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On the effect of phase transformations
on saline ice compliance

L.R. McKiTTRICK AND R. L. BROWN

Civil Engincering Department, Montana State University, Bozeman, Montana 59717, U.S.A.

ABSTRACT. To obtain a better understanding of the compliance of saline ice, we
developed a simple conceptual model of a process that presumably takes place in saline
ice. Using elastic models, we assessed the role that phase transformations might play
when brine is sealed into small cells during crystal growth. Cooling of a scaled brine
cell, leading to the precipitation of ice, provides a mechanism for the accumulation of
“large™ localized stresses, Based on our analysis, this mechanism has the potential to be
a significant source for the nucleation of dislocations, and can conceivably make a
significant contribution to the greater compliance (softness) of saline ice relative to
non-saline ice,

T'he results of this model are consistent with the observation that laboratory-grown
saline crystals sometimes display extensive differences in mechanical behavior that
appear to be due to variations in the growth and storage conditions experienced by the
crystals.

PURPOSE foundation for subsequent studies of phase transformations
and how they affect dislocation nucleation in saline ice.
Our goal in this paper is to further the understanding of the

mechanical behavior of saline ice relative to non-saline

INTRODUCTION

(“pure”) ice. In particular, we focus on the role of phase
transformations as a source of wvariation in the the

compliance of saline (NaCl) single ice crystals. In the
process, we evaluate the likelihood that phase transform-

ations can have a significant effect on the compliance of

saline ice. At the same time, we hope 1o provide a firm

A single erystal may be defined as a specimen that grows
solely from one nucleus, so that no part of the specimen
is more than 53 from the mean orientation (Winegard,
1964, ch. XII). Using Kawamura’s (1986) method. a
seed crystal is constructed from a single crystal with a
vertical ¢ axis. To construct the seed crystal, the original
erystal is sliced into plates such that the crystalline a
axis is perpendicular to the plane of the plate, and the ¢
axis lies in the plane of the plate. The plates are placed
side by side, aligning the ¢ axis of each plate. The plates
are then “sintered” together to form a quasi-single
crystal seed. Often there is a fine line of small randomly
oriented crystals that develop at the interface between
plates. These lines will sometimes extend into a
specimen grown from the seed. If carefully applied.
this approach yields specimens with crystal orientations
within 3” of the mean, except for small (<1 mm)
crystals on the interface planes. The specimen is grown
from as many as four nuclei (plates). Though we would
expect the resulting specimen to behave structurally as
a single crystal, it does not meet the definition of a single
crystal; therefore, we refer to specimens grown by this
technique as quasi-single crystals.
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To better our understanding of the hehavior of saline ice
relative to non-saline ice, we grew quasi-single crystals' of
saline and non-saline ice using the method developed by
Kawamura (1986). The crystals were grown with a
horizontal ¢ axis and a vertical ¢ axis and were typically
25¢m square and 20 em deep. These large crystals were
then cut into specimens 5 em square and 22 cm long where
the ¢ axis was oriented at 457 relative to the long axis of the
specimen. The specimens, both saline and non-saline, were
compressed at a constant strain rate (€ =1 x 107%71).
The averaged responses are shown (Fig. 1) in terms of
shear stress resolved on the hasal plane, at temperatures of
207 and
response of two specimens after smoothing by a least-
squares technique (Savitzky and Golay, 1964).

40°C. Each curve represents the averaged

Saline ice crystals typically are conceptualized as a
bridged matrix of non-saline ice platelets with a regularly
spaced system of brine cavities and possibly air hubbles
interspersed throughout. With this conceptual model, one
would expect saline ice to display a response similar to
that of non-saline ice, though with somewhat lower
macroscopic stresses; indeed there are such cases. For an
example of such an analogous behavior, between saline
and non-saline ice, consider the experimental results of
Brown and Kawamura (1991).

Brown and Kawamura tested quasi-single crystals of
saline ice that were not subjected to thermal cycling.
Upon removal from the crystal-growth bath, their
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Fig. 1. Stress response for constant strain rate (€ =
1 x 10-%s71),

specimens were stored at —11°C, both during the period
they were allowed to drain and after the time they were
cut into specimens. During the entire period, the
temperature variations were probably no more than
+0.1°C, since the specimens were stored inside insulated
hoxes stored inside a cold room which had temperature
control to within +1°C. Prior to testing, each specimen
was slowly cooled to the test temperature.

In tests conducted at Montana State University (Fig.
1), a similar procedure was used, but the cold room had a
larger temperature oscillation, and the test specimens were
subjected to a very low thermal cycling between —10” and —
20°Ct while they were stored. This cycling occurred when
the cold-room temperature was slowly lowered over a
period of approximately | month in order to grow new
saline quasi-single crystals. The cyclic thermal loading may
have affected the material ductility and elastic after-effect,
if it resulted in cyclic inelastic deformation.

Typical models for the strength of sea ice (Anderson,
1058: Assur, 1958; Weeks and Assur, 1967; Michel, 1978;
Weeks and Ackley, 1982) connect the reduction in
strength of sea ice relative to non-saline ice using a
function of brine content with models of the form

o =eo™ 1 = f(6°)] (1)

where ¢ and ¢" are the strength of saline ice and non-
saline ice, respectively, ¢% is the brine content or porosity
of the sea ice, and ¢ is a reduction coefficient and is
commonly used to include stress concentration factors or
other structural characteristics. But in Figure 1 it is clear
that there are cases where saline ice does not display the
peaked stress response or large yield drops that the non-
saline ice does. Models that use geometric reduction, in
terms of porosity or brine content, to explain the reduced
strength of saline ice do not explain the absence of a
peaked stress response in saline crystals when such a
response is lacking.

If we view the responses in Figure 1 in terms of
dislocation theory, we might consider the peak stress in
single crystals as the point where the energy level in the
crystal is sufficient for the stable nucleation” (multi-
plication) of dislocations. Two possible explanations exist
for the lack of similarity between the two types of crystal
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responses. Iirst, the saline ice crystal has a high mohile-
dislocation density before it is ever loaded in the test
apparatus, and secondly, some internal mechanism plays
a significant role in lowering the activation energy
required for the nucleation of dislocations in the saline
ice crystal. Here we consider phase transformations of
brine in internal cells in saline crystals as a possible
mechanism for the introduction of a high density of
dislocations before the saline crystal is ever subjected to
external mechanical loads.

