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ORTHOGONAL DESIGNS WITH ZERO DIAGONAL 

A. V. GERAMITA AND J. H. VERNER 

1. Introduction. 

Definition 1. An orthogonal design of order n and type (si, . . . , si) (st positive 
integers) on the commuting variables Xi, . . . , Xi is an n X n matrix X with 
entries chosen from {0, ±Xi, . . . , dtzxt} such that 

XX1 = ( É W)j» . 

Alternatively, each row of X contains st entries of the form ±x* and the 
rows are formally orthogonal. In [2] it was established that XlX = XX \ and 
further, that I ^ p(n) (Randon's function) where for n = 2ab, b odd, a = 
4c + d, 0 ^ d ^ 3, p(n) = 8c + 2d. More on orthogonal designs is contained 
in [2; 3; 4; 5; 9; 10]. 

Definition 2. A weighing matrix of weight k and order n is an n X n matrix A 
with entries chosen from {0, 1, —1} such that A A l = kln. (A weighing matrix 
is usually denoted as Win, k).) 

The relationship between weighing matrices and orthogonal designs is 
illustrated by 

THEOREM 1. [2]. There is an orthogonal design X of order n and type ($i, s2, 
. . . , si) if and only if there are matrices Ai, . . . , A t such that 

(i) At is a W(n, st), 1 ^ i ^ /, 
(ii) AiAj* + AjAi1 = 0, l g i ^ j g / , and 

(iii) At*Aj = 0 (Hadamard product) for i ^ j . 

For various n and k, weighing matrices have been extensively studied. In 
particular, a Win, n) is a Hadamard matrix and there is considerable interest 
in such matrices. (A recent comprehensive survey is given in [8].) 

The principal thrust of this article is motivated by work that has been done 
on weighing matrices of order n and weight n — 1. If n = 0 (mod 4) and A is 
a Win, n — 1) for which A = — A1 then H = / + A is a Hadamard matrix 
(of skew-type). If n = 2 (mod 4) and A is a Win,n — 1) having zero diagonal 
and satisfying A = A \ then 4̂ is called a symmetric conference matrix. In [8] 
both of these types of matrices are extensively used to construct other Hada­
mard matrices. These matrices are also discussed in [1] and the following 
elegant result is proved there. Here, it is restated in a form appropriate for 
further use with orthogonal designs. 
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THEOREM 2. [1] (Delsarte-Goethals-Seidel) Let A be a W(n, n — 1) with 
the rows reordered so that the diagonal consists of zeroes. 

(i) If n = 2 (mod 4) then multiplication by —1 of rows {or columns) of A 
as necessary yields a matrix Â with Â = Â1. 

(ii) / / n = 0 (mod 4) then multiplication by — 1 of rows {or columns) of A as 
necessary yields a matrix Â with Â = — Â1. 

This result may be generalized to orthogonal designs as follows. 

THEOREM 3. Let X be an orthogonal design of order n and type {si, . . . , st) 
with ^2\=iSi = n — 1. 

(i) If n = 2 (mod 4) there is an orthogonal design X of order n and type 
{si, . . . , Si) where X has 0-diagonal and X = XK 

(ii) If n = 0 (mod 4) there is an orthogonal design X of order n and type 
(si, . . . , s i) where X has 0-diagonal and X = —X1. 

Proof. If necessary, reorder the rows (or columns) so that the orthogonal 
design X has 0-diagonal. In this form if %\ (say) occurs in position (i,j), i ^ j , 
then position (j, i) contains ±Xi. For, suppose not and assume, without 
loss of generality, that position (j, i) contains dbx2. Consider the various 

incidences between the ith and ;th rows. Count all occurrences of ( 11 

and assume there are tx of these; similarly assume there are a total of t2 occur­

rences of I M and I I , and a total of t% occurrences of I 11 and 

( * I , k 9^ 1, 2. Since rows i and ; are orthogonal it follows that each of 
± X i / 

/i, /2 and tz must be even. Observe that these incidences account for all but 

one of the X\s in rows i and j , namely that occurring as I * I . Thus, 2/i + t2 

+ tz = 2^i — 1 and this is a contradiction. 
Now suppose n = 2 (mod 4) and multiply rows and columns of the ortho­

gonal design by —1, as necessary, so that each variable in the first row and 
column appears with coefficient = + 1 . Call the resulting matrix X and 
replace every variable in it by + 1 to obtain the W(n, n — 1) 
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By Theorem 2(i), multiplication of appropriate rows and columns of this 
matrix by — 1 will make it symmetric. However, as the first row and column 
are already symmetric it follows that the entire matrix is symmetric. Hence, 
X = X1 as was to be shown. 

