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ON THE GROBAL DIMENSION OF ORE-EXTENSIONS

S. M. BHATWADEKAR

Introduction. Let S be a ring and d be a derivation of S. The Ore-
extension S(X,d) is the ring generated by S and an indeterminate X
satisfying the ralation Xa — aX = da for all ¢ in S.

It can be deduced from [3, Theorem 2] that if S is a commutative
noetherian ring and d is a derivation of S, such that there exists a
maximal ideal m of S with (i) d(m) Cm (i) gl. dim S = ¢gl. dim S,,, then
Lgl. dimS(X,d) =1+ ¢gl.dimS. In §1, we prove the converse of the
above proposition (see theorem 1.1) if S is a Dedekind ring containing
field Q of rationals. This is a generalization of theorem of Rinehart
[5, Propsition 2].

In §2 we compute the l.gl. dim of S(X,d) when S is a commuta-
tive noetherian ring containing Q and d is a derivation of S, such that
1ed(S) and for every acS there exists an integer » > 1 such that
d™(a) = 0.

My sincere thanks are due to Professor R. Sridharan for helpful
suggestions.

§1. In this section we prove the following.

THEOREM 1.1. Let S be o Dedekind ring which contains Q. Let d
be a derivation of S, such that for every moximal ideal m of S, dm & m.
Then

l.gl. dim S(X,d) = 1.
For the proof of the theorem, we need two lemmas. We start with

LEMMA 1.2. Under the hypothesis of Theorem 1.1, for every maxi-
mal ideal m of S, Rm (resp. mR) is a maximal left (resp. right) ideal of
R, where R denotes S(X, d).

Proof. Let I be a left ideal of R such that Rm c I C R, where m
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is a maximal ideal of S. Suppose I =#R. Then we will show that Rm =1.

For, if not, then there exists f e such that f ¢ Rm. Consider an
element g of I of smallest degree and not belonging to Rm. Without
loss of generality we can take g to be of the form g = X* + > ;0 X'a,,
k> 1.

Since dm ¢ m, there exists bem such that dbegm. Consider ¢’ =
X®b — bg. It is easy to see that ¢’e¢l and ¢’ = X* ' (kdb — ba,_,) +
S ocici-z X'a;. This shows that g’e Rm. Therefore kdb — ba,_,cn, i.e.
kdbem. But dbem and k is a unit in S. Hence we get a contradic-
tion. Therefore Rm = 1. '

This completes the proof of lemma 1.2.

LEMMA 1.8. Let S and R be as given in Theorem 1.1. If J is a
nonzero projective left ideal of R and J, = J + R¢ for some ¢ e R such
that m¢ C J for some maximal ideal m of S, then J, is also a projective
ideal of R.

Proof. m¢C J implies that if J = J, then J,/J ~R/Rm. Also J,+J
implies that Homy (J;, R) M
where i:J — J, inclusion map.

Homj (J, R) is not a surjective map,
For, if Hom (3, B) is a surjective map, then Hom, (J,,F)M
Homg (J, F) is surjective for every finitely generated free left module F'
of R.

Let p: F,— J be a surjection from a finitely generated free module
F, on to J. Consider the commutative diagram

Hom (i, F'y)
_—

HOmR 1, Fo) Homg (J, Fy)
Hom (71, p)l lHom(J, P)
Hom, (7, ) —22%") Hom,, (7, 7)

Since J is a projective module, we get Hom (J,p) to be a surjection.
Hence Hom (4,J) is a surjective map. This implies that J is a direct
summand of J,. Since J #+ 0 and J # J,, this gives a contradiction. Thus
Hom (4, R) is not a surjective map.

Assume J # J,. Consider the exact sequence

0—J 5 d —J /] —>0.

This gives rise to an exact sequence of right R-modules
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Hom (J1, R)
—_— >

Homg (J,, R) Homj, (J, R) — Ext} (J,/J, R)

— Extp; (J,,R) — 0.

Ji/J =~ R/Rm implies that Ext} (J,/J, R) =~ Ext;(S/m,S) ®s R as right
R-modules. But Exty (S/m,S) =~ S/m. Therefore Ext} (J,/J,R) ~ S/m
®s R~ R/mR. By Lemma 1.2, R/mR is a simple right B-module. Also,
Hom (¢, R) is not a surjective map. Hence we get an exact sequence

Homy (/,, R) — Homy, (J, R) — Ext} (J,/J,R) — 0 .

This shows that Ext, (/;,, R) = 0. By a ‘direct sum’ argument, we can
show that Ext% (J,, F) = 0 for every finitely generated free left module
F of R. .
Let M be a finitely generated left module of R. Let 0 - C — F —
M — 0 be an exact sequence of left R-modules where F' is free module
of finite rank.
Then we get an exact sequence

0 = Ext} (J,, F) - Ext}, (J,, M) — Ext% (J,, C) .

But we know that l.gl.dim R < 2. Also, since R is not semisimple,
from [1, Theorem 1] it follows that

lL.gl.dimR =1+ suphd.I.
I

where I ranges over all left ideals of R.

Therefore hd. I < 1 for every left ideal I of R. This gives Ext% (J,, C)
= 0. Therefore Ext. (J,, M) =0. Thus for every finitely generated R-
module M we get Exty (J,, M) = 0. This proves that J, is a projective
left ideal of R.

If J = J, then there is nothing to prove.

Thus the proof of Lemma 1.3 is complete.