PHASE TRANSFORMATIONS

We chose to pursue phase transformations as a factor in
the behavior of saline ice since they seem likely to induce
deformation in the saline ice crystal during growth or
storage, so that any mechanical testing performed on test
specimens is actually done on specimens which have been
pre-deformed in the neighborhood of the brine cells. Tf
this mechanism induces stress sufficient to produce local
deformation well into the plastic regime, then, in the case
ofl'ice, softening will effectively occur without the necessity
ol external loads.

Ice crystallization from brine

As crystals of ice form in a brine solution, nearly all of the
solute (salt, air, etc.) remains in solution (Weeks and
Ackley, 1982, p. 4). As the crystals grow into the melt they
form a series of parallel blade-like platelets about 0.5 mm
thick. As growth proceeds, observers (Anderson and
Weeks, 1958; Weeks and Ackley, 1982; Grenfell, 1983)
report that the platelets thicken and bridges begin to form
approximately 2.5 cm above the lower tip of the platelets.
The bridging process between platelets develops around
vertical columns of brine which might extend vertically
through the entire crystal. As the ice cools further, the
columns of brine collapse into arrays of nearly spherical or
cllipsoidal brine cells. As the brine cells age, they have an
increased tendency to take on an ellipsoidal geometry.

Utilizing this outline of crystal development, we
assume that the ice crystal and trapped brine are stress-
free immediately after the brine columns collapse into
arrays of nearly spherical brine cells. Then the driving
question becomes, what happens as the ice and brine are
cooled further?

Here we will focus on the role of the phase
transformation that brine, which is trapped in these
cells, undergoes as the crystal temperature drops either
during the growth stage or while in storage.

Phase changes

To quantify the phase changes, we will define the salinity

? The predominant source of dislocations in ice is
typically thought to be the multiplication of pre-existing
dislocations, in the sense first modeled by Johnston and
Gilman (1960). We prefer to use the term nucleation in
the sense that the source of nucleation is typically a pre-
existing dislocation.
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of the brine (s®) by the non-dimensional form

g m°  mass of salt :
m"  mass of brine

To understand the relationship between the phases of
brine and ice, consider the phase-diagram cartoon (Fig.
2) from Weeks and Ackley (1982). For a brine solution
with a salinity of 0.035, when the temperature drops to
—2°C, water precipitates out of the brine in the form of
ice. If the brine is contained in a small closed system, then
the transformation from water to ice implies that the mass
of brine decreases significantly while the mass of salt in
solution remains “constant”; thus the salinity of the brine
increases. The increase in brine salinity requires a
decrease in temperature before more ice can precipitate
out. This process will continue until the brine reaches the
eutectic point, at a salinity of 0.233 and a corresponding
temperature of —21.2°C. Before the temperature of the
brine can drop below the eutectic point, the brine solution
must assume the solid form of sodium chloride dihydrate
(NaCl-2H,0).

Phase transformations are dependent on changes in
pressure and temperature (LaChapelle, 1968). That is, as
pressure increases, the phase curve typically depresses. To
keep the mathematical development relatively simple, we
will assume that the phase change is independent of

Salinit Brine
. 0-0|35 ¥ . +NaCl
0 T 015 02 025 03
éi =5 . 20 .':
5] o ¥
E -10 . (Brine)
g Ice + Brine i Btine
.15} i+
Wi L Al
lce + Sohd NaCI-ZHZO
25 0.233

Fig. 2. Phase diagram for H:0 and NaCl.

pressure. Cox and Weeks (1975, table 1) use the following
third-order polynomial to model the phase relationship
between the brine salinity (s¥) and the freezing/melting
temperature (71'):

s® = (= 17.5737 — 0.381246 T2
— 3.28336 x 107°T%) x 107 (3)
where the transformation temperature (T') is in “C. Their
equation is based on a statistical fit of experimental data

with a correlation coeflicient of 0.999927 and a standard
error equal to 0.4334.

Phase densities

For brine density, we assume that pressure and tempera-
ture are independent variables and that temperature and
salinity are directly correlated. For the stress-free density
of brine (p"), we use the approximation for sea brine given
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by Cox and Weeks (1983, equation 16),

B W g
P (1+C—B) (4)

where

B=125 (5)

and p" is the density of water at 0°C. For the density of
non-saline ice (p'), we use the approximation given by
Pounder (1963, equation 29),

g = por(l— 153 % 10747T) (6)

where the temperature 7" is in “C and pg! represents the
density of ice at 0°C with the value:

pot = 916.8kgm™ . (7)

When the temperature of the brine drops below the
eutectic point, and the brine takes on the solid form of
sodium chloride dihydrate (NaCl-2H,0), the density of
the solid is approximately 1630kgm * (Weeks and
Ackley, 1982, table I):; comparing the density of this
solid form with the density of brine (Equation (4)) at the
eutectic point (p2 =1186kgm 7} implies that the brine
contracts as it transforms into solid form. Given the
nature of our query, we will not concern ourselves with
temperatures below the eutectic point.

VOLUMETRIC STRAIN (DUE TO PHASE TRANS-
FORMATIONS)

In this section, we consider the stress-free variations in the
volume of the components contained in a brine cell due
solely to phase transformations. To quantify the changes,
we place an imaginary boundary around an arbitrary
brine cell when it is first sealed or completely surrounded

¢

by ice but is yet “stress-free”. We then consider the
changes in component volumes (brine and ice), assuming
components are unconstrained. This imaginary process is
illustrated in Figure 3.

Our model of a brine cell consists of three distinct
structural components. First is the ice external to the
brine cell. Second is the brine trapped in the brine cell.
Third is the ice that precipitates out of the brine to form
an icy shell on the inside of the original brine cell. This
precipitation continues as the temperature of the brine
cell drops. Given the lower density of ice, as ice
precipitates out, the total system must expand.

In this section, we are concerned only with the volume
changes resulting from the two components on the
interior of the original brine cell. Though Figure 3
illustrates polar or spherical geometry, the volume
changes modeled in this section are independent of
geometry.