For n = 0 (mod 4), multiply the rows and columns of X so that each variable 
in the first row appears with coefficient = + 1 , and each variable in the first 
column appears with coefficient = —1. Call the resulting matrix X and set 
each variable = + 1 . The argument above, with Theorem 2(ii), implies 
X = -X\ 

2. Applications. 

THEOREM 4. Let n = 0 (mod 4). There is an orthogonal design of order n and 
type (si, . . . , Si) with ^z=i^i = n — 1 if and only if there is an orthogonal design 
of order n and type (1, Si, s2j . . . , st) with 1 + ]C$=iS* = n-

Proof. The sufficiency is evident. To establish the necessity, one observes 
that in view of Theorem 3(ii), if there is an orthogonal design of the type 
described then there is one, X, where X = — X1 on the variables Xi, X2, • • • » X i> 
It is then easily verified that Y = yl + X is an orthogonal design of type 
(1, su s2, . . . , si). 

In order to give the next application of Theorem 3 recall the following 
theorem. 

THEOREM 5. [2; 5]. For n = 4/, / odd, a necessary condition that there exist 
an orthogonal design of type 

(i) (a, b) in order n is that b/a be a sum of fewer than four rational squares. 
(ii) (a, a, b) in order n is that b/a be a sum of one or two rational squares. 

(iii) (a, a, a, b) in order n is that b/a be a rational square. 

It was conjectured in [5] that these conditions were also sufficient for 
existence. This conjecture is defeated by 

THEOREM 6. There exists no orthogonal design of type 
(i) (1, 1, 1, 16) in order 20; 

(ii) (1 ,1 , 17) in order 20; 
(iii) (7, 12) in order 20. 

Proof. By Theorem 4 these designs exist if and only if the designs (1,1, 1, 1, 
16), (1, 1, 1, 17) and (1, 7, 12) exist in order 20. The first is impossible since 
p(20) = 4. The second is impossible by Theorem 5 (iii) and the fact that 17 is 
not a rational square. The third is impossible since it would imply the existence 
of an orthogonal design of type (1, 7) in order 20 which is not possible by 
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Theorem 5 (i) and the fact that 7 is not the sum of fewer than four rational 
squares. 

Observe that these designs were not prohibited by Theorem 5 since 16 = 
42, 17 = P + 42 and 12/7 = (8/7)2 + (4/7)2 + (2/7)2. 

Remarks. (1) For reasons analogous to those given in Theorem 6, there 
exist no orthogonal designs in order 20 of the following types: (1, 5, 5, 8), 
(1, 1, 8, 9), (1, 6, 12), (2, 7, 10), (5, 6, 8). 

(2) In [9] it was separately conjectured that there exists an orthogonal 
design of type (1, k) in order n = 4t, / odd, for every k < n such that k is 
a sum of three rational squares. 

This conjecture is also defeated. There is no orthogonal design of type (1, 42) 
in order 44 since such a design, in view of Theorem 3(h), would imply the 
existence of a design of type (1,1, 42) in order 44—a contradiction to Theorem 
5(ii). 

For analogous reasons there exists no orthogonal design of type (1, 66) in 
order 68, nor of type (1, 114) in order 116. 

The appendix lists those designs in order 20 whose existence is still in doubt. 
For the construction of the known designs in order 20 the reader is referred 
to [5] and [10]. 

Further consequences of Theorem 4 are included in the next two corollaries. 
The first answers questions (c), (d) and (g) of [2]. 

COROLLARY \. If n 9^ 1, 2, 4, 8 then there is a p(n)-tuple (si, . . . , spM) with 
Si > 0 and J2ï~isi = n which is not the type of an orthogonal design of order n. 

Proof. First observe that if n = 1, 2, 4, 8 then every p(n)-tuple (as described 
in the corollary) is the type of an orthogonal design of order n. This is ulti­
mately a consequence of the classical 1, 2, 4 and 8 squares identity. 

Now if n is odd, n > 1 then p(n) = 1 and by [2] there is no W(n, 2). 
For n = 2/,/odd and/ > l,p(w) = 2. A necessary condition for the existence 

of an orthogonal design of type (a, b) in order n is that b/a be a rational square 
[2]. As 1 + 2 < n and 2 is not a rational square, there is no orthogonal design 
of type (1, 2) in order n. 

For n = U, t odd, t > 1, p{n) = 4. Now l + l + l + 2 < w and by 
Theorem 5 (iii) there is no orthogonal design of type (1, 1, 1, 2) in order n. 