Proof of Theorem 1.1. Let R denote S(X,d). From [1, Theorem 1]
it follows that it is enough to prove that every left ideal of R is pro-

jective.
Let I be a left ideal of R. For any integer k > 0 let

I {a ae S, such that a is leading coefficient
k —

of some element of I of degree k

Then it is easy to see that we get an increasing sequence I,C I, C1I,---
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of ideals of S. Let m be the least integer such that I, = I, for n > m.
Let k, be the least integer such that I,, = 0. Let (b}, ---,b2) be a set
of generators of I, for k, < k< m. By definition of I,, there exist ele-
ments (fi, ---,f™) of I such that f¢ is of degree k and with leading
coefficient b for every 4, 1 < 7 < n,.

Let J, =2 Rff, 1<i<n, k,<l<k. Then we get an increasing
sequence 0 #+ J,, C ... C J,, of left ideals of R such that J, = 1. It is
easy to prove that J, =~ R Q4 I,, as left ideals of R.

Let r =m — k,. We will prove the result by induction on 7.

If r=0, then I=J,=J,, =~ R®sI;,. Since S is a Dedekind ring,
I, is a projective ideal of S. This shows that I is a projective left
ideal of R.

Assume the result for » — 1 > 0. Then by induction hypothesis J,,_,
is a projective left ideal of R. Since I, , # 0, there exists an increas-
ing sequence

I,..=%,C% C%, --%,=3S of ideals of S such that %,/%,_, = S/m,
for some maximal ideal m; of S, 1 <1< p.

Therefore %, = #,_, 4 S@, for some 6, S. We can take §,=1. Then
there exists a maximal ideal m; such that m,0, C #,_,. Let oi=J,_,+
R(fL -+, fir) + ROJL + ROfL+ -+ + RO, fL, 1<i< My, L<j<p. Then
i C L% if either ¢ 1l, or i =1 and < k. Also«?2 =J,. From the
definition of .77 it follows that either «/{ = &/i*' or &/{*'/o/{ ~ R/Rm
for some maximal ideal m of R. Also, either &1 =J,_, or &1/J,_ =
R/Rm. Since J,._, is R-projective by our assumption, by using Lemma
1.3 step by step, we get J,, (=) is a projective left ideal of R.

This proves theorem 1.1.

Remark. Theorem 1.1 shows that if S is a Dedekind ring contain-
ing @ and d is a derivation of S then

Lgl. dim. S(X,d) =2 =1 + gl. dim. S iff

there exists a maximal ideal m of S such that dm C m.

§2. In this section we prove the following theorem.

THEOREM 2.1. Let S be a commutative noetherian ring of global
dimension n< oo, such thatQC S. Let d be a derivation of S such that
1ed(S) and for every acS there exists an integer k > 1 such that
d¥(a) = 0 then
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lL.gl. dim S(X,d) =n .
First we state a lemma. [4, p. 78].

LEMMA 2.2. Under the hypothesis of Theorem 2.1, if d(b)=1 for
beS, then the mapping

x: 8 — (S/Sh)[Y]
@) =a+ daY + da Y?/2! + da Y¥/3! + ...

18 an isomorphism of rings, where d'a denotes the image of dia in S/Sb
under the canonical mapping »: S — S/Sb.

Moreover, if D is the S/Sb-derivation of S/SblY] given by DY =1,
then y is an isomorphism of differential rings.

This shows that it is sufficient to prove the theorem if S = A[Y]
where A is a commutative noetherian ring of finite global dimension
which contains Q and d is the A-derivation of S given by dY = 1. Also
it is easy to see that it is enough to prove the result in case A is a
local ring.

So we prove the following theorem.

THEOREM 2.3. Let A be a commutative noetherian local ring of global
dimension n < co such that Q C A. Let S= A[Y] and d be the A-deri-
vation of S given by dY = 1. Then

lLgl. dim S(X,d) =n + 1.

Before proceeding further we will give some definitions and results
which can be found in [7, § 15].

Let B be a ring, not necessarily commutative. Let T be a multi-
plicatively closed subset of B such that 1eT.

DEFINITION. T is called right (resp. left) permutable if given ae B
and te T, there exist be A and se T such that ¢tb = as (resp. bt = sa).

DEFINITION. T is called right (resp. left) reversible if ta = 0 (resp.
at = 0) with te T, a ¢ B implies as = 0 (resp. sa = 0) for some seT.

DEFINITION. A right (resp. left) ring of fractions of B with respect to
T is a ring B[T'] (resp. [T']B) and a ring homomorphism ¢: B — B[T"!]
(resp. V: B — [T"'1B) satisfying
1) ¢(s) (resp. ¥(s)) is invertible for every seT.
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ii) every element in B[T"'] (resp. [T!]B) has the form
d(@)p(s)? (resp. ¥(s)~(a))  with seT.

iil) ¢(a) = 0 (resp. y(a) = 0) iff as = 0 (resp. sa = 0) for some seT.
Some results concerning B[T1].

(a) If B[T-'] exists, it is unique up to isomorphism.

(b) BI[T] exists iff T is right permutable and right reversible set.

(¢) BI[T™'] is B-flat as a left B-module.

(d) If both B[T-'] and [T 'IB exist, they are isomorphic.

We have similar results for [T-']1B.

DEFINITION. A ring B is said to be left coherent if every finitely
generated left ideal of B is finitely presented.

Let w.gl. dim B denote the weak global dimension of B. If B is left
noetherian then l.gl. dim B = w.gl. dim B. [2, Chapt. VII.

The proof of Theorem 2.3 depends upon the following proposition.

PRrROPOSITION 2.4. Let (T,);c;r be a finite family of multiplicatively
closed subsets of a ring R such that

(i) Fach T, is right permutable and right reversible.

(ii) For every family (t,);c; of elements of R with t,e T; we have
Ziel tