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Stability of Vector Bundles on Curves and
Degenerations

Brian Osserman

Abstract. We introduce a weaker notion of (semi)stability for vector bundles on reducible curves
that does not depend on a choice of polarization and suõces for many applications of degeneration
techniques. We explore the basic properties of this alternate notion of (semi)stability. In a comple-
mentary direction, we record a proof of the existence of semistable extensions of vector bundles in
suitable degenerations.

1 Introduction

Typically, when considering (semi)stability of vector bundles on a reducible curve
X, one works with respect to a polarization that assigns weights to the diòerent irre-
ducible components of X. _e reason for this is that subsheaves of vector bundlesmay
have diòerent ranks on diòerent components of X, and one needs to determine how
to weigh these ranks. Put diòerently, the Hilbert polynomials of subsheaves will now
depend nontrivially on the choice of an ample line bundle. Such an approach is very
natural for working with coarse moduli spaces, but it introduces undesirable techni-
cal complications. _is note is based on the observation that if one is interested in
(semi)stability in the context of degeneration techniques (typically applied to higher-
rank Brill–Noether theory), a weaker deûnition suõces, in which one only considers
constant-rank subsheaves. _e resulting deûnition is independent of polarization and
both better-behaved and easier to verify than the standard one. Although it is not well
suited to coarse moduli space constructions, it is still an open condition in families,
and hence works well in the context of moduli stacks.

_ese ideas have been applied in the proofs of new existence results in higher-rank
Brill–Noether theory by the author andTeixidor i Bigas [OT] andbyZhang [Zha]. _e
latter provides the best known results towards the existence portion of the Bertram–
Feinberg–Mukai conjecture andparticularly beneûts from the theory introducedhere,
as the construction requires considering vector bundles that are unstable on some
components of the curve. _e traditional deûnition of stability is not well suited to
block by block constructions, making such situations very complicated to analyze,
but our theory allows for much simpler arguments. In addition, there are hints that
our approach may have a role to play in specialization arguments, where a priori one
would expect to want to make use of the usual stronger notion of semistability; see
Remark 3.2.
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In a complementary direction, we record in Proposition 4.1 a natural statement that
does not seem to have appeared in the literature regarding the existence of semistable
extensions of vector bundles with respect to a chosen polarization.

We assume throughout that all curves are proper, geometrically reduced, and ge-
ometrically connected, but not necessarily irreducible.

We now introduce the notion of ℓ-semistability (short for “limit semistability”).

Deûnition 1.1 Let X be a nodal (possibly reducible) curve and let E be a vector
bundle of rank r on X. We say that E is ℓ-semistable (resp., ℓ-stable) if for all proper
subsheaves F ⊆ E having constant rank r′ on every component of X, we have

χ(F )
r′

≤
χ(E )

r
( resp.,

χ(F )
r′

<
χ(E )

r
) .

_us, if X is irreducible, we recover the usual deûnition of (semi)stable, while in
the reducible case we have a weaker deûnition, which does not involve a polarization.
Note that an ℓ-stable vector bundlemay not be stable with respect to any polarization;
see Example 3.1.

Our main results are the following observations.

Proposition 1.2 Both ℓ-semistability and ℓ-stability are open in families.

Proposition 1.3 Both ℓ-semistability and ℓ-stability are closed under tensor product
with line bundles.

Consequently, we ûnd the following corollary.

Corollary 1.4 Let π∶X → S be a family of curves, with S the spectrum of a DVR, such
that π has smooth generic ûber Xη and nodal special ûber X0. Let E be a vector bundle
on X. If E is ℓ-semistable (resp., ℓ-stable) on X0, then E is semistable (resp., stable) on
Xη .

Corollary 1.5 Let X be a nodal curve, E a vector bundle on X, andL a line bundle
on X. If E ⊗L is semistable (resp., stable) with respect to some polarization on X, then
E is ℓ-semistable (resp., ℓ-stable).

Finally, we demonstrate that ℓ-semistability behaves very well with respect to glu-
ing of subcurves.