For n = St, t odd, / > 1, p(n) = 8. By a theorem of D. Shapiro [7], there 
is no orthogonal design of type (1, 1, 1, 1, 1, 1, 1, 2) in order n. 

Finally, let n = 2at, t odd, / ^ 1 and a ^ 4. In this case note that p{n) < n 
and consider the p(n)-tuple (1, 1, . . . , 1, n — p{n)). There is no orthogonal 
design of this type, for otherwise, by Theorem 4, there would exist an ortho­
gonal design in order n on p(n) + 1 variables. This is a contradiction, for an 
orthogonal design in order n can never involve more than p(n) variables [2]. 
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COROLLARY 2. If n = 16, then every ^-tuple (si, s2, ^3, s4) where 0 < si S 
2̂ ^ S3 ̂  ^4, X)t=i^i ^ 16 is the type of an orthogonal design in order 16. 

Proof. In [2] it was shown that all three-variable designs in order 16 exist, 
and the only four variable design in doubt was (1, 5, 5, 5). A design of this 
type is now obtained from a design of type (5, 5, 5) with the aid of Theorem 4. 

Remark. The fact that all four-variable designs exist in order 16 leads to 
many of the five variable designs in order 16 that were missing in [2]. The 
current status of orthogonal designs in order 16 is included in the appendix. 

Furthermore, the methods outlined here defeat some conjectures made by 
J. S. Wallis in [9] about the existence of orthogonal designs in order 8/, / odd. 

It has been proved by D. Shapiro that if n = 8/, / odd, a necessary condition 
for the existence of an orthogonal design in order n of type 

(i) (a, a, a, a, a, b) is that b/a be a sum of fewer than four rational squares, 
(ii) (a, a, a, a, a, a, b) is that b/a be a sum of one or two rational squares. 

(iii) (a, a, a, a, a, a, a, b) is that b/a be a rational square. 
The conjectures referred to amount to the statement that these necessary 

conditions are also sufficient. 
Theorem 4 and Shapiro's Theorem may be invoked to establish that there 

are no orthogonal designs of type (1, 1, 1, 1, 1, 66), (1, 1, 1, 1, 1, 1, 65) or 
(1, 1, 1, 1, 1, 1, 1, 64) in order 72; these provide appropriate counter-examples 
to the conjectures. 

As a final application, the main theorem may be invoked, with a rather 
tedious argument, to defeat yet another conjecture concerning orthogonal 
designs. Recall 

THEOREM 7 [2]. For n = 2t, t odd, necessary conditions that there be an ortho­
gonal design in order n of type (a, b) include 

(1) a + b < n, 
(2) a, b are each a sum of almost two squares, and 
(3) ab is a square. 

It has been conjectured [9] that these three conditions are also sufficient 
for the existence of orthogonal designs on two variables in the stated orders. 
While this conjecture was verified in [2] for orders n = 2, 6, 10, and in [2] and 
[6] for n = 14, it is not valid for n = 18. 

THEOREM 8. There is no orthogonal design of type (1, 16) in order 18. 

Proof. In the form given, the proof cannot be directly extended to establish 
the non-existence of other designs of type (1, n — 2) in order n = 2t, t odd, 
w - 2 a square. However, in the hope that some interested reader may take up 
the challenge, the proof begins in this general setting. (The authors suspect 
that such designs may exist if and only if (/ — l ) /2 is odd.) 
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1. Let X be an orthogonal design of type (1, n — 2) in order n = 2t, t odd, 
and write X = X\I + x2A. (This assumption of existence eventually leads to 
a contradiction when n = 18.) Orthogonality of rows implies that A is skew-
symmetric. Hence, without loss of generality, assume that the 2 X 2 diagonal 
blocks of A contain only zeros. Further, assume that the remaining entries of 
its first row are + L by orthogonality, the corresponding entries of the second 
row are (/ — 1) each of ± 1 . 

; then Y = HX has zero diagonal. Hence the proof 

of Theorem 3 implies that multiplication of appropriate rows of Y by — 1 
will yield a symmetric matrix. Thus there exists a diagonal matrix P with 
diagonal entries ± 1 such that PY is symmetric. 