Notation

Ior state variables, m is mass, s is salinity, p is density,
and V' is volume. For the components, the SUPErSCripts
“37, “B”, “I”, and “W™ designate salt, brine, precipi-
tated ice, and non-saline water, respectively. Superscript
“O” will identify combined components of the “original®
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precipitated Ice (I)

" Concentrated
Brine (B)

Fig. 3. Gonceptual (spherical) model for a brine transformation.

brine system. Subscripts index the state; in particular, "o
denotes the initial state, and “T” denotes variations due
to the phase transformation from brine to ice.

Brine transformation volume

Because the most significant volume changes hinge on the
transformation from brine to ice, we will start by
modelling the transformation volume of the brine ['VTB).
Given the closed nature of a brine cell, the mass of salt
contained in a cell remains constant., In addition, we will
assume that all of the salt mass is retained within the brine
to the extent that, upon freezing, ice rejects practically all
of the salt. Based on experimental results (Weeks and
Ackley, 1982, p.4), this assumption is a good approxima-
tion for density calculations. Based on the preceding
statements, we can write the following relation.

m's = SUBPOB%B = SBpBVl‘B s (8)

Rearranging terms, we can represent the transforma-
tion brine volume (V®) by

5 Big B
B B S0 fo
Vit =V (W) (9)
Representing the brine density as a function of salinity

(Equation (4)), we can write

VTB - Sul'i(gﬁ L SUB)
VT P

(10)

T < T,, then(P'= 1.25 > 0.233 > 5B > 5,8 implies the
volume is approximately inversely proportional to the
salinity and is related in a similar fashion to temperature.’

= B
VT ,“_,30n

V.E s

(11)

The term VTB indicates an approximation of the
transformation brine volume (V4?); this approximation
emphasizes the relationship between the brine volume
and the brine salinity. In essence, as the salinity increases,
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Ice external to original cell

Water separated from brine
- transformed to ice

Concentrated brine due to
separation of water/ice

Overlap of brine and ice
due to expansion of ice
relative to water

boundary of Original (O) brine ceD

there is less and less hrine volume for ice to precipitate
from; therefore, the most significant changes should occur
immediately after a sealed brine cell begins to cool.

Differential changes for the total transformation
volume

We will describe the stress-free (transformation) volume
of the brine cell (Vi®) as the sum of the reduced brine
volume (VTB) and the precipitated ice volume (VT' iz

B I
m> m
Vi =wP+ ' = ——+— (12)
el
As indicated ecarlier, the superscript “O” denotes the
original brine system. Here, after the temperature is
lowered, the original system consists of the remaining
brine and the ice that has precipitated out of the brine.
Differentiating the preceding expression yields
o dmP mPdpP dm' m'dp'
i = g b e (13)
P (P°) P ()

Clonsidering the differential density change for brine, the

stress-free brine density can be written as a function of
temperature and salinity. We have chosen to express the
density changes as a function of salinity, such that
temperature effects are included implicitly (Equations
(3) and (4)); thus
W
0B =% +%SB‘ (14)

* The relative difference in these two approximations
(Relations (10) and (11)) can be written as
VI'B - I/:TB e S(JB - SB
Vit BB

If 5,2 = 0.035, this difference reaches a maximum of
15%, near the eutectic point.
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and differentiating yields

W
dpP = £_4sB.

@ (15)

Considering the differential density change for ice, all
but a very small amount of salt is rejected from ice so that
salinity can be neglected. Also, since we are concerned
only with temperature changes on the order of 20°C,
density changes will bhe small so that the density
differential may be neglected.'

Returning to the expression for the differential volume
change (Equation (13)), substituting for the brine density
differential (Equation (15)), recalling VTB = mB/pB, and
allowing the density difterential for the precipitated ice to
vanish, we have
oy, AP dm] g b ds®
dVT ~ —5 YR

P PG

B

(16)

Focusing on the first two terms in the differential
volume expression, the mass of the brine in the original
system can be written as

B

Mo® = m® 4+ m' (17)

because the mass of precipitated ice in the original system

is zero (m,' =0). Differentiating the preceding mass
relation, we have

dm' = —dmPB.

(18)

Substituting into the volumetric differential (Equation
(16)) and simplifying,

dm® ( B

dvz° = E
P\ !

\\'d' B
1) M i)

pB¢B

T'o make this equation more useful, we will express the
first term in terms of salinity rather than mass. Using the
definition of brine salinity (Equation (2)), the brine mass
can be written as:

g_md

m =—u
sB

(20)

Recalling that the salt mass (m®) is constant, differentiat-

ing, and substituting m® = mBs® and m® = pPViB, we
have
B By, B
m Vi
dmP = - g8 = 2T 48 (21)
sB sB

Returning to the volumetric differential (Equation
(19)) and substituting for dm® (Equation (21)), we

' Differentiating Equation (6), setting dp' = Ap' and
dT" = AT = —20%C,

Ap' = o' (153 x 107'AT) = 0.003p,'

implies that the density of the precipitated ice changes
less than 0.3% for temperature changes less than 20°C.
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have

avi® TP N1 P 1],

Vr P & e
Substituting for p® as a function of salinity (Equation
(4)), we have

W0 — B p" 1 1 18 (23
avo == T pICB+£.‘s‘7BiSB+CB(h (')
where
p\\'

This differential relation gives us a measure of the
increasing interference between the two phases, i.e. brine
and ice.

Strain function

Consider the use of the preceding volumetric differential
(Equation (23)) as a strain measure. The total volume
differential {dVTOl gives us a measure of the total volume
change of the original brine-cell contents under stress-free
conditions. Il' we take the brine volume as a reference
volume, then it appears that all of the expansion is taking
place in the brine. Integrating this strain measure
between the initial state and the current state yields a
measure ol the total strain w:e-rB) relative to the brine
volume,” i.e.,

v (9]
B (1V|'
o (Vi Vo) = —_ 29
er( ) /t:.l;.” A (25)

Making the change of variables from volumetric measures
to salinity (Equation (23)), the strain can be described by

P r W
P | 1
P‘I'B(SB-SnB) Z/ BT E_u_ B i 7B ds”
% PG G
! 7B . BN E - ’
_|eY (—3 == "’"B) =it ln(s A (('B * 'SUB)
P B Py CB 4+ 5B
(26)
where £ is defined in Equation (23).
To obtain the volumetric strain measure as a function

of temperature, replace the brine salinity s® with a
function of temperature, s%(7) defined in Equation (3),