Proposition 1.6 Let X = Y ∪Z be a nodal curve, with the subcurves Y and Z meeting
at a single node P. Given a vector bundle E on X of rank r, if E ∣Y and E ∣Z are ℓ-semi-
stable on Y and Z respectively, then E is ℓ-semistable on X. If, further, there do not exist
subsheaves FY ⊆ E ∣Y andFZ ⊆ E ∣Z of some constant rank r′ that glue to one another
at P and satisfy

χ(FY)/r′ = χ(E ∣Y)/r and χ(FZ)/r′ = χ(E ∣Z)/r,

then E is ℓ-stable.
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Here, when we say that FY and FZ glue to one another at P, we mean that in a
neighborhood of P they are obtained as the restrictions to Y and Z respectively of a
subbundle of E .

Corollary 1.7 Let X be a curve of compact type and let E be a vector bundle on X.
If E ∣Y is semistable for every component Y of X, then E is ℓ-semistable. If, moreover,
there does not exist a vector subbundle F ⊆ E which is weakly destabilizing on every
component of X, then E is ℓ-stable.

Here, a subbundleF ⊆ E ∣Y is weakly destabilizing if χ(F )/r′ = χ(E ∣Y)/r, where
r′ and r are the ranks of F and E , respectively. Corollary 1.7 may be deduced from
Corollary 1.5 and analogous results in the literature on usual stability (see, for instance,
[Tei95, Proposition 1.2]), but there are many ℓ-semistable vector bundles that are not
of the form considered in Corollary 1.7, and Proposition 1.6 provides a powerful tool
for building them one block at a time. We hope that systematically considering such
bundles will lead to better existence results in higher-rank Brill–Noether theory (for
instance, in the direction of the Bertram–Feinberg–Mukai conjecture) than those that
have been obtained to date.

2 Proofs

We now give the proofs of the claimed results.

Proof of Proposition 1.2 _emain observation is that if π∶X → S is a (�at, proper)
family of curves where S is connected and locally Noetherian, and E is a coherent
sheaf on X, �at over S, if there exists s ∈ S such that E has the same rank r generically
on every component of the ûber Xs , then the same is true for all s ∈ S. It clearly
suõces to handle the case that S is irreducible, so in this case, we ûrst prove that the
statement holds for the generic point η of S and then for all s′ ∈ S. Since the hypotheses
are preserved under base change and the conclusion may be tested a�er base change,
we therefore reduce to the case that S is the spectrum of a DVR, and we wish to prove
that E has rank r on every component of the generic ûber Xη if and only it has rank
r on every component of the special ûber X0. However, by �atness over S, the open
subset of X on which E is locally free must meet every component of X0; indeed,
the support of any torsion of E cannot contain any generic point of the special ûber
without creating torsion over S. Since every component of Xη must contain at least
one component of X0 in its closure, and every component of X0 is in the closure of
some component of Xη , the desired statement follows.

It thus follows that the locus in a given Quot scheme that consists of quotient
sheaves having equal rank on each component is a union of connected components of
the Quot scheme, and is in particular proper. _e proposition then follows from the
usual argument for openness of (semi)stability (see, for instance, [HL97, Prop. 2.3.1]).

Proof of Proposition 1.3 Let E be a vector bundle of rank r on a curve X and let L
be a line bundle. Observe that for any r′ < r, tensoring with L induces a bijection
between subsheaves of E of pure rank r′ and subsheaves of E ⊗L of pure rank r′. It
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is thus enough to observe that for any subsheafF ⊆ E of pure rank r′, we have
χ(E )

r
−
χ(F )

r′
=
χ(E ⊗L )

r
−
χ(F ⊗L )

r′
,

which we prove by showing that χ(F ⊗ L ) = χ(F ) + r′ degL and χ(E ⊗ L ) =
χ(E ) + r degL . _is is presumably standard, but since the proof contains minor
subtleties in the case of a reducible curve, we include it for the sake of completeness.

Let D be a suõciently ample eòective divisor supported on the smooth locus of X
such that L (D) has a section s that is nonvanishing at the nodes of X. _en using
the short exact sequences induced by s gives us

χ(F ⊗L (D)) = χ(F ) + r′(degL + degD),

χ(E ⊗L (D)) = χ(E ) + r(degL + degD).

_en the exact sequences induced by the canonical inclusion L ↪ L (D) yield the
desired identities.