2. Let H = 0 

The symmetry of the entries X\ in Y implies that each of the / 2 X 2 diagonal 
blocks of P is either I2 or — I2. If the first row of Y is invariant under P, 
skew-symmetry of A and symmetry of x2 in PY imply that P has (/ + l ) /2 
blocks 12 and (t — l ) /2 blocks —I2. Further, without loss of generality, it may 
be assumed that X = X\I + x2A where 

- 1 
blocks / - 1 blocks 

0 0 
0 0 

+ + 
+ + 

+ + 
+ + + + + 

0 0 
0 0 

and<? = PH = r? il e {[ ? -J]} e {[? î\\. 
Ll OJ a_D/2 ( 1 - 1 Ojj a_i ) / 2 111 Ojj 

Here A = -A\ and for B = QA, B = B\ 
3. Now QBQ = QQAQ = AQ = -AlQ = -(QA)1 = Bl = -B. Partition 

B and Q into 2 X 2 blocks, denoted Btj and Qtj respectively 1 ^ i, j ^ t, and 
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observe that QuB^Q^ = — Btj. It is easy to verify that if Qu = Qjjy B{j has 

the form v = | , _ , and if Qu = —Qjj, Btj has the form u = , 

Hence, for B written as 

B = 

0 0 + + + + + + + +' 
0 0 + + + + — — — — 

+ + 0 ol 
+ _+ 0 ol 

w\'- wt 

_+ 
w\'- wt 

+~ ~+ 
+ + 
+ -

+_ 
w<? w, 

+ — 

w<? w, 

+ — 

sections W\ and W% have only y-type blocks, and W2 has only u-type blocks. 
4. The remainder of the argument assumes n = 18, and much of the detail 

is omitted. 
The u-type blocks are denoted 

A+ -[::]•-[: :]--[î;] D- = 
+ 

+-] 
(where the sign on the name denotes the sign of the inner product of its rows) 
and those of y-type are denoted 

-[t î].-[; ;]•-[: :]•-[: î]-
Orthogonality of each of the first two rows of B with the rows in any 2 X 18 

block row of B, after the first, implies that 

number of blocks A~ in W\ (Wz) 
= number of blocks B~ in W\ (Wz) 
= number of blocks A+ in W2 (WV) 
= number of blocks B+ in W2 (W2

l). 
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Hence symmetry may be used to show that W\ has one of the forms: 

0 A- B- D+ 0 B- A- D+ 
c+ 0 A- B- D+ 0 A- B-
D+ c+ 0 c+ or c+ C+ 0 C+ 
B- D+ A- 0 B- D+ A- 0 

or one of these with A, D interchanged with B, C respectively, or one of these 
with simultaneous row and column interchanges. 

5. The remainder of the argument is the same for each case, and only the 
first version of W\ is considered. Remark 4, and the necessity that Wi and W<? 
have the same format imply that the corresponding Wi has the form 

A+ B+ Z Z 
B+ Z Z A+ 

z z z z 
Z A+ Z B+ 

(where each Z is either C~ or D~), or this form with column interchanges. 
Block rows 2 to 5 may be written 

A+ 0 A- B- D+ A+ B+ Zi Z 
A+ C+ 0 A- B- B+ Z Z2 A+ 
A+ D+ C+ 0 C+ Z Z Z Z 
A+ B- D+ A- 0 Z A+ Z3 B+ 

Orthogonality of blocks row 2 and 3 imply Z\ = Z2, of block rows 2 and 5 
imply Zi = Z3, of block rows 3 and 5 imply Z2 ^ Z3 — a contradiction. 

3. Appendix. 

Order 20. The existence of the following designs in order 20 is still in doubt. 
The reader should also consult the appendix in [5]. Many of these designs have 
recently been shown not to exist by methods quite different from those in 
this paper. See [10]. 

-variables: 

(1 ,1 ,2 ,16 ) (1, 2, 2, 9) ( 1 , 4 , 5 , 5 ) 
( 1 , 1 , 5 , 8 ) (1 ,2 ,6 , 11) (1, 5, 5, 9) 
(1, 1, 5, 13) (1, 2, 8, 9) (2, 2, 5, 5) 
(1, 1, 8, 10) (1, 3, 6, 8) (2, 3, 7, 8) 
(1, 2, 2, 8) (1 ,4 ,4 , 9) (3, 3, 6, 6) 
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^-variables: 

a. 
a, 
a, 
a, 

10) 
16) 
9) 
10) 

(1 ,3 ,11) 
(1, 3, 14) 
(1, 3, 16) 
(1, 4, 6) 
(1,4,13) 
(1, 5, 8) 

2-variables: 

(1, 5, 13) 
(1, 6, 13) 
(1, 8, 10) 
(2, 3, 8) 
(2, 3, 13) 
(2, 5, 6) 
(2, 5, 7) 
(2, 6, 11) 
(2, 7, 8) 
(2, 7, 11) 

(2, 8, 9) 
(3, 3, 12) 
(3, 4, 10) 
(3, 4, 11) 
(3, 6, 8) 
(3, 7, 8) 
(3, 7, 10) 
(5, 5, 9) 
(5, 6, 7) 

(3, 16) (6, 13) (7, 10) 

Order 16. The reader should also consult [2]. All one, two, three and four 
variable designs exist in order 16. Recall also that p(16) = 9. 