In some cases it may be appropriate to define the
reference volume as the sum of the brine volume and
the expansion volume (volume increase due to the
transformation from ice). This altered

. water o
reference volume (V) can be defined by

1
m
w =Vt + el

V’:[' = VTO —
The strain using this definition is 20% less by the time
the eutectic point is reached. We will continue to define
the strain relative to the brine volume (Equation (26))
as we will find it more accurate for our pressure
analysis,
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so that:

F-'."B = ()-TB(SH‘ ""UB) = eTB[SB(T}!SB(IJJ] < (27)

To study the behavior of this strain function, recall
(B =1.25 as defined in Equation (4), let the specific
gravity of ice (p'/p%V) equal 0.917, and let the initial
temperature T, = -2°C (for the present, we assume the
trapped brine starts with a salinity of 0.035, though it will
probably be higher); the resulting volumetric strain
profile is shown in Figure 4.

0.2

0.15

Volumetric Strain
o
—_—

-20 -15 -10 -5
Temperature ("C)

Fig. 4. Volumetric transformation strain (e1®).

Polynomial approximations

For numerical models, polynomials are much easier to
work with. By choosing an initial temperature (Tj,),
corresponding to the initial salinity of the brine (52)
immediately after the cell is sealed, we can approximate
the volumetric strain using a fifth-order polynomial. For
the initial temperature, we chose to let T, = —2°C.

To model the entire range between the initial
temperature and the eutectic temperature (T, =
-21.2°C), we used Chebychev polynomials as a basis,”
obtaining a polynomial approximation with a maximum
offset of 1.24 x 10 %, which occurred at T,

The polynomial approximation takes the following
form

5
et =—> a;T? | x 107 (28)

J=0

with the coefficients listed in Table 1, where T"is in “C.

® For the Chebychev approximation (é1"), we used the
least-squares technique (Atkinson, 1989, §4.5). Starting
with a basis of the Chebychev polynomials (7;), we have

4 o1l B

" i 2 er” (z)Ti(z)dx

et =g+ a=n) Ta
= z

where x is related to the temperature (I by
T = (T, — T.)x + (T, + T¢)] /2. The resulting approx-
imation can then be rearranged into standard form
(Equation (28)).
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In some cases, it is advantageous to model the
transformation expansion as thermal expansion. If large
(logarithmic) strain components are used, the volumetric
strain can be represented by

ert = 3aAT (29)

where a is the coefficient of thermal (transformation)
expansion and AT =T — T}, is the temperature difference
between the initial stress-free temperature (75,) and the
brine temperature (7). To approximate the expansion
coefficient, recall the expansion is “zero” at the initial
temperature (75). Coincidentally, for the polynomial
approximation (Equation (28)), there is a root (f,) near
T,; therefore we can factor AT = (T — T,) out of the
polynomial model (e = éTB/(SAT)], so that

4
al"C7=~> /T | x107° ]
=0

for T, < T < T, with the parameters given in Table I,
where T is in °C.’

Discussion

Notice that the volumetric strain (ep®) is larger than
might be expected, if we considered a simple transition
from water to ice.” This discrepancy is due to the fact that
we are considering the apparent strain in the brine,
measuring the volumetric strain relative to the brine
volume rather than the the total cell volume. Because the
strain represented by er” is not small, engineering strain
measures do not make good approximations.

PRESSURE VARIATIONS

In this section, we use the volume changes modeled in
the previous section to evaluate the build-up of
hydrostatic pressure in the brine. Our primary interest
is in the stress fields in the surrounding ice, but we will
use the brine pressure as a boundary condition for the
stresses in the ice.

For the pressure estimate itself, we combine a sequence
of differentials to obtain a solution and explore the
salinity temperature dependence of the pressure build-up
in the brine cells, Our approach here is similar to one used
by Picu and others (1994, §1.2), though our results appear

” To clarify the relationship between the two polynomial
approximations, notice
5 4

Y e =80 <) ¥ AT,

=0 =0

The volumetric strain resulting from a transition from
water to ice can be simply modeled by

AV oWl

= = 0.0005.


https://doi.org/10.3189/S0022143000003506

McKittrick and Brown: Effect of phase transformations on saline ice compliance

Table 1. Polynomial parameters

E’TB x
xp 98675.9 3“ 16714.8
o 63399.2 4 2945.29
ar  7736.88 B 172.983
g  558.147 Bs 6.63967
ar  20.5021 By 0.0987772
s 0.296332 T,(°C) —1.96783

to be significantly different.”

In the previous section, we considered the volume
changes in the components by assuming the brine and
precipitated ice were allowed to overlap (Fig. 3). In this
section, we will enforce compatibility between the brine
and ice as illustrated in Figure 3, allowing us to model the
pressure that accumulates as ice precipitates from the
brine.

To simplify the mathematics and yet maintain a
reasonable representation of a typical brine cell, we will
now assume the brine cell is spherical in shape and that
the surrounding ice extends ad infinitum.

Notation

In addition to the notation of the previous section, the

subscript €7 denotes components due to material

(13EE

constraints, and superscript “i” denotes parameters
related to the brine/ice interface.

In particular, we let 7' represent the radius of the
brine/ice interface and PP represent the hydrostatic
pressure in the brine and hence the pressure at the
interface,

Compatibility

We start by enforcing compatibility at the interface
between the precipitated ice (I) and the brine (B), The
displacement for each side of the interface is divided into
two components. The first expresses the displacement of
the interface due to phase transformations, denoted by
subscript T, The second expresses the displacement of
the interface due to the pressure at the interface, denoted
by subscript “C”
displacement differential must be the same for each side of

To satisfy compatibility, the total

' Based on the inverse relationship between the brine
volume and the brine salinity (Relation (11)), one
would expect the slope of the pressure profile to
decrease at the lower temperatures due to the decrease
in the volume of brine available for the precipitation of
ice. The pressure profile plotted by Picu and others
(1994, fig. 3) displays an increasing slope at lower
temperatures (higher salinities). Our differential rela-
tions arc similar to those used by Picu and others;
therefore, the lapse most likely occurred in the
integration of the differential relations.
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Ice
external to
original cell

precipitated Ice (1)

oundary o
Original (O)
brine cell

Fig. 5. Conceptual (spherical) model for a brine cell.

