ=1

= 0,

∂p2

∂ξ

∣∣∣∣
ξ=0

= 0, up,1|ξ=0 = 0,
∂φ1

∂ξ

∣∣∣∣
ξ=0

= 0,
(4.10)

∂cd,0
∂ξ

∣∣∣∣
ξ=0

= 0, cd,0|ξ=1−F(y) = 0, ca,0|ξ=1−F(y) = 0,
∂ca,0
∂ξ

∣∣∣∣
ξ=1

= 0, (4.11)

(
un,1 + F ′(y)vn,0

)∣∣
ξ=1−F(y)

= ΓR(n0, p0) − Jphot|ξ=1−F(y) , (4.12)(
up,1 + F ′(y)vp,0

)∣∣
ξ=1−F(y)

= ΓR(n0, p0) − Jphot|ξ=1−F(y) . (4.13)

Integrating (4.2) with respect to ξ between ξ = 1 − F(y) and 1 yields

F(y)
∂n0

∂t
− [un,1]

1
ξ=1−F(y) − F(y)

∂vn,0
∂y

= 0.

Applying the boundary conditions (4.10a), (4.10b), and (4.12) leads to an equation for

n0(y, t):

F(y)
∂n0

∂t
− ∂

∂y

(
F(y)vn,0

)
= Jphot − ΓR(n0, p0) in α � y � β. (4.14)

A similar equation can be derived for p0(y, t) by integrating (4.3) with respect to ξ between

ξ = 0 and 1 − F(y); and applying the boundary conditions (4.10d), (4.10e), and (4.13) to

the result. This results in the following:

(1 − F(y))
∂p0

∂t
+

∂

∂y

(
(1 − F(y))vp,0

)
= Jphot − ΓR(n0, p0) in α � y � β. (4.15)

The equation for φ0(y, t) can be derived by a similar procedure, namely integrating (4.5)

between ξ = 0 and 1 and applying the symmetry conditions (4.10c) and (4.10f) to the

result. This yields

∂

∂y

(
(
1

E F(y) + E(1 − F(y)))
∂φ0

∂y

)
=

1

λ2
(F(y)n0 − (1 − F(y))p0) in α � y � β. (4.16)

https://doi.org/10.1017/S0956792516000541 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792516000541


990 G. Richardson et al.

The three homogenised equations (4.14)–(4.16) for the five quantities n0(y, t), p0(y, t),

φ0(y, t), vn,0(y, t), and vp,0(y, t) couple to the two equations (4.4) and (4.5) to form a closed

system.

Finally, we can derive an expression for Jphot,0 by solving (4.8) and (4.7) with boundary

conditions (4.11) to obtain

cd,0 =
Q(y)

βd

⎛⎝1 −
cosh

((
βd/χ

)1/2
ξ
)

cosh
((
βd/χ

)1/2
(1 − F(y))

)
⎞⎠ on 0 < ξ < 1 − F(y), (4.17)

ca,0 =
GaQ(y)

βa

⎛⎝1 −
cosh

(
(βaχ)

1/2 (1 − ξ)
)

cosh
(
(βaχ)

1/2 F(y)
)

⎞⎠ on 1 − F(y) < ξ < 1, (4.18)

which leads, on substitution into (4.7), to the following formula for Jphot,0 in α � y � β:

Jphot,0 = γeffQ(y)

(
Ga

(βaχ)1/2
tanh

(
(βaχ)

1/2F(y)
)

+

(
χ

βd

)1/2

tanh

((
βd

χ

)1/2

(1 − F(y))

))
.

(4.19)

Since there is no interface on which excitons can dissociate in −1 < y < α and β < y < 1,

it follows that Jphot,0(y) = 0 for y in these ranges. Furthermore, it is unsurprising that the

homogenised variable Jphot,0 is discontinuous at y = α and y = β because at these two

positions there is sharp discontinuity in the length of interface (per unit width of cell). In

addition, the intensity function Q(y) is obtained by direct integration of (2.25) with the

boundary condition Q|y=−1 = cos θ.

Summary of the homogenised model

The homogenisation of the interdigitated geometry described in Section 4.1.1 leads to an

approximate, one-dimensional model given by equations (4.14)–(4.16) and (4.19) for n, p,

and φ and the electron and hole currents, jn and jp. On dropping subscripts, and extending

the validity of the equations into the blocking layers (−1 < y < α and β < y < 1), the

homogenised equations can be written in the form

(1 − F(y))
∂p

∂t
+

∂Jp
∂y

=
(
Jphot − ΓR(n, p)

)
H(y − α)

Jp = −κ(1 − F(y))

(
∂p

∂y
+ p

∂φ

∂y

)
⎫⎪⎪⎬⎪⎪⎭ in − 1 < y < β, (4.20)

F(y)
∂n

∂t
− ∂Jn

∂y
=

(
Jphot − ΓR(n, p)

)
H(β − y)

Jn =
F(y)

κ

(
∂n

∂y
− n

∂φ

∂y

)
⎫⎪⎪⎬⎪⎪⎭ in α < y < 1, (4.21)

∂

∂y

((
1

E F(y) + E(1 − F(y))

)
∂φ

∂y

)
=

1

λ2
(nF(y) − p(1 − F(y))) in − 1 < y < 1, (4.22)
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where we denote current densities averaged across the device cross-section by Jp =

(1 − F(y))jp and Jn = F(y)jn and where

Jphot = γeffQ(y)

(
Ga

(βaχ)1/2
tanh

(
(βaχ)

1/2F(y)
)

+

(
χ

βd

)1/2

tanh

((
βd

χ

)1/2

(1 − F(y))

))
(4.23)

valid in α < y < β, and

Q(y) = cos(θ) exp

(
− K

cos θ

∫ y

−1

(1 − F(z)(1 − Ga))dz

)
. (4.24)

The boundary conditions, for a device with finite blocking layers, are

φ =
Φ− Φbi

2

p =
n̂

Υ

⎫⎪⎬⎪⎭ on y = −1,
φ = −Φ− Φbi

2

n = n̂Υ

⎫⎬⎭ on y = 1, (4.25)

Jn → 0 as y ↘ α, Jp → 0 as y ↗ β; (4.26)

these are illustrated in Figure 5(c). In the case of a device without blocking layers (i.e.,

one for which F(−1) > 0 and F(1) < 1), the zero electron and hole current conditions on

y = α and y = β (i.e., (4.26)) are replaced by the following Ohmic boundary conditions

on y = ±1:

n|y=−1 = n̂Υ e−Φbi and p|y=1 =
n̂

Υ
e−Φbi; (4.27)

this case is illustrated in Figure 5(b).

4.1.3 An alternative formulation of the homogenised model

In order to solve the homogenised model (4.20)–(4.22) numerically, it is helpful to reformu-

late it in terms of Slotboom variables A(y, t) and B(y, t) by writing n = A(y, t) exp(φ(y, t))

and p = B(y, t) exp(−φ(y, t)). This results to the following formulation:

(1 − F(y))
∂Be−φ

∂t
+

∂Jp
∂y

=
(
Jphot − ΓR(n, p)

)
H(y − α)

∂B

∂y
= −eφ Jp

(1 − F(y))κ

⎫⎪⎪⎬⎪⎪⎭ in − 1 < y < β, (4.28)

F(y)
∂Aeφ

∂t
− ∂Jn

∂y
=

(
Jphot − ΓR(n, p)

)
H(β − y),

∂A

∂y
= e−φ

Jnκ

F(y)

⎫⎪⎪⎬⎪⎪⎭ in α < y < 1, (4.29)

∂

∂y

((
1

E F(y) + E(1 − F(y))

)
∂φ

∂y

)
=

1

λ2

(
AeφF(y) − Be−φ(1 − F(y))