^-variables: There are 45 9-tuples each of which might be the type of ortho­
gonal designs in order 16. In [2] it is shown that each of (1, 1, 1, 1, 1, 1, 1, 1, 1) 
and (1, 1, 2, 2, 2, 2, 2, 2, 2) is the type of an orthogonal design in order 16. 

In view of Theorem 4 the following 11 9-tuples do not correspond to the 
type of an orthogonal design thus leaving 32 still in doubt. 

(1 ,1 , 1, 1, 1 ,1 ,1 , 1,7) (1, 1,1, 1, 1, 1 ,3 ,3 ,3) 
(1, 1, 1, 1, 1, 1, 1,2,6) (1, 1 ,1 ,1 , 1 , 2 ,2 ,2 ,4 ) 
(1, 1, 1, 1, 1, 1, 1, 3,5) ( 1 , 1 , 1 , 1 , 1 , 2 , 2 , 3 , 3 ) 
(1, 1, 1, 1, 1,1, 1,4,4) ( 1 , 1 , 1 , 1 , 2 , 2 , 2 , 2 , 3 ) 
(1, 1, 1, 1, 1, 1, 2, 2, 5) (1, 1, 1, 2, 2, 2, 2, 2, 2) 
(1, 1, 1 , 1 , 1 , 1 , 2 , 3 , 4 ) 

8-variables: There are 67 8-tuples each of which might be the type of an 
orthogonal design in order 16. Eleven of these are given in [2] and by the 
method of this paper so also are the following two, leaving 54 still in doubt. 

(1, 1, 1, 1, 2, 3, 3, 4) (1, 1, 1, 1, 3, 3, 3, 3) 

7'-variables: There are 94 possible 7-tuples to consider. In [2] it is shown that 
at least 37 are the type of an orthogonal design. Using the new 8-variable 
designs above the following 10 new designs are obtained leaving 47 still in doubt. 

(1, 1, 1, 1,2, 3, 3) (1, 1, 1, 1 ,3 ,4 ,5) 
( 1 , 1 , 1 , 1 , 2 , 3 , 4 ) (1, 1, 1 , 2 ,3 ,3 ,5 ) 
( 1 , 1 , 1 , 1 , 2 , 3 , 7 ) (1, 1, 1 , 2 ,3 ,4 ,4 ) 
(1, 1, 1, 1 ,2 ,4 ,6) (1, 1, 2, 2, 3, 3, 4) 
(1, 1, 1, 1, 3, 3, 6) (1, 1 , 2 , 3 , 3 , 3 , 3 ) 
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Q-variables: Of the 125 6-tuples that could be the type of an orthogonal 
design all are, except possibly for the following 20 which are still undecided. 

1 . 1 . 1 . 1 . 1 . 8 ) ( 1 , 1 , 1 , 2 , 2 , 8 ) 
1 . 1 . 1 . 1 . 1 . 9 ) ( 1 , 1 , 1 , 2 , 2 , 9 ) 
1 . 1 . 1 . 1 . 1 . 1 0 ) ( 1 , 1 , 1 , 2 , 5 , 5 ) 
1 . 1 . 1 . 1 . 1 . 1 1 ) ( 1 , 1 , 1 , 4 , 4 , 4 ) 
1 . 1 . 1 . 1 . 2 . 8 ) ( 1 , 1 , 2 , 2 , 2 , 7 ) 
1 . 1 . 1 . 1 . 2 . 9 ) ( 1 , 1 , 2 , 2 , 3 , 6 ) 
1 , 1 , 1 , 1 , 3 , 8 ) ( 1 , 1 , 2 , 2 , 4 , 5 ) 
1 , 1 , 1 , 1 , 4 , 7 ) ( 1 , 1 , 2 , 2 , 5 , 5 ) 
1 . 1 . 1 . 1 . 5 . 5 ) ( 1 , 2 , 2 , 2 , 3 , 5 ) 
1 . 1 . 1 . 1 . 5 . 6 ) ( 2 , 2 , 2 , 3 , 3 , 3 ) 

5-variables: Of the 149 5-tuples that could be the type of an orthogonal 
design all are, except possibly for the following 3 which are still undecided. 

( 1 , 1 , 1 , 1 , 1 1 ) ( 1 , 1 , 2 , 2 , 9 ) ( 1 , 2 , 2 , 5 , 5 ) 
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