the interface:

dur’ + due' = dur® + duc®. (31)

Using an elastic model for concentric spheres (Love, 1944,
§98) and assuming the outer radius of the ice mass is very
large with no external pressure, we arrive at the relation:

’,"idPB

d?L(_‘I = W

(32)

for the radial displacement of the inner radius of the sur-
rounding ice mass due to a brine pressure increment, d PP,

For the stress-free displacement of the ice interface,
I o _4 i e
Vo =Vp —a’fr(‘r) ; (33)

Because we are concerned with transformation displace-
ment and the original cell is constrained by the
surrounding ice, we assume the precipitation of ice
results in displacement of the interface rather than
changing the outer boundary (dVi!' = 0 — 47 (') dus!),
so that

dvy'

dup! = — = . 34
: 4z (ri)” e

For the differental displacement of the brine interface
resulting from the constraining forces of the surrounding
ice

dveP = — %dPB (35)

and in terms of the spherical geometry of our conceptual
model, we can write

bl drr(r)?
4r(r) duc® = —deﬂ, (36)
then
o |
dug® = — ——dpP (37)
3KB

where KB is the bulk modulus of the brine.

o
| N
n


https://doi.org/10.3189/S0022143000003506

Journal of Glaciology

For the stress-free displacement of the interface viewed
from the brine,

ViB = —a(r'y (38)

implies

Avr® = 4rn(r') dur®, (39)

and solving for the differential displacement, we have

B
i L (40)
4m(ri)”

This gives us expressions for all of the displacement
components.

Pressure model

To finish the development of the pressure model, we can
substitute the expressions for the differential displace-
ments (Equations (32), (34), (37) and (40)) into the
compatibility Equation (31). to get

pl dvr' Pooon, dA®
—dPP - —— = ——dPP+—— . (41
4! 4:'.'r('.r")2 JEY 47 (r )2 bl
Combining terms and solving for dP",
3, 1\ 'di®+dwy!
B _ I I

Recognizing that dVp? = dVe® + dVp!' and that the
brine volume (Vi) is a reasonable approximation for
the volume enclosed by the interface (V'), we can write

3 1\ 'dir°
PP = - —+— ; 43
( (4#1 E KB) Vit S
Integrating,
s 13
B .- B
= (m = h_’ﬁ) ET {44)

B

where the volumetric strain (er”) was defined previously

(Equation (26)). This model seems fairly intuitive. "

Example

To study the behavior of the resulting pressure function,
let the bulk modulus of the brine (K®) equal 2.0 GPa and
let the shear modulus for the ice (p!) equal 3.6 GPa. Then
using the volumetric strain function (Equation [26)) with

=

initial temperatures of T, = —0.5%,-1°, -2°, -3” and —4°C,

"For an upper bound, assume the ice is rigid so that the
entire volume change due to the phase transformation
must be absorbed by the brine. Using an elastic model,
where the brine has a bulk modulus (K®), the upper
bound for the brine pressure [_P“hB_) 15

1"|B 1VU
B _ B T B H
P = K fl.-]_" VI‘B K ey,

This upper bound corresponds with lim i PR using

the definition of P® in Equation (44).
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we obtain the pressure profiles shown in Figure 6.

Notice the pressure becomes significant immediately
after the brine cell is sealed and begins to cool,
particularly for cases with low inital salinity. For the
cell model with an initial temperature T, = ~2°C, by the
time the temperature drops 1°C the brine pressure ( PB)
approaches 50 MPa, and it reaches a maximum of
285 MPa at the eutectic point (T, = -21.2°C).

As we would expect, given the inverse relationship
between brine volume and salinity (Relation (11)), the
rate of change in the pressure for a change in temperature
is dependent on the salinity of the brine. Brine cells which
start with a lower initial salinity display a much steeper
pressure profile initally, leveling off to display slopes
parallel to those which started with a higher initial
salinity.

D W B
= S B
= = =

Brine Pressure (MPa)
=
=)

s2 = 0.064

(==,

-20 -15 -10 -5 0

Brine Freezing Temperature ("C)

Fig. 6. Brine pressure as a_function of salinity.

Discussion

As can be ascertained, the elastic model would not be
valid after inelastic deformation begins and, as we can see
(Fig. 6), the pressure modeled at the brine/ice interface
approaches the theoretical maximum strength for ice,
p'/10 = 360 MPa; hence, there is little doubt that the
stresses are suflicient to induce inelastic deformation.
Though inaccurate for large temperature changes, the
model may be useful for estimating the temperature
change required to commence yielding as well as the
extent of possible vielding.

STRESS VARIATIONS

Though the pressures in the brine cell can become so
large that the elastic model becomes irrelevant, we can
still gain some insights into the neighborhood that might
he affected by such a pressure build-up.

As a model of the stress distribution in the neighbor-
hood of the brine cell, we will use an elastic model of
concentric spheres (Timoshenko and Goodier, 1970,
§136), and take the limit as the outer radius grows
large. Let I represent the non-dimensional radius, v,
where 7 is the radius to the interface between the brine
and the precipitated ice. Using the brine pressure (PB) as
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a boundary condition at the interface, the stress
components take the following form:

B

(J',-,-:—Ei'l.—i‘: ].SRi(DC (45)
B

U;;:+E‘H—i3: 1SR1<OC (4.6)
3pPe

(T-J'-T)nmx = iR_IJ' 1 S Ri <00. (17)

In the case of the brine cell, as the pressure
accumulates, the radial location of the interface (1)
decreases. To approximate the location of the interface
relative to the initial position of the interface (r,!), recall
the ratio of the brine volume relative to the initial brine
volume (Equation (10)), substitute for the volume in
terms of the spherical geometry of the brine-cell model
(= 471'1"3/3}, and approximate the interface radius (1)

by the brine radius (r®), to get

P 1 [8P(E e i
SH(CB + SD)

R g = (48)
Ty o
Using this relationship, we can define a new non-
dimensional radius (R,) relative to the initial radius:

B e, (49)

With the preceding information, we can model the elastic
stress profiles in the neighborhood of the brine cell due to
phase transformadtions,

Example

Let the initial interface radius 7' =1 for an initial
temperature T, = -2°C. Then the stress profiles for
temperatures 7' = -2.5° —3°, —8° and -21.2°C  are
shown in Figure 7 with corresponding interface radii r' =
0.93, 0.88, 0.64 and 0.50.

Notice that the stresses transferred to the region
outside of the original brine cell change relatively little as
the temperature drops. As the brine pressure increases,
the pressure increase is borne by the precipitating ice that
generates the pressure increase,

Discussion

The predominant concern regards the extent of inelastic
deformation that might occur in the neighboring ice due
to the pressures generated in the brine. As discussed in
the previous section, the stresses resulting from our
elastic model are well beyond the yield stress for ice.
Higashi (1964) shows yield in non-saline single crystals
ol ice for basal plane shear stresses ranging from 0.06 to
0.44 MPa with strain rates in the range of 0.13-
2.7 x 10°s " and temperatures in the range of —21° to
~15"C. At warmer temperatures and lower rates, where
we would expect the phase transformations to have a
more significant impact, we would expeet yield at even
lower stresses.

Comparing this observation with the results in Figure 7,
one can conclude that inelastic deformation takes place
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Fig. 7. Stress profiles for the brine cell: (a) principal
components, (b)) maximum shear.

almost immediately after the brinc pocket has sealed off and
the temperature begins to drop. Therefore the pressure/
stress curves shown in Figure 7 are unrealistic for saline ice
and serve only to show the significance of inelastic
deformation that might occur during crystal growth, if
the ice surrounding the cell does not fracture immediately.
Wakahama (1967) deduced that for temperatures
near —10°C, basal slip would occur in ice single crystals
for basal plane shear stresses of 0.02-2 MPa. For shear
stresses above 2 MPa, the ice crystals would fracture. For
the sake of argument, assume the shear stress at the
interface is near the maximum (7,..' = 2 MPa) for basal
slip. Using the elastic model (Equation (47)), we can
estimate brine pressure (PP = —47,.1/3), as well as the
radial location at which shear stresses have decayed to the
minimum “yield” point (7.." = 0.02 MPa), i.e.

I
R — (T.,.;) ~ 5, (50)

indicating that there is the potential for inelastic
deformation at distances up to five times the interface
radius (r') away from the brine cell. Because inelastic
deformation would occur over the range (r < r< 5,
this estimate, from our elastic model, of the range of
inelastic deformation is only a rough approximation.

ANISOTROPIC FINITE-ELEMENT MODEL

So far, we have worked with an isotropic model for the
ice. Since brine cells will in general be embedded in single
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or quasi-single crystals, we should consider the behavior
of our model using anisotropic properties. For this
analysis we use a finite-element (FE) model. Also, in the
future, we hope to work with a model for brine cavities
that is a closer approximation to the expected brine
pocket in saline ice, in terms of hoth geometry and
constitutive relations. By comparing our model with the
preceding closed-form models, we can validate our FE
techniques for future use.

Set-up

To model the stress field that develops in the ice, we used
the ANSYS 5.2 FE model (Swanson Analysis Systems
Inc., Houston, Pennsylvania) shown in Figure 8.

Due to the rapid decrease in the stress field near the
ice/brine interface (Fig. 7), the shape functions in an FE
model will tend to underestimate the stresses at the
interface. To determine the accuracy of the FE model, we
ran a test case where we applied an internal pressure
(PB =100 MPa) and then compared the results with the
equilibrium stress relations for concentric spheres
(Equations (45)—(47)). We found that with the curved
boundaries and somewhat distorted elements, we

Fig. 8. Inner section of the [inile-element model of a
spherical ice cell.

achieved better results using elements with quadratic
shape functions (i.e. ANSYS, SOLID95). Additionally, to
obtain results that were accurate at the inner radius, we
had to use a sub-modeling (mesh-refinement) technique.
For our coarse model, we started with an outer radius
that was 20 times greater than the inner radius. We then
used this “coarse” mesh to define displacement boundary
conditions for the outer radius of a much finer model
where the outer radius was only four times as large as the
inner radius. By using this sub-modeling technique, we
were able to reduce our maximum discrepancy, which
occurred at the interface radius, 7, to less than 3%. If we
ran the analysis with only the coarse mesh, the stresses at
the inner radius were underestimated by more than 10%.

To maodel the brine, we filled the spherical vacancy
with a second mesh, We used the same element type for
both the brine and the ice shell, though we altered the
material parameters.
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We assumed our model took the “stress-free” config-
uration at —2°C. To model the interference between the
brine and ice due to the phase transformations, we used
the ice interface as a frame of reference, so that the
interference was due to the “apparent” transformation
expansion of the brine. To model the “apparent”
expansion of the brine in the FE model, we modeled the
volumetric strain as a thermal expansion, using the large
(logarithmic) strain capabilities of ANSYS. The compo-
nents of thermal (transformation) strain were represented
by

CTB

(er®), = aAT = = (51)

where AT =T —1T, is the temperature difference
between the initial stress-free temperature (T;,) and the
brine temperature (7'), and « is the coeflicient of thermal
(transformation) expansion, defined in Equation (30).

For the elastic parameters of the brine, we used a bulk
modulus of 2GPa and a Poisson’s ratio of 0.498. For the
surrounding ice, we used the coefficient of thermal
expansion, ol =53 x 10° as given in Fletcher (1970),
though it is negligible relative to the transformation
coeflicient.

To validate the accuracy of the FE madel relative to
the preceding closed-form model, we ran the FE model,
for T =-8°C, using the following isotropic elastic
parameters for the ice (Derradji-Aouat, 1992, table 4.3):

E'=9.41GPa ' =0.308. (52)

To evaluate the differences in the two isotropic models,
we used the radial-stress data from the FE model and
applied least-squares fit of the form —PU/RiB, obtaining
PB = -170 MPa with a correlation coeflicient of 0.9991
and a standard error of 1.02 MPa. Comparing this
pressure estimate with the pressure estimate from the
closed-form model (Equation (44)) yielded a difference of
2.5%, presumably due to the included thermal contrac-
tion of the ice and interpolation errors.

To determine the significance of the anisotropic
material model relative to the isotropic material model,
we used the following orthotropic material parameters,

1 1
E'=E!'!=—=9070GPa E.!=—=119GPa
- »511 533
S Sy
1 1 13 ’ I 12
v l=p,l=—"2=0223 wyl =——=0427
' ¥ S33 ! S
1 1
G..' =G, == =303CGPa G,)' =—=3.40GPa.
; Sa4 T Ses

(53)

To obtain the numerical values, we used the polynomial
models of Dantl (1968, 1969) for the compliance
parameters (S;;) and evaluated them at a temperature
of —8°C.

Analysis
Using the preceding isotropic properties, our FE model

produced the tangential (o) and shear (7;.) stress fields
shown in Figure 9a and c, respectively. The correspond-
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ing maximum stresses are shown in Table 2. Using the
anisotropic properties, our FE model rendered the
tangential (oy) and shear (71,.) stress fields shown in
Figure 9b and d, respectively. The corresponding max-
imum stresses are shown in Table 2.

Table 2. Stress components al the interface

Maximum stresses (at the inlerface)

Stress component Isotrapic model Anisotropic model

MPa MPa
Tpr -164 -164
Ty il a +151
Tics -126 -114

The stress contours shown in Figure 9¢ and d represent
the magnitude of the shear stress that would result on the
basal plane of the ice crystal, if it remained elastic.

Given that most of the anisotropic elastic parameters
(Equations (53)) are within 30% of the isotropic
components (Equations (52)), we would expect the stress
results to reflect the same order of similarity. The contour
plots in Figure 9 demonstrate such a case. The radial-
stress contour plots displayed so much similarity that they
were not deemed worth including.

Consider the stresses in the zy plane. Because the z
axis in Figure 9 corresponds with the crystalline ¢ axis, the
elastic model is isotropic in the zy (basal) plane. In this

plane, the only noticeable difference relative to the
isotropic model is that the magnitudes of the radial-
and tangential-stress components decay slightly slower
and faster, respectively, relative to R;.

For stresses along the z axis, the behavior is again very
similar to the isotropic case, except the rate of decay in
the magnitude of the radial-stress component is signifi-
cantly slower, yielding a magnitude 100% greater when
Ri=4.

Given the magnitude of the stresses predicted, this
model is primarily useful for predicting the onset of
vielding. Therefore, our primary concern is the magni-
tude of the shear components that would act on the bhasal
plane. Comparing the shear-stress contour plots (Fig. 9¢
and d), it is clear that the change in the shear stress field
due to anisotropic properties is small. The only notable
observation is that in the anisotropic case the shear stress
displays a maximum which is about 10% less, combined
with a slightly faster rate of radial decay relative to the
isotropic case.

The shear stress contours (Fig. 9¢ and d) illustrate that
basal-plane shear stresses will be significant only at
specific points on the surface of the brine-pocket model.
These are the points where the basal plane makes a 45°
angle with direction perpendicular to the brine-pocket
surface. As a consequence, one would expect to first see
dislocations emerging from these preferred regions on the
brine-pocket interface.

Discussion

In summary, based on comparisons between models with
isotropic and anisotropic material parameters for single

MPa
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= 20
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Fig. 9. Stress contours (T = —8°C'): (a) oy contours (isotropic model ); (b) oy contours (anisolropic model): (¢) Tys
4 t . t

contours (isotropic model): (d) T,- contours (anisolropic model ).
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crystals ol ice, the isotropic elastic model vyields
approximations that are very reasonable relative to the
anisotropic case. In particular, the isotropic model works
quite well for predicting the onset of yield, though it may
he a bit conservative.

DISCUSSION AND CONCLUSIONS

Given the nature of the rapid stress increases predicted
here, in the most general case, the pressures generated by
transformations will simply crack/destrov cell walls at
their weakest point, providing a mechanism for “brine
expulsion” (Knight, 1962; Bennington, 1963; Cox and
Weeks, 1975) and, hence, stress reliel. For this expansion
mechanism to play a significant role in inelastic pre-
deformation of the ice matrix, the brine must be
constrained [rom “flushing”. In sea ice, Bennington
points out, when the circulation of brine is restricted,
deformation bands develop in the ice. These bands, which
he refers to as corrosion bands, always occurred 3-6cm
above the ice/water interface, and are most likely
symptoms of “brine expulsion™.

It seems plausible that the same phenomena can occur
throughout the ice matrix with a less dramatic display.
Once the initial brine drainage has taken place, many of
the remaining brine cells will be rather isolated. Others
will migrate though the ice matrix into isolated regions.
In their isolation, they can develop a wall thickness
suflicient to prevent expulsion. IT these isolated brine cells
are then cooled, either the stresses generated will
introduce microcracks into which the brine can flow, or
the neighboring ice can deform through inelastic
mechanisms. Given the time-dependent nature of
dislocation motion, if the pressure accumulates too
rapidly, microcracking will occur. If the pressure
accumulates slowly enough, dislocation mechanisms will
provide a mode of stress relaxation. In the process, the
mobile dislocation density will increase.

This phase-transformation mechanism (water to ice)
can be used to explain the nucleation of dislocations in
non-saline ice. For example, Oguro and Higashi (1981)
use this mechanism to explain the existence of interstitial
dislocation loops in non-saline single crystals of ice. For
non-saline ice, the rate of stress increase is a function of
the heat flux rather than the temperature change.

Suppose a saline ice crystal undergoes a temperature
change. If the temperature drops rapidly, some of the
brine will freeze, large interference strains will develop,
and microcracking will be predominant. If a temperature
change is “small”, dislocations will have sufficient time to
act, leading to an increase in the mobile dislocation
density.

As experimental confirmation of this possibility,
consider pictures taken through crossed polarizers by
both Knight (1962, plate 3A) and Bennington (1963, fig.
17) of brine cells in sea ice and their neighboring strain
(dislocation) shadows. These strain shadows developed in
the high basal-plane shear stress regions corresponding (o
internal stresses generated by phase transformations (see
Fig. 9¢ and d). Knight continues to show, aflter a period of
time, the redistribution of generated dislocations into
polygonized crystal sub-boundaries.
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For a better understanding of the geometrical signifi-
cance of this dislocation nucleation mechanism, consider
the geometry of the ice matrix. For the spatial distribution
of brine cells in sea ice, Anderson and Weeks (1938)
recorded initial cell diameters of about 0.07mm with
platelet thicknesses of about 0.46mm and a diametral
spacing between brine cells in the brine layer of about
0.23 mm. Kingery and Goodnow (1963) recorded brine-cell
migration velocities of up to 0.02mmh E

Given the relative spacing between brine cells, it is
possible that a significant part of the ice matrix vields with
each small temperature decrease. If there is a temperature
ogradient, the brine cells will migrate and another
temperature decrease will produce yield in a different
part of the ice matrix. Given this scenario, it is not
unreasonable to assume that the increase in the mobile
dislocation density and subsequent redistribution can
result in a significant change in the mechanical properties
of saline ice. In addition, it seems quite plausible that a
steady-state mobile dislocation density can be obtained
without the application of an external stress.

Gas inclusions

Notice our model does not include the effects of gas that
will be comcidentally trapped along with the brine. When
the brine is sealed in a cell, it will contain a certain
amount of dissolved gas. As ice precipitates rom the
brine, the gas and salt in the brine will remain relatively
constant. Hence, the remaining brine will become
increasingly saturated with gas. At the same time, the
remaining brine will become increasingly salty, and
increasing brine salinity results in decreasing gas
solubility in the brine, sometimes referred to as “salting-
out™. " To counter these two factors, both the brine-
pressure increase and the temperature decrease which
occur coincidentally with the reduction in brine volume
will increase the gas solubility. In the situation modeled,
the dissolved gas may never nucleate a bubble.

Whether a bubble forms or not, consider the amount
of gas that might coexist in a brine cell. As a rough upper
bound for the dissolved gas, we will use the closest
solubility data provided by Weiss (1970), which is for sea
water with a salinity of 0.035 and at a temperature of
—1°C.. In this case, the sum of the solubilities of No, O,
and Ar vields a gas solubility of 0.02326 (1 of gas)/(l of
brine); so, up to 2.3% of the original cell volume might be
occupied by dissolved gas. At the same time, it is possible
that a bubble will float up from below and enter the cell
belore it is sealed ofl. In summary, the volume occupied
by gas in a brine cell is likely to vary anywhere between
1% and 100%.

The more gas there is in the cell, whether dissolved or
in bubble form, the less brine there is available to

"o illustrate the “salting-out” effect, consider data
provided by Weiss (1970). For distilled water at 0°C the
sum of the solubilities of Ny, O, and Aris 0.02914 (1 of
gas)/(1 of brine). Compare this with sea water at a
temperature of 0°C and a salinity of 0.035, for which
the summed solubility of the same components is

0.02235 (I of gas)/(l of brine).
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transform to ice, and, therefore, the less the cell contents
will expand relative to their initial size. Coincidentally,
the gas in the cell will compress much more readily, so
that the pressure generated will be significantly reduced.
As a lower bound, a cell filled completely with gas will
generate virtually no internal stress; our model gives an
upper bound for brine cells containing gas.

The role that bubbles play in the transformation
process is also dependent on the directional nature of the
freezing process. Nakaya (1956, plate 44), in his study of
internal melt figures, demonstrated that typically when
[reezing 1s “isotropic™, the vapor bubble will shrink in size
as the water/ice transformation progresses. In the case of
bubbles generated by internal melt, the bubble will
eventually vanish. IT the freezing process is “orthotropic”,
in particular if the rate of freezing is faster from the top
down, the buoyancy of a bubble will typically result in its
isolation as the precipitating ice freezes around it
(Nakaya, 1956, plates 45-47). Once a bubble has been
isolated, the model proposed in this paper provides an
approximation for the strain and pressure build-up,
though with altered initial conditions.

Relevance to sea ice

As Cox and Weeks (1975) point out, the phase
transformations for brine in sea ice and saline ice are
8.2°C. At temperatures
below -8.2"C, solid salts begin to precipitate out of the
brine in sea ice and, according to Peyton (1966, §6.2.2),
merge with the precipitating ice to form an inner shell of
“salty™ ice. For uniaxial specimens, Peyton found that the

similar at temperatures above

solid salts did not significantly alter the tensile behavior
but had a stiffening effect on the compressive behavior,
Most likely the solid salts will have a reinforcing effect on
the precipitated “‘salty™ ice shell. We have not included
any solid-salt effects, so our model will lack accuracy for
temperatures below —8.2°C; however, we feel our model is
GLa s O

course, as in saline ice, the strain measures are relevant lor

accurate for sea ice at temperatures above

all temperatures down to the eutectic point, while the
pressure/stress measures developed in this paper are
relevant only in the elastic range.

Natural sea ice does not normally experience rapid

temperature changes. The bottom of an ice sheet is always
at temperatures near the melting point, even though the
top surfaces may experience temperatures as low as
50°C, particularly near the Antarctic coast. In this
fashion, the heat capacity of the underlying sea water
serves as a temperature moderator for the ice sheet above.
With moderated temperature changes, less than 1°C,
dislocations are likely to nucleate, indicating that the
processes modeled here are quite relevant 1o typical sca-
ice sheets in the polar regions.

SUMMARY

Much of what is discussed in this paper is physically
significant for an understanding of the mechanical
behavior of saline (NaCl) ice, as well as sea ice, in that
we addressed the physical processes responsible for its
unicque mechanical properties.
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In particular, we addressed the problem of whether or
not phase transformations in brine cells can be responsible
for the generation of dislocations, We determined that the
stresses that would be reached due to freezing of water
from brine in these pockets can, due to expansion,
produce stresses of suflicient magnitude to nucleate
dislocations. Using an elastic model, we were unable to
determine exactly what stress levels would be reached:
rather, we were able to demonstrate that stresses can be
reached that will nucleate dislocations. These results are
in agreement with experimental observations of strain
figures near brine cells.

Once dislocations begin to nucleate, stress relaxation
occurs; as [reezing continues, inelastic deformation
continues. Eventually, a quasi-equilibrium balance
between expansion and relaxation processes may be
reached, rendering stresses substantially lower than those
calculated here. This balance, of course, depends on the
rate of cooling, the cooling patterns and, in general, the
temperature history of the total brine/ice system.

The changes in mobile dislocation densities resulting
[rom varied temperature histories, and hence varied
brine-cell histories, can result in significant variations in
the mechanical behavior of saline (sea) ice.
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