)
in −1 < y < 1,

(4.30)
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Mixed

n and Jn

Solve for
p and Jp

y = 1

Mixed

φ and n given

φ and p given
y = −1

Jp = 0

Donor

Acceptor

y = β

y = α

F = 0

F = 1

Solve for φ

Jn = 0

Solve for n, p,
φ, Jn and Jp

n, p and φ given

n, p and φ given

(b) (c)

Solve for

Figure 5. Boundary conditions on the homogenised model for the device geometries illustrated in

Figures 1(b) and (c). Case (b) shows a bulk heterojunction without capping layers. Case (c) shows

a bulk heterojunction with capping layers on pure donor and acceptor materials at the electrodes.

with Jphot given by (4.26) and the boundary conditions (for a device with blocking layers)

are

φ =
Φ− Φbi

2

B =
n̂

Υ
e
Φ−Φbi

2

⎫⎪⎬⎪⎭ on y = −1,
φ = − (Φ− Φbi)

2

A = n̂Υ e
(Φ−Φbi)

2

⎫⎪⎬⎪⎭ on y = 1, (4.31)

Jn → 0 as y ↘ α, Jp → 0 as y ↗ β, (4.32)

and in the case of a device without blocking layers the conditions (4.32) are replaced by

A|y=−1 = n̂Υ e−
(Φ+Φbi)

2 and B|y=1 =
n̂

Υ
e−

(Φ+Φbi )

2 . (4.33)

Notably the steady-state solutions to (4.28a) and (4.29a), in the restricted domains −1 <

y < β and α < y < 1 (respectively), with internal boundary conditions (4.32) are equivalent

to the solutions to (4.28a) and (4.29a) on the full domain −1 < y < 1, where the right-

hand side of these equations is replaced by
(
Jphot − ΓR(n, p)

)
(H(y − α) −H(y − β)) and

where the boundary conditions (4.32) are replaced by Jn|y=−1 = 0 and Jp|y=1 = 0. It is

this reformulation of (4.28)–(4.32) as a two point boundary value problem that we solve

numerically.

4.2 A bulk heterojunction with three-dimensional micro-structure

Here, we consider how to derive homogenised equations for a bulk heterojunction with

a fully three-dimensional (and almost periodic) micro-structure, such as occurs in spin-

coated devices (e.g., [41]). The techniques required to perform this homogenisation are

considerably more complex that those described for the interdigitated device in Section 4.1

and involve application of the formal asymptotic method of multiple scales as originally

developed by Keller [30, 31] (relevant extensions of this method to applications in which

the micro-structure is not entirely periodic are given in [6, 11, 48, 49]). We note further
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Figure 6. Left-hand panel: an illustration of the micro-structure geometry within one of the

periodic boxes V̂ . Right-hand panel: repeated periodic boxes form the global

micro-structure.

that there is an extensive literature on rigorous homogenisation methods (see [1, 14])

but that these methods involve considerably more effort than their formal counterparts

whilst yielding exactly the same homogenised equations (they are also particularly hard

to apply to micro-structures that are not strictly periodic). Here, we operate on the

dimensionless equations (2.22)–(2.31) in which the device lengthscale is of O(1) and that

of the micro-structure is O(δ), where δ � 1. Furthermore, we assume that the micro-

structure is locally periodic inside a globally periodic array of boxes, which we denote by

Ω̂d ∪ Ω̂a. This approach allows us to consider geometries in which important features of

the micro-structure (such as the donor volume fraction) are periodic on the lengthscale

of the micro-structure but vary slowly over the device lengthscale (further discussion of

the applicability of this technique are given in [50]). Consider now one of these boxes

V̂ , say, whose volume is split into a part Ω̂d occupied by the donor material and a part

Ω̂a occupied by the acceptor (see Figure 6 for an example configuration). Furthermore,

we denote that part of the boundary to Ω̂a lying along the boundary of V̂ by ∂ω̂a and

that part lying along the interface between Ω̂a and Ω̂d by ∂Ω̂. Similarly, we denote that

part of the boundary to Ω̂d lying along the boundary of V̂ by ∂ω̂d and that part lying

along the interface between Ω̂a and Ω̂d by ∂Ω̂. For the sake of generality we allow the

micro-structure to change slowly, over the O(1) lengthscale, and it is in this sense that it

is locally periodic.

4.3 A multiple scales formulation of the problem.

We formally consider the distinguished limit in which κ, ν, χ, βd, βa, Ga, E , λ, Γ , and γeff
are all O(1) while δ→0 and introduce the microscale variable x̂ defined by

x = δx̂.

https://doi.org/10.1017/S0956792516000541 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792516000541


994 G. Richardson et al.

We look for a solution to the problem (2.22)–(2.31) that is a function both of the microscale

variable x̂ and the device scale variable x. As is standard in such multiple scales calculations

we look for a solution that is periodic in the microscale variable and transforms the

gradient operator via ∇→∇+∇̂/δ. The central ansatz of the homogenisation is contained

in the asymptotic expansion:

n = n0(x, t) + δn1(x, x̂, t) + δ2n2(x, x̂, t) + · · · ,
p = p0(x, t) + δp1(x, x̂, t) + δ2p2(x, x̂, t) + · · · ,
φ = φ0(x, t) + δφ1(x, x̂, t) + δ2φ2(x, x̂ t) + · · · ,
c = cd,0(x, x̂, t) + δcd,1(x, x̂, t) + δ2cd,2(x, x̂, t) + · · · ,
c = ca,0(x, x̂, t) + δca,1(x, x̂, t) + δ2ca,2(x, x̂, t) + · · · ,
jn = jn,0(x, x̂, t) + δjn,1(x, x̂, t) + δ2jn,2(x, x̂, t) + · · · ,
jp = jp,0(x, x̂, t) + δjp,1(x, x̂, t) + δ2jp,2(x, x̂, t) + · · · ,
Jphot = Jphot,0(x, x̂, t) + δJphot,1(x, x̂, t) + δ2Jphot,2(x, x̂, t) + · · · .

(4.34)

Thus, the electric potential and the concentrations of free electrons, holes, and ex-

citons are all functions of the device lengthscale only at leading order. The elec-

tron and hole current densities both have to flow around the micro-structure

and are thus functions of both device-scale and microscale variables at leading

order.

4.3.1 Summary of the homogenised equations

The multiple scale analysis, the details of which are relegated to Appendix A, res-

ults in homogenised equations for the electron and hole concentrations (n and p, re-

spectively), the electric potential φ, the volume averaged electron and hole current

densities (〈jn〉 and 〈jp〉, respectively) and the volume averaged electric displacement

and photogeneration (〈D〉 and 〈Jphot〉, respectively). On dropping the 0 subscript from

the leading order terms in the multiple scales expansion, these equations take the

form

(1 − F(x))
∂p

∂t
+ ∇ · 〈jp〉 + bet(x)(ΓR(n, p) − 〈Jphot〉) = 0, (4.35)

F(x)
∂n

∂t
−∇ · 〈jn〉 + bet(x)(ΓR(n, p) − 〈Jphot〉) = 0, (4.36)

〈jp〉i = −Bij(x)

(
∂p

∂xj
+ p

∂φ

∂xj

)
, 〈jn〉i = Cij(x)

(
∂n

∂xj
− n

∂φ

∂xj

)
, (4.37)

∇ · 〈D〉 =
1

λ2
((1 − F(x))p(x, t) − F(x)n(x, t)) ,where 〈D〉 = −Aij(x)

∂φ

∂xj
ei. (4.38)

Here, Bij(x) and Cij(x) are the (dimensionless) electron and hole current conductivity

tensors, Aij(x) is the (dimensionless) permittivity tensor, and bet(x) a (dimensionless)
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measure of the surface area of interface per unit volume of material, defined by

Bij(x) =
κ

|Ω̂d| + |Ω̂a|

∫
Ω̂d

(
δij −

∂ζ(j)

∂x̂i

)
dV̂ , (4.39)

Cij(x) =
1

κ(|Ω̂d| + |Ω̂a|)

∫
Ω̂a

(
δij −

∂η(j)

∂x̂i

)
dV̂ , (4.40)

Aij(x) =
1

|Ω̂a| + |Ω̂d|

∫
Ω̂a∪Ω̂d

(
EHd +

1

E (1 −Hd)

) (
δij − (1 − E2)

∂μ(j)

∂x̂i

)
dV̂ , (4.41)

bet(x) =
1

|V̂ |

∫
∂Ω̂

dŜ . (4.42)

These tensor quantities depend on the micro-structure geometry through the nine charac-

teristic functions μ(j)(x, x̂), ζ(j)(x, x̂), and η(j)(x, x̂) (for j = 1, 2, 3) which must be found by

solving cell problems (A 15)–(A 16) and (A 30)–(A 31) within a periodic box V̂ . Where the

micro-structural geometry of the acceptor/donor interface varies over the macroscopic

lengthscale x (so that Aij , Bij , Cij and bet are all functions of x), this requires that cell

problems be solved at sufficient macroscopic spatial points in order to obtain a reasonable

approximation to these functions in x.

5 Comparison between full and homogenised models

The aims of this section are (i) to validate steady state solutions to the homogenised

model (4.20)–(4.27) against steady-state solutions to the full model (2.22)–(2.31) in an

interdigitated domain (see Figure 7) and (ii) to use the homogenised model to investigate

device behaviour; in particular, we will calculate current–voltage curves for different

device geometries (see Figure 8).

In Figure 7, we compare steady-state solutions of (4.20)–(4.27), the one-dimensional

homogenised model (red curves), to those to (2.22)–(2.31), the full two-dimensional model

(blue dashed curves). These simulations were performed for the set of parameters given

in (3.2) in the geometry described in Section 3, namely with an interface ∂Ωi given

by y = 0.7 cos(δπx). In terms of the homogenised model, this corresponds to setting

α = −0.7 and β = 0.7 and F(y) = 1
π

cos−1(y/0.7). In order to compare the solutions to

the one-dimensional homogenised model and the two-dimensional full model, we plot

solutions of the full model (as functions of y) for p and φ along the line x = 0

and for n along the line x = −δ and compare to the equivalent solutions to the

homogenised model (again plotted as a function of y). We obtain the steady-state solutions

to the homogenised model (4.20)–(4.27) by numerically solving a steady-state form of the

alternative formulation (4.28)–(4.33) using the Matlab boundary value problem solver

‘bvp4c’.

Notably, the agreement between the two models is extremely good for Φ−Φbi = −6, it is

still quite good for Φ = Φbi but less good for Φ−Φbi = 3. As remarked in Section 3, it is a

generic feature of the solutions to the full (two-dimensional) model, with applied potentials
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Figure 7. Comparison between solutions of the full dimensionless model (dashed blue line) and

the homogenised model (solid red line), ph, (left), nh, (centre), φh, (right) for Φ− Φbi = −6 (upper),

Φ − Φbi = 0 (middle), Φ − Φbi = 3 (lower). Here, plots of ph and φh are made along the line

x = 0, whereas those of nh are made along x = −δ. In all panels, the horizontal axis is the y-axis

(stretching between −1 and 1).

Φ < Φbi, that it almost independent of the lateral dimension x and, as a corollary, it is well

approximated by the solution to the homogenised model. The validity of the homogeneous

approximation to the full model breaks down as the applied potential Φ increases above

the built-in voltage as the solution develops features on the scale of the micro-structure.

From a physical perspective, increases in applied potential act to counter the effect of

the built-in voltage which is to drive electrons to the acceptor contact and holes to the

donor contact. Thus, for large applied potentials electron and hole concentrations build

up within the device leading to a shortening of the typical lengthscale for variations in

the potential: The effective Debye length Ld,eff , which in this instance, can be estimated
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from the relation:

Ld,eff =

(
(εaεd)

1/2kT

qρeff

)1/2

,

where ρeff gives a measure of the charge density (caused by the electrons and holes).

Once the effective Debye length decreases (with increases in Φ) to the lengthscale of the

micro-structure, the solution starts exhibiting significant variations on the scale of the

micro-structure, which invalidate the standard homogenisation procedure. Interestingly,

in the instance of an interdigitated morphology, it is still possible to derive averaged

equations by using a non-linear multiple scales method, but since the results have little

bearing on the physically relevant power generating regime, we omit the details.

6 Device current–voltage curves calculated using the homogenised model

We finish by using the homogenised model to calculate current–voltage (J–V ) curves for a

range of device geometries. In order to make fair comparison between different devices, we

plot J–V curves in which the current is rescaled with the maximum photocurrent γeff /K

that can be extracted from the device assuming that all incident photons are absorbed

to make excitons that reach the acceptor/donor interface (before recombination). Where

the device has entire capping layers that prevent contact between the acceptor and the

positive contact and between the donor and the negative contact, the solution of the

homogenised model depends only on the built-in voltage Φbi and the applied potential Φ

through Φ− Φbi, and so in these cases we plot KJ/γeff versus Φ− Φbi. In contrast where

either (or both) the acceptor contacts the lower (hole extracting) electrode or the donor

contacts the upper (electron extracting) electrode, the solution depends independently on

Φ and Φbi and so we plot KJ/γeff versus Φ.

In Figure 8, we use the parameter set given in (3.2) with the exception that we take

λ = 0.1, Γ = 2 × 10−6, βa = 0.5, βd = 0.5, K = 2, θ = 0, (6.1)

noting, in particular, that the smaller values of βa and βd taken here, and consequently

the less significant exciton recombination, give a significantly more efficient cell than the

original parameter set. In the left-hand panel of Figure 8, we display J–V curves for four

different bulk heterojunctions with capping layers of different thicknesses. The geometric

properties of these heterojunctions are described by the following parameter sets:

• (I) α = −0.7 and β = 0.7 and F(y) = 1
π

cos−1(y/0.7) in α < y < β,

• (II) α = −0.9 and β = 0.9 and F(y) = 1
π

cos−1(y/0.9) in α < y < β,

• (III) α = −0.7 and β = 0.7 and F(y) = 1
2

in α < y < β,

• (IV) α = −0.9 and β = 0.9 and F(y) = 1
2

in α < y < β.

In all four of these geometries, the donor material does not directly contact the upper

electrode y = 1 and the acceptor material does not directly contact the lower electrode

y = −1. As can be seen the main feature of these curves is that their characteristics

improve as the thickness 1 + α of the lower donor blocking layer decreases (i.e., as α
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Figure 8. Current–voltage curves predicted by the homogenised model: left-hand panel for devices

with capping layers and right-hand panel for a device without a capping layer. Parameter values

and device geometry are described in Section 6.

decreases towards −1); the best reverse saturation current being for curves (II) and (IV)

where the interface almost contacts the lower electrode. In particular, it can be seen that

reverse saturation current (i.e., the current as Φ→−∞) increases as the thickness of the

blocking layer decreases. This is not particularly surprising because light enters from the

surface y = −1 and its intensity decays rapidly as it propagates in the positive y-direction.

Thus, much of the energy of the incident radiation is lost if the capping layer adjacent to

the surface y = −1 is thick, and this is reflected in the relatively poor performance of the

cell. Reducing this lower capping layer too far though is dangerous because it can result

in direct contact between the acceptor region Ωa and the positive contact (on y = −1)

resulting in a short circuit. This phenomenon is illustrated in the right-hand panel of

Figure 8 where we display the J–V curve for a device in which F(y) ≡ 0.5, so that the

acceptor material contacts the lower (hole extracting) electrode and the donor material

contacts the upper (electron extracting) electrode. The material parameters for this device

are the same as those considered above (I)–(IV) but in addition we specify the built-in

potential by Φbi = 10. Here, it can be seen that the power generating capacity predicted

by the model for this device is virtually non-existent since the open circuit voltage Φoc
(i.e., the voltage Φ when J = 0) is close to zero, whereas in reality such devices are usually

capable of producing power. The issue here is the use of Ohmic boundary conditions to

describe the contacts made between acceptor with the lower electrode (hole extracting)

and the donor with the upper (electron extracting) electrode. In well-designed devices, the

energy of the donor HOMO (analogous to the valence band edge) lies close to the Fermi

level of the hole extracting electrode and the energy of the acceptor LUMO (analogous to

the conduction band edge) lies close to the Fermi level of the electron extracting electrode;

this means that it is appropriate to use Ohmic conditions for such contacts. However,

the same is not generally true for the energy differences between (a) the acceptor LUMO

and the Fermi level of the hole extracting electrode and (b) the donor HOMO and the

Fermi level of the electron extracting which means that Ohmic boundary conditions are

inappropriate and need to be replaced by more general conditions describing charge

recombination and injection processes taking place at the contact. The derivation of

such boundary conditions describing the contact between an organic semiconductor and

a metal has been made in [51]. However, this (as pointed out in [3]) leads to a final
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statement of the boundary conditions that is inapplicable to solar cells because it neglects

the diffusive fluxes of charge carriers; the correct conditions can be found in [3]. In the

case where the equilibrium electron concentration n on the hole extracting contact and

the equilibrium hole concentration p on the hole extracting contact are both very small

(so that injection can be neglected), these boundary conditions take the (dimensional)

form

∂n∗

∂x∗

∣∣∣∣
x∗=−L

∼ n∗

rcψ2(E∗)

∣∣∣∣
x∗=L

and
∂p∗

∂x∗

∣∣∣∣
x∗=L

∼ − p∗

rcψ2(E∗)

∣∣∣∣
x∗=L

for E∗ < 0, (6.2)

where E∗ = −∂φ∗

∂x∗
and ψ(E∗) =

1

f
+

1√
f
− (1 + 2

√
f)1/2

f
with f = −qE

∗rc
kT

. (6.3)

Here, rc is the Coulomb radius defined by rc = q2/(4πεkT ). Where the electric field has

the opposite sign, these approximate boundary conditions should be replaced by

∂n∗

∂x∗

∣∣∣∣
x∗=−L

∼ 4n∗

rc

∣∣∣∣
x∗=L

and
∂p∗

∂x∗

∣∣∣∣
x∗=L

∼ −4p∗

rc

∣∣∣∣
x∗=L

for E∗ > 0.

These boundary conditions are discussed in further detail in Section C.

7 Conclusions

In this work (in Section 2), we have formulated a model for charge transport and

light absorption in an organic bulk heterojunction solar cell consisting of two organic

semiconducting materials, one an electron donor and the other an electron acceptor, that

contact each other along a highly convoluted interface. We used a finite element method,

in Section 3, to solve the resulting coupled partial differential equations (at steady state)

in a device with an interdigitated interface between the acceptor and donor materials (as

illustrated in Figure 3) for a range of applied potentials. Motivated by these results we

observed that the solution did not vary significantly over the scale of the micro-structure

(i.e., it is almost independent of the lateral spatial variable x) when the applied potential is

less than the built-in voltage. This led us, in Section 4, to use the method of multiple scales

to derive a homogenised model, in which variables are averaged over the micro-structure.

We did this both in the case of an interdigitated acceptor/donor interface and in the

more generic case of a complex interlacing three-dimensional micro-structure, such as

that commonly encountered in devices manufactured by spin-coating. In the former case,

we compared the solutions from the systematically derived homogenised model to those

of the full model (with realistic parameters) and found good agreement, provided the

applied potential was less than the built in voltage. This is the device’s power generating

regime, and thus the most relevant one from the point of view of solar cell performance.

Although we did not perform simulations of the full model on an interlacing three-

dimensional micro-structures, we note that such simulations have been performed in [35]

(in realistic parameter regimes) and further, that to a good approximations, n and p vary

solely in y, so that the electric field is predominantly in the y-direction, thus, supporting our

effective medium approach. The result of the multiple scales analysis was a homogenised
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model that, in dimensional form, can be written as

(1 − F(x∗))q
∂p∗

∂t∗
+ ∇∗ · 〈j∗

p〉 + B∗
et(x

∗)(qR∗(n∗, p∗) − 〈j∗phot〉) = 0, (7.1)

F(x∗)q
∂n∗

∂t∗
−∇∗ · 〈j∗

n〉 + B∗
et(x

∗)(qR∗(n∗, p∗) − 〈j∗phot〉) = 0 (7.2)

〈j∗
p〉 = −σ∗

p

(
∇∗φ∗ +

kT

q
∇∗ log p∗

)
, 〈j∗

p〉 = −σ∗
n

(
∇∗φ∗ − kT

q
∇∗ log n∗

)
, (7.3)

where σ∗
p

=
(DnDp)

1/2q2

kT
Bp∗, and σ∗

n
=

(DnDp)
1/2q2

kT
Cn∗, (7.4)

∇∗ · 〈D∗〉 = q((1 − F(x∗))p∗ − F(x∗)n∗), and 〈D∗〉 = −ε∗∇∗φ∗, (7.5)

where ε∗ = (εaεd)
1/2A. (7.6)

Here, B∗
et(x

∗) is the surface area of acceptor/donor interface per unit volume of material,

and 〈j∗phot〉(x∗) is the local average of the photocurrent over the surface area of the

acceptor/donor interface; the averaged hole and electron currents 〈j∗
p〉 and 〈j∗

n〉 are

given in terms of the electric potential by the generalised Ohm’s Laws (7.3) in which

the tensor hole and electron conductivities σ∗
p

and σ∗
n

are defined via (7.4) in terms

of the dimensionless tensors B and C that characterise the micro-structure through the

relations (4.39)–(4.40); the averaged electric displacement field 〈D∗〉 is related to the

electric potential by (7.5) in which the permittivity tensor ε∗ is given by (7.6) in terms of

the dimensionless tensor A, which characterises the micro-structure through the relation

(4.41).

Finally, we used the homogenised model (as applied to an interdigitated cell) to

investigate the effects that changes in the geometric properties of the cell have on its

performance by calculating the current–voltage curves for a range of device designs, that

make use of identical materials. We showed that for devices manufactured with capping

layers it is important to ensure a relatively thin capping layer, above the lower transparent

electrode, because the energy from light absorbed in the capping layer is lost to the device

since excitons generated here are unlikely to reach the interface before recombination.

However, reducing the thickness of this capping layer to zero so that the acceptor/donor

interface contacts the lower electrode (such as in a device made by spin coating) results

in short-circuit and consequent losses that manifest themselves in a reduction of the

open-circuit voltage.
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Appendix A Derivation of homogenised equations for a bulk heterojunction

In this appendix, we consider how to derive homogenised equations, over the device

lengthscale, by explicitly taking account of the processes occurring on the heterojunction
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microscale. This will be accomplished via the method of multiple scales (see, for example,

[11]). In this instance, we operate on the dimensionless equations (2.22)–(2.31) in which

the device lengthscale is of O(1) and that of the micro-structure is O(δ), where δ→0.

Furthermore, we assume that the micro-structure is locally periodic inside a completely

periodic array of boxes which we denote by Ω̂d ∪ Ω̂a. Consider now one of these boxes

V̂ , say, whose volume is split into a part Ω̂d occupied by the donor material and a

part Ω̂a represents occupied by the acceptor (see Figure 6 for an example configuration).

Furthermore we denote that part of the boundary to Ω̂a lying along the boundary of V̂

by ∂ω̂a and that part lying along the interface between Ω̂a and Ω̂d by ∂Ω̂. Similarly we

denote that part of the boundary to Ω̂d lying along the boundary of V̂ by ∂ω̂d and that

part lying along the interface between Ω̂a and Ω̂d by ∂Ω̂. For the sake of generality we

allow the micro-structure to change slowly, over the O(1) lengthscale, and it is in this

sense that it is locally periodic.

A.1 A multiple scales formulation of the problem

We investigate the distinguished limit that κ, ν, χ, βd, βa, Ga, E , λ, Γ , and γeff are O(1)

while δ→0. We then introduce a microscale variable x̂ defined by

x = δx̂,

and look for a solution to our equations that is a function both of the microscale variable

x̂ and the device scale variable x. As is standard in such multiple scales calculations

we look for a solution that is periodic in the microscale variable transform the gradient

operator via ∇→∇ + ∇̂/δ. We can thus rewrite (2.22)–(2.31) in the form

δ
∂p

∂t
+ ∇̂ · jp + δ∇ · jp = 0

jp = −κ
δ

[
∇̂p+ p∇̂φ+ δ(∇p+ p∇φ)

]
δ2ν

∂cd
∂t

= χ
[
∇̂2cd + 2∇ · ∇̂cd + ∇2cd

]
+ Q(y) − βdcd

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
in Ω̂d, (A 1)

δ
∂n

∂t
− ∇̂ · jn − δ∇ · jn = 0

jn =
1

δκ

[
∇̂n− n∇̂φ+ δ(∇n− n∇φ)

]
δ2ν

∂ca
∂t

=
1

χ

[
∇̂2ca + 2∇ · ∇̂ca + ∇2ca

]
+ GaQ(y) − βaca

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
in Ω̂a, (A 2)

∇̂ · D + δ∇ · D =
δ

λ2
(Hdp− (1 −Hd)n) (A 3)

D = −1

δ

((
EHd +

1

E (1 −Hd)

)
(∇̂φ+ δ∇φ)

)
(A 4)

jn · N |∂Ω̂ = jp · N |∂Ω̂ = δ(ΓR(n, p) − Jphot), cd|∂Ωi
= ca|∂Ωi

= 0, (A 5)

https://doi.org/10.1017/S0956792516000541 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792516000541


1002 G. Richardson et al.

where Jphot = δγeff

(
1

χ
(∇̂ca + ∇ca)

∣∣∣∣
∂Ω̂

− χ(∇̂cd + ∇cd)
∣∣∣∣
∂Ω̂

)
· N on ∂Ωi, (A 6)

and n, p, φ, jn, jp, cd, ca are periodic in x̂ over V̂ . (A 7)

Here, Hd is the characteristic function for the donor region (i.e., Hd = 1 in Ω̂d and zero

in Ω̂a) and D is the dimensionless electric displacement field.

A.1.1 The Interface

We make the standard assumption that variables are periodic in the shortscale variable

x̂. This ensures that there are no secular growth terms in their asymptotic expansions (in

powers of δ). In order to allow us to account for an acceptor/donor interface which not

only varies on the microscale but can also show slow variations in its structure over the

macroscale we follow [48] and [6] and define the interface ∂Ω̂ by the zero level set of the

function ψ(x, x̂) (that is by ψ(x, x̂) = 0) choosing this function so that ψ > 0 in Ωa and

ψ < 0 in Ωd. It follows that N the unit normal to the interface (directed from Ω̂d into Ω̂a)

is given by

N =
∇̂ψ + δ∇ψ
|∇̂ψ + δ∇ψ|

, (A 8)

and that the interface conditions (A 5a) can be written in the form

jn · (∇̂ψ + δ∇ψ)|∂Ω̂ = jp · (∇̂ψ + δ∇ψ)|∂Ω̂ = δ
∣∣∣∇̂ψ + δ∇ψ

∣∣∣ (ΓR(n, p) − Jphot). (A 9)

It is also useful to define the leading order approximation to the unit normal to the

interface by

N 0 =
∇̂ψ
|∇̂ψ|

. (A 10)

A.1.2 Two useful results

Following [48] we note the following results that prove useful in the derivation of the

homogenised equations:

∇ ·
∫
Ω̂a

j(x, x̂) dV̂ ∼
∫
Ω̂a

∇ · j dV̂ +

∫
∂Ω̂

j · ∇ψ
|∇̂ψ|

dŜ , (A 11)

∇ ·
∫
Ω̂d

j(x, x̂) dV̂ ∼
∫
Ω̂d

∇ · j dV̂ −
∫

∂Ω̂

j · ∇ψ
|∇̂ψ|

dŜ , (A 12)

which are true for a differentiable vector field j(x, x̂) defined in Ω̂a and Ω̂d, respectively.
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A.2 Homogenisation of the potential equation

Substitution of the expansions (4.34) and

D = D0(x, x̂, t) + δD1(x, x̂, t) + δ2D2(x, x̂, t) + · · ·

into (A 3)–(A 4) yields the following cell problem, in V̂ , for the first order correction to

the potential, at leading order:

∇̂2φ1 = 0 in Ω̂a and Ω̂d, (A 13)(
∇̂φ1|∂Ω̂ − E2∇̂φ1|∂Ω̂

)
· N 0 = −(1 − E2)∇φ0 · N 0, φ1|∂Ω̂ = φ1|∂Ω̂ . (A 14)

We can write the solution to this problem in terms of the three characteristic functions

μ(i)(x, x̂) (for i = 1, 2, 3), which satisfy the problems

∇̂2μ(i) = 0 in Ω̂a and Ω̂d, (A 15)(
∇̂μ(i)|∂Ω̂ − E2∇̂μ(i)|∂Ω̂

)
· N 0 = −N0,i, μ(i)|∂Ω̂ = μ(i)|∂Ω̂ , (A 16)

where N0,i is the i-th component of N 0. The solution for φ has the form

φ1(x, x̂) = −(1 − E2)

3∑
i=1

∂φ0

∂xi
μ(i). (A 17)

Proceeding with the expansion of (A 3)–(A 4) to next order, we obtain the following

problem:

∇̂ · D1 + ∇ · D0 =
1

λ2
(Hdp0 − (1 −Hd)n0) in Ω̂a ∪ Ω̂d,

D1 periodic in x̂.

Integrating this problem over Ω̂a ∪ Ω̂d and applying the divergence theorem yield∫
∂(Ω̂a∪Ω̂d)

D1 · NdŜ +

∫
Ω̂a∪Ω̂d

∇ · D0dV̂ =
1

λ2
(|Ω̂d|p0 − |Ω̂a|n0),

where |Ω̂d| =
∫
Ω̂d
dV̂ and |Ω̂a| =

∫
Ω̂a
dV̂ . Since D1 is periodic in x̂, the first term in the

above expression vanishes so that it can be rewritten as

∇ · 〈D0〉 =
1

λ2
((1 − F(x))p0(x, t) − F(x)n0(x, t)) , (A 18)

where 〈D0〉(x, t) is the averaged value of D0 over the periodic cell Ω̂a ∪ Ω̂d and F(x) is the

volume fraction of the acceptor; these quantities can thus be expressed in the form

〈D0〉 =

∫
Ω̂a∪Ω̂d D0dV̂

|Ω̂a| + |Ω̂d|
, F(x) =

|Ω̂a|
|Ω̂a| + |Ω̂d|

. (A 19)
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In order to complete the analysis it remains to evaluate 〈D0〉(x, t) in terms of the slowly

varying variable φ0(x, t). We note that, where we replace φ1 by its solution (A 17) and use

the Einstein summation convention, D0 has the form

D0 = −
(
EHd +

1

E (1 −Hd)

)(
δij − (1 − E2)

∂μ(j)

∂x̂i

)
∂φ0

∂xj
ei.

Here, ei is the unit basis vector in the direction of the xi-axis. Integrating D0 over Ω̂a ∪ Ω̂d
and dividing by |Ω̂a| + |Ω̂d| yield an expression for 〈D0〉(x, t) in terms of an effective

permittivity tensor A (that is determined from the underlying microscale geometry) and

the gradient of φ0

〈D0〉 = −Aij
∂φ0

∂xj
ei, where

Aij =
1

|Ω̂a| + |Ω̂d|

∫
Ω̂a∪Ω̂d

(
EHd +

1

E (1 −Hd)

)(
δij − (1 − E2)

∂μ(j)

∂x̂i

)
dV̂ .

(A 20)

The ‘averaged’ equations for the leading order potential are thus given by (A 18) and

(A 20).

A.3 Homogenisation of the carrier equations

Here, we derive averaged carrier equations in an analogous way to that presented for

the averaged potential equation. We begin by expanding (A 1) and (A 2) to leading order

obtaining the following expressions for jp,0 and jn,0:

∇̂ · jp,0 = 0 and jp,0 = −κ
(
∇p0 + p0∇φ0 + ∇̂p1 + p0∇̂φ1

)
in Ω̂d, (A 21)

∇̂ · jn,0 = 0 and jn,0 =
1

κ

(
∇n0 − n0∇φ0 + ∇̂n1 − n0∇̂φ1

)
in Ω̂a. (A 22)

The boundary conditions on this problem come from the leading order expansion of (A 9)

and are

jp,0 · N 0|∂Ω̂ = jn,0 · N 0|∂Ω̂ = 0. (A 23)

On noting that n0, p0, and φ0 are independent of x̂ and recalling that ∇̂2φ1 = 0, we see

that (A 21), (A 22) can be simplified to

∇̂2p1 = 0 in Ω̂d, (A 24)

∇̂2n1 = 0 in Ω̂a. (A 25)

Appropriate boundary conditions on these problems come from substitution of the ex-

pressions for jp,0 and jn,0, contained in (A 21)–(A 22), into (A 23) and the assumption that
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solution is periodic in x̂; thus, the problems for p1 and n1 are closed by

∇̂p1 · N 0|∂Ω̂ = −(∇p0 + p0∇φ0) · N 0|∂Ω̂ − p0∇̂φ1 · N 0|∂Ω̂ , (A 26)

p1 periodic in x̂, (A 27)

∇̂n1 · N 0|∂Ω̂ = −(∇n0 − n0∇φ0) · N 0|∂Ω̂ + n0∇̂φ1 · N 0|∂Ω̂ (A 28)

n1 periodic in x̂. (A 29)

A.3.1 The solution to the first-order problem in terms of characteristic functions

The solutions to the two problems for p1 and n1 can be written in terms of the six

characteristic functions ζ(i) and η(i) (for i = 1, 2, 3) defined by the problems

∇̂2ζ(i) = 0 in Ω̂d, ∇̂ζ(i) · N 0

∣∣∣
∂Ω̂

= ei · N 0, ζ(i) periodic in x̂, (A 30)

∇̂2η(i) = 0 in Ω̂a, ∇̂η(i) · N 0

∣∣∣
∂Ω̂

= ei · N 0, η(i) periodic in x̂. (A 31)

It follows from (A 24)–(A 29) and (A 30)–(A 31) that

p1(x, x̂, t) = −p0(x, t)φ1(x, x̂, t) −
3∑
i=1

ei · (∇p0(x, t) + p0(x, t)∇φ0(x, t))ζ
(i)(x, x̂, t),

(A 32)

n1(x, x̂, t) = n0(x, t)φ1(x, x̂, t) −
3∑
i=1

ei · (∇n0(x, t) − n0(x, t)∇φ0(x, t))η
(i)(x, x̂, t).

(A 33)

A.3.2 The first-order problems for the carrier fluxes

Expanding (A 1a) and (A 2a) to first order yields

∂p0

∂t
+ ∇ · jp,0 + ∇̂ · jp,1 = 0 in Ω̂d, (A 34)

∂n0

∂t
−∇ · jn,0 − ∇̂ · jn,1 = 0 in Ω̂a. (A 35)

The corresponding interface conditions (obtained from the O(δ) expansions of (A 9)) are

jp,1 · ∇̂ψ
∣∣∣
∂Ω̂

+ jp,0 · ∇ψ
∣∣
∂Ω̂

= |∇̂ψ|(ΓR(n0(x, t), p0(x, t)) − Jphot,0(x, x̂, t)), (A 36)

for jp,1 periodic in x̂ and

jn,1 · ∇̂ψ
∣∣∣
∂Ω̂

+ jn,0 · ∇ψ
∣∣
∂Ω̂

= |∇̂ψ|(ΓR(n0(x, t), p0(x, t)) − Jphot,0(x, x̂, t)), (A 37)

for jn,1 periodic in x̂.
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Integrating (A 34) over Ω̂d, applying the divergence theorem and the conditions (A 36)

gives

|Ω̂d|
∂p0

∂t
+

∫
Ω̂d

∇ · jp,0dV̂ −
∫

∂Ω̂

jp,0 ·
∇ψ
|∇̂ψ|

dŜ +

∫
∂Ω̂

dŜ

(
ΓR(n0, p0) −

∫
∂Ω̂
Jphot,0dŜ∫
∂Ω̂
dŜ

)
= 0.

Applying the formula (A 11) to the above yields the following equation for p0(x, t):

(1 − F(x))
∂p0

∂t
+ ∇ · 〈jp,0〉 + bet(ΓR(n0(x, t), p0(x, t)) − 〈Jphot,0〉(x, t)) = 0, (A 38)

where F(x) is the volume fraction of acceptor (defined in (A 19)), while the averaged

hole current 〈jp,0〉, the B.E.T surface area bet (i.e., the surface area of interface per unit

volume), and the average photocurrent 〈Jphot,0〉 are defined by

〈jp,0〉 =
1

|Ω̂a| + |Ω̂d|

∫
Ω̂d

jp,0dV̂ , bet =
1

|Ω̂a| + |Ω̂d|

∫
∂Ω̂

dŜ , 〈Jphot,0〉 =

∫
∂Ω̂
Jphot,0dŜ∫
∂Ω̂
dŜ

,

(A 39)

note that here |V̂ | = |Ω̂a| + |Ω̂d| is the volume of the periodic box V̂ and so bet is a

measure of the surface area of interface per unit volume of material.

We can obtain an evolution equation for n0, analogous to (A 38), in a similar manner.

We begin by integrating (A 35) over Ω̂a, applying the divergence theorem and the boundary

conditions (A 37) to obtain

|Ω̂a|
∂n0

∂t
−

∫
Ω̂d

∇ · jn,0dV̂ −
∫

∂Ω̂

jn,0 ·
∇ψ
|∇̂ψ|

dŜ +

∫
∂Ω̂

dŜ (ΓR(n0, p0) − 〈Jphot,0〉) = 0.

Applying the formula (A 12) to yields the desired result

F(x)
∂n0

∂t
−∇ · 〈jn,0〉 + bet(ΓR(n0, p0) − 〈Jphot,0〉) = 0, (A 40)

where

〈jn,0〉 =
1

|Ω̂a| + |Ω̂d|

∫
Ω̂d

jp,0dV̂ . (A 41)

It remains to determine the two quantities 〈jp,0〉 and 〈jn,0〉. This we do by substituting

for p1 and n1, from (A 32) and (A 33), into the leading order expansions for jp,0 and jn,0,

(A 21b) and (A 22b), to find

jp,0 = −κ
(
δij −

∂ζ(j)

∂x̂i

)(
∂p0

∂xj
+ p0

∂φ0

∂xj

)
ei,

jn,0 =
1

κ

(
δij −

∂η(j)

∂x̂i

)(
∂n0

∂xj
− n0

∂φ0

∂xj

)
ei,

where δij is the Kronecker delta function and we employ the Einstein summation con-

vention. Substituting these expressions into the definitions of 〈jp,0〉 and 〈jn,0〉 contained

in (A 39) and (A 41) yields the following expressions for the average fluxes in terms of

https://doi.org/10.1017/S0956792516000541 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792516000541


Effective medium equations for bulk heterojunction organic solar cells 1007

the ‘conductivity’ tensors B and C (determined from the microscopic geometry) and the

leading order solutions for n, p and φ:

〈jp,0〉i = −Bij
(

∂p0

∂xj
+ p0

∂φ0

∂xj

)
where Bij =

κ

|Ω̂d| + |Ω̂a|

∫
Ω̂d

(
δij −

∂ζ(j)

∂x̂i

)
dV̂ , (A 42)

〈jn,0〉i = Cij

(
∂n0

∂xj
− n0

∂φ0

∂xj

)
where Cij =

1

κ(|Ω̂d| + |Ω̂a|)

∫
Ω̂a

(
δij −

∂η(j)

∂x̂i

)
dV̂ . (A 43)

A.4 The exciton equation

The micro-structure is tuned to be roughly the same scale as the exciton decay length. It

follows that exciton concentration depends, to leading order, upon not only the macroscale

variable x but also on the microscale variable x̂. In terms of the multiple scale expansion,

the exciton equations (2.22c) and (2.23c) and boundary condition (2.26b) become

χ
(
∇̂2cd + 2δ∇ · (∇̂cd) + δ2∇2cd

)
+ Q(y) − βdcd = 0, in Ω̂d,

cd|∂Ω̂ = 0 and cd periodic in x̂,

1

χ

(
∇̂2ca + 2δ∇ · (∇̂ca) + δ2∇2ca

)
+ GaQ(y) − βaca = 0, in Ω̂a,

ca|∂Ω̂ = 0 and ca periodic in x̂,

so that to leading order

χ∇̂2cd,0 + Q(y) − βdcd,0 = 0, in Ω̂d,

cd,0|∂Ω̂ = 0 and cd,0 periodic in x̂,

1

χ
∇̂2ca,0 + GaQ(y) − βaca,0 = 0, in Ω̂a,

ca,0|∂Ω̂ = 0 and ca,0 periodic in x̂.

The solution to these two problems can be used to determine Jphot,0 via

Jphot,0(x, x̂, t) = γeff

(
1

χ
∇̂ca,0|∂Ω̂ − χ∇̂cd,0|∂Ω̂

)
· N 0,

and then 〈Jphot,0〉(x, t) is determined using (A 39c).

Appendix B Details of the numerical solution to the dimensionless model

B.1 Variational formulation of the dimensionless model

In order to derive a finite element approximation of the non-dimensional model (2.22)–

(2.31), we first write it in variational form. To this end we introduce

Wd := {η(x, y, t) ∈ L2(0, T ;H1(Ωd))| η(x,−1, t) = 0},

Ŵd := {η(x, y, t) ∈ L2(0, T ;H1(Ωd))| η|∂Ωi
= 0},
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Wa := {η(x, y, t) ∈ L2(0, T ;H1(Ωa))| η(x, 1, t) = 0},

Ŵa := {η(x, y, t) ∈ L2(0, T ;H1(Ωa))| η|∂Ωi
= 0},

and for simplicity of notation we drop the ∗ superscript.

From the first and second equations in (2.22), we obtain

∂p

∂t
= ∇ · [κ(∇p+ p∇φ)] in Ωd,

and multiplying this equation by η ∈ Wd and integrating over Ωd, we have∫
Ωd

(
∂p

∂t
η + κ(∇p+ p∇φ) · ∇η

)
= κ

∫
∂Ωi

(∇p+ p∇φ) · Nη ∀η ∈ Wd,

and similarly from the first and second equations in (2.23), we obtain∫
Ωa

(
∂n

∂t
ξ +

1

κ
(∇n− n∇φ) · ∇ξ

)
= −1

κ

∫
∂Ωi

(∇n− n∇φ) · Nξ ∀ξ ∈ Wa.

From (2.26), we have∫
Ωd

(
∂p

∂t
η + κ(∇p+ p∇φ) · ∇η

)
= δκ

∫
∂Ωi

(Jphot(ca, cd) − ΓR(n, p))η ∀η ∈ Wd, (B 1)

∫
Ωa

(
∂n

∂t
ξ +

1

κ
(∇n− n∇φ) · ∇ξ

)
=
δ

κ

∫
∂Ωi

(Jphot(ca, cd) − ΓR(n, p))ξ ∀ξ ∈ Wa, (B 2)

where from (2.31) we have

Jphot(ca, cd) = δγeff

(
1

χ
∇ca

∣∣∣∣
∂Ωi

− χ∇cd

∣∣∣∣∣
∂Ωi

)
· N . (B 3)

Multiplying (2.24) by η ∈ Wd and integrating over Ωd, we obtain∫
Ωd

E∇φ · ∇η =
1

λ2

∫
Ωd

pη +

∫
∂Ωi

ηE∇φ · N ∀η ∈ Wd,

and similarly multiplying (2.24) by ξ ∈ Wa and integrating over Ωa, we obtain∫
Ωa

1

E ∇φ · ∇ξ = − 1

λ2

∫
Ωa

nξ −
∫

∂Ωi

ξ

E ∇φ · N ∀ξ ∈ Wa.

Combining the two equations above gives the following for all η ∈ Wd and for all ξ ∈ Wa:∫
Ωa

∇φ · ∇ξ +

∫
Ωd

∇φ · ∇η =
1

Eλ2

∫
Ωd

pη − E
λ2

∫
Ωa

nξ +

∫
∂Ωi

(
ηE − ξ

E

)
∇φ · N . (B 4)

Multiplying the third equation in (2.22) by η ∈ Ŵd and integrating over Ωd, we have∫
Ωd

(
δ2ν

∂cd
∂t

+ βdcd

)
η + δ2χ

∫
Ωd

∇cd · ∇η =

∫
Ωd

Q(y)η ∀η ∈ Ŵd, (B 5)
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and similarly multiplying the third equation in (2.22) by ξ ∈ Ŵa and integrating over Ωa,

we have ∫
Ωa

(
δ2ν

∂ca
∂t

+ βaca

)
ξ +

δ2

χ

∫
Ωa

∇ca · ∇ξ =

∫
Ωa

GaQ(y)ξ ∀ξ ∈ Ŵa. (B 6)

B.2 Finite element approximation

Let Ω be a rectangular domain. Let T h be a partitioning of Ω into J disjoint open

simplices σ, with hσ := diam(σ) and h := minσ∈T h hσ , so that Ω = ∪σ∈T hσ. Furthermore,

let T h be such that the approximate curve ∂Ωh
i comprises of triangle edges and each

triangle, σj , j = 1 → J , lies entirely in Ωh
d or Ωh

a . Associated with T h are the finite element

spaces

Sh = {χ ∈ H1(Ω)| χ|σj is piecewise linear for j = 1 → J},

Shd = {χ ∈ H1(Ωh
d )| χ|σj is piecewise linear for j = 1 → J and χ(x,−1) = 0},

Sha = {χ ∈ H1(Ωh
a )| χ|σj is piecewise linear for j = 1 → J and χ(x, 1) = 0},

Ŝ hd = {χ ∈ H1(Ωh
d )| χ|σj is piecewise linear for j = 1 → J and χ|∂Ωh

i
= 0},

Ŝ ha = {χ ∈ H1(Ωh
a )| χ|σj is piecewise linear for j = 1 → J and χ|∂Ωh

i
= 0},

Shφ = {χ ∈ Sh| χ(x,−1) = (Φ− Φbi)/2 and χ(x, 1) = −(Φ− Φbi)/2},

Shp = {χ ∈ Shd | χ(x,−1) =
n̂

Υ
}, Shn = {χ ∈ Sha |χ(x, 1) = n̂Υ},

Shc = {χ ∈ Sh| χ|∂Ωh
i
= 0}.

In addition to T h, let 0 = t0 < t1 < · · · < tN−1 < tN = T be a partitioning of [0, T ] into

possibly variable time steps τk := tk − tk−1, k = 1 → N.

The model (B 4)–(B 6) comprises of a system of strongly coupled partial differential

equations, however by using a semi-implicit backward Euler finite element approximation it

can be reduced to an uncoupled system of linear equations, see below, for the approximate

solutions ckh, φ
k
h, p

k
h and nkh. In order to obtain the solution at the k-th time step, from the

data for pk−1
h , nk−1

h and ck−1
h at the k− 1-th time step, we first solve (B 7) and (B 8) for ckh,

before solving (B 9) for φkh and finally use these results (together with the data from the

k− 1-th time step) to solve (B 10) and (B 11) for pkh and nkh. To ensure positivity of pkh and

nkh at the k-th time step, we choose τk so that it satisfies the standard CFL condition that

relates h to |∇φkh|.
This gives rise to the following finite element approximation of (B 4)–(B 6).

Given {pk−1
h , nk−1

h , ck−1
d,h , c

k−1
a,h } ∈ Shp×Shn×Shc find {pkh, nkh, φkh, ckd,h, cka,h} ∈ Shp×Shn×Shφ×Shc

such that∫
Ωd

(
δ2ν

(ckd,h − ck−1
d,h )

τk
+ βdc

k
d,h

)
η + δ2χ

∫
Ωd

∇ckd,h · ∇η =

∫
Ωd

Q(y)η ∀η ∈ Ŝ hd , (B 7)
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∫
Ωa

(
δ2ν

(cka,h − ck−1
a,h )

τk
+ βac

k
a,h

)
ξ +

δ2

χ

∫
Ωa

∇cka,h · ∇ξ =

∫
Ωa

GaQ(y)ξ ∀ξ ∈ Ŝ ha , (B 8)

∫
Ωa

∇φkh · ∇ξ +

∫
Ωd

∇φkh · ∇η −
∫

∂Ωi

(
ηE − ξ

E

)
∇φkh · N

=
1

Eλ2

∫
Ωd

pk−1
h η − E

λ2

∫
Ωa

nk−1
h ξ∀(η, ξ) ∈ Shd × Sha , (B 9)

∫
Ωd

( (pkh − pk−1
h )

τk
η + κ(∇pkh + pkh∇φkh) · ∇η

)
= δκ

∫
∂Ωh

i

(
Jphot(c

k
a,h, c

k
d,h) − ΓR(nk−1

h , pk−1
h )

)
η ∀η ∈ Shd , (B 10)

∫
Ωa

( (nkh − nk−1
h )

τk
ξ +

1

κ
(∇nkh − nkh∇φkh) · ∇ξ

)
=
δ

κ

∫
∂Ωh

i

(
Jphot(c

k
a,h, c

k
d,h) − ΓR(nk−1

h , pk−1
h )

)
ξ ∀ξ ∈ Sha . (B 11)

Here,

Jphot(c
k
a,h, c

k
d,h) = δγeff

(
1

χ
∇cka,h

∣∣∣∣
∂Ωi

− χ∇ckd,h

∣∣∣∣∣
∂Ωi

)
· N .

Remark: The non-dimensionalised model (B 4)–(B 6) and the corresponding finite ele-

ment approximation are formulated for a geometry in two space directions; however, both

the model and the finite element approximation can be naturally extended to three space

dimensions.

Appendix C The charge injection/extraction boundary conditions

According to [3, 51] the boundary conditions at metal contact depend upon the electric

field at that contact. In particular, if the field acts to drive a particular type of charge

carrier from the metal contact into the organic semiconductor, there is a competition

between the electric field (that drives the carrier away from the metal contact) and the

image charge (that attracts it toward the contact). There is thus a potential barrier to

charge injection and a distance rc (the Coulomb) radius within which a charge carrier is

very likely to recombine with the metal interface (because of the effect of its image). The

Coulomb radius is given by rc = q2/(4πεkT ).

Here, we are primarily interested in the shorting contacts made between the acceptor-

and the hole-extracting electrode (on x = −L) and the donor- and electron-extracting

electrode (on x = L). In both these cases, a negative electric field (E∗ < 0) drives charge

carriers into the semiconductor from the contacts and according to [3, 51] the resulting
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electron current (on x = −L) and hole current (on x = L) are given by

j∗n |x∗=−L =
4πεμn(kT )2

q2

(
n∗

ψ2(E∗)
− 4N0 exp

(
−UB1

kT
+ f1/2

))
+ qμnE

∗n∗
∣∣∣∣
x∗=−L

, (C 1)

j∗p |x∗=L =
4πεμp(kT )2

q2

(
p∗

ψ2(E∗)
− 4N0 exp

(
−UB2

kT
+ f1/2

))
+ qμpE

∗p∗
∣∣∣∣
x∗=L

, (C 2)

for E∗|x∗=−L < 0 and E∗|x∗=L < 0 , respectively. Here, μn = qDn/kT and μp = qDp/kT

are electron and hole mobilities, respectively, N0 the density of chargeable sites in the

semiconductor, UB1 and UB2 the Schottky barrier energies for electron injection on x = −L
and hole injection on x = L, respectively, and the dimensionless electric field f and the

function ψ(E∗) are defined in (6.3). If we now equate the left-hand sides of (C 1) and (C 2)

with (2.3) and (2.4), we obtain the following conditions:

n∗

4ψ2(E∗)
− rc

4

∂n∗

∂x∗

∣∣∣∣
x∗=−L

= N0 exp

(
−UB1

kT
+ f1/2

)
for E∗|x∗=−L < 0, (C 3)

p∗

4ψ2(E∗)
+
rc

4

∂p∗

∂x∗

∣∣∣∣
x∗=L

= N0 exp

(
−UB2

kT
+ f1/2

)
for E∗|x∗=L < 0. (C 4)

There are two interesting limits to these boundary conditions. The first is for small

gradients in carriers concentration and for E∗ sufficiently small such that f � 1 and

ψ ∼ 1/2; this gives the Ohmic boundary conditions n∗|x∗=−L ∼ N0 exp(−UB1

kT
) and

p∗|x∗=L ∼ N0 exp(−UB2

kT
). The second, which is the relevant limit for these shorting contacts,

is the limit of large Schottky barrier heights UB1/kT � 1 and UB2/kT � 1. This implies

that the terms on right-hand side of (C 3)–(C 4) are negligible, giving the limit conditions

(6.2).

In the case of positive electric fields E∗ > 0, so that there are no injection barriers, the

relevant boundary conditions, given in [3], are

j∗n |x∗=−L =
16πεμn(kT )2

q2

(
n∗ −N0 exp

(
−UB1 + qE∗rc/4

kT

))∣∣∣∣
x∗=−L

, (C 5)

j∗p |x∗=L =
16πεμp(kT )2

q2

(
p∗ −N0 exp

(
−UB2 + qE∗rc/4

kT

))∣∣∣∣
x∗=L

. (C 6)

Equating these equations with (2.3) and (2.4), as before, we obtain

n∗
(
1 − qrc

4kT
E∗

)
− rc

4

∂n∗

∂x∗

∣∣∣∣
x∗=−L

= N0 exp

(
−UB1 + qE∗rc/4

kT

)
for E∗|x∗=−L > 0,

(C 7)

p∗
(
1 − qrc

4kT
E∗

)
+
rc

4

∂p∗

∂x∗

∣∣∣∣
x∗=L

= N0 exp

(
−UB2 + qE∗rc/4

kT

)
for E∗|x∗=L > 0,

(C 8)

and the appropriate limit equations for large barrier heights are (6.4).
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