Note that Corollary 1.4 is an immediate consequence of Proposition 1.2, andCorol-
lary 1.5 is an immediate consequence of Proposition 1.3.

Proof of Proposition 1.6 Let F be a subsheaf of E of constant rank r′. Let FY
(resp.,FZ) denote the quotient ofF ∣Y (resp.,F ∣Z) by its torsion subsheaf, or equiva-
lently, the image ofF ∣Y inside E ∣Y (resp., ofF ∣Z inside E ∣Z). _en there is an integer
rP between 0 and r′ described as follows. IfQ is the cokernel of

F ↪FY ⊕FZ ,

then one checks that injectivity is preserved a�er restriction to P, so we have an in-
duced exact sequence

0Ð→F ∣P Ð→FY ∣P ⊕FZ ∣P Ð→Q∣P Ð→ 0,

and we let rP be the dimension of Q∣P . We then have that rP = r′ if and only if F

is locally free at P, and furthermore, if F̃Y denotes the saturation ofFY at P in E ∣Y ,
and similarly for F̃Z , then rP has the property that the quotients F̃Y/FY and F̃Z/FZ
each have dimension at least r′ − rP at P. Now, we carry out the following calculation:

χ(F )
r′

≤
1
r′
( χ(FY) + χ(FZ) − rP)

≤
1
r′
( χ(F̃Y) + χ(F̃Z) − 2(r′ − rP) − rP)

≤
1
r
( χ(E ∣Y) + χ(E ∣Z)) −

2r′ − rP
r′

=
χ(E )

r
+ 1 −

2r′ − rP
r′

=
χ(E )

r
−

r′ − rP
r′

≤
χ(E )

r
.

_us, we get that E is ℓ-semistable, and is in fact ℓ-stable unless there exists some
F with χ(F̃Y)/r′ = χ(E ∣Y)/r, χ(F̃Z)/r′ = χ(E ∣Z)/r, and rP = r′. _e condition
rP = r′ implies that FY = F̃Y and FZ = F̃Z and that FY must glue to FZ at P, as
desired.
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Corollary 1.7 follows immediately from Proposition 1.6 by induction on the num-
ber of components of X.

3 Further Discussion

It is instructive to compare ℓ-semistability to usual semistability in the case of rank 2
and degree 2g−2. _is case is the subject of the Bertram–Feinberg–Mukai conjecture,
and has consequently received a great deal of attention. A vector bundle E of rank
2 and degree 2g − 2 has χ(E ) = 0, so we see that although the usual deûnition of
(semi)stability calls for a polarization, the resulting deûnition in fact does not depend
on the polarization. _is, therefore, presents a natural context in which to compare
the deûnitions.

Example 3.1 Let X be a chain of smooth curves Y1 , . . . ,Yn , glued together at nodes.
Let E be a vector bundle of rank 2 and degree 2g − 2, satisfying the condition for
ℓ-stability of Corollary 1.7. Suppose further that d1 ∶= degE ∣Y1 is even, and E ∣Y1 is
strictly semistable. _en we see that even though E is ℓ-stable, it is not stable on X.
Indeed, let g1 be the genus of Y1; then if d1 ≥ 2g1, the condition for stability is violated
by the subsheaf of E consisting of sections that vanish on the complement of Y1, while
if d1 ≤ 2g1 − 2, the condition for stability is violated by the subsheaf of E consisting of
sections that vanish on Y1.

_e peculiarities of the case χ(E ) = 0 lead to subtleties in certain aspects of Teixi-
dor i Bigas’ [Tei04,Tei08]. _ese subtleties are addressed by twisting arguments, and
we take the opportunity to discuss how they ût into the context of ℓ-stability.

Remark 3.2 In [Tei08], a key point is to place suitable conditions on the vector
bundle E0 obtained as a specialization from a semistable vector bundle on the smooth
generic ûber; this is carried out in Claim 2.3. However, Claim 2.3 does not apply di-
rectly to the case of interest, because when χ = 0 it is not possible to choose a polariza-
tionwith the required non-integrality property. Instead, as described at the beginning
of [Tei08, §3], one uses twisting to complete the argument, as follows. Let π∶X → S
be the family of curves used for the degeneration and let Eη be a vector bundle on
the generic ûber Xη , with canonical determinant. Choose D any divisor on X of non-
zero relative degree; rather than extending Eη right away, we instead twist by D and
then extend Eη(D∣Xη) to a bundle E ′ semistable with respect to a polarization satis-
fying the stated condition.1 _en Claim 2.3 of loc. cit. shows that E ′ has the desired
properties on each irreducible component and in a neighborhood of each node, and
it follows that if we set E0 = E ′(−D)∣X0 , we obtain an extension of the original Eη
which has the desired properties.
For us, the relevant point is that, because semistability is not preserved by twist-

ing, there is no reason to think that E0 is semistable, but at least it follows fromCorol-
lary 1.5 that it is ℓ-semistable. _is hints that even though for specialization arguments

1In fact, the argument in [Tei08] is slightly more complicated, but can be simpliûed to the above
using Proposition 4.1.
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it is natural to try to take advantage of the stronger properties aòorded by semista-
bility (with respect to a polarization), there may also be a role for ℓ-semistable vector
bundles.

Remark 3.3 In [Tei04], in order to stay within the framework of usual stability,
one needs to make an argument similar to that of Remark 3.2, because the situation
is precisely as in Example 3.1, so the natural underlying vector bundles are in fact
not stable under any choice of polarization. But if π∶X → S and D are as in the
previous remark, and E is a vector bundle on X underlying the relevant limit linear
series and its smoothing, we show that E is stable on the generic ûber Xη as follows.
_e twisted bundle E (D) has nonzero Euler characteristic, so a�er a possible further
twist to redistribute degrees, it is stable on X0 for a suitable choice of polarization. It
thus follows that E (D)∣Xη is stable, and hence, since Xη is smooth, that E ∣X(η) is also
stable, as desired.
Although the above argument works, it seems much simpler to argue that for the

original E , although E ∣X0 is strictly semistable, it is ℓ-stable by Proposition 1.6, and
therefore E ∣Xη is stable, as needed.

4 Semistable Extensions

Although the following result on specialization of vector bundles under degeneration
is a straightforward application of standard techniques, it does not appear to be stated
anywhere in the literature. Because it complements the main subject of this note, we
take the opportunity to record its proof.

Proposition 4.1 Let π∶X → B be a �at proper morphism with B the spectrum of a
DVR, generic ûber Xη a smooth curve, and special ûber X0 a nodal curve. Suppose that
X is regular. _en for any polarization w on X0, and any semistable vector bundle Eη
on Xη , there exists a vector bundle E on X such that E ∣Xη ≅ Eη and E ∣X0 is semistable
with respect to w.

Recall that a polarizationw is a positive rational weighting of the components of X0
adding to 1. Semistability with respect to such a polarization is equivalent to semista-
bility with respect to an ample divisor supported on the smooth locus of X0; clearing
denominators in w describes the distribution of degrees of the divisor in question.

Proof First, recall that a re�exive sheaf on a regular 2-dimensional scheme is neces-
sarily locally free. _us, by extending Eη to any coherent sheaf on X and then taking
the re�exive hull, we obtain a vector bundle E ′ on X extending Eη . It remains to show
that the desired E can be realized as a subsheaf of E ′. _is follows the standard argu-
ment of Langton (see [HL97, _eorem 2.1.B]); all that needs to be checked is that the
subsheaves considered inductively in the argument in question remain locally free at
each step. But these subsheaves are obtained by considering the kernel K of com-
posed maps of the form

E ↠ E ∣X0 ↠F ,
where E is a vector bundle andF is the quotient sheaf corresponding to a maximally
destabilizing subbundle ofE ∣X0 . In particular, the kernel ofE ∣X0 ↠F is saturated, so
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F is pure of dimension 1. Now, purity implies that for any closed point x ∈ Supp(F ),
the stalk Fx has depth 1, so it follows from the Auslander–Buchsbaum formula that
the projective dimension of Fx is also 1. Using the Tor exact sequence, we conclude
that Kx is �at over OX ,x , and henceK is locally free, as desired.

If we drop the regularity hypothesis on X, then it is always possible to blow up
X at nodes of X0 to resolve any singularities; this only introduces chains of rational
components at the nodes of X0, and then it follows from Proposition 4.1 that we can
extend any vector bundle while preserving semistability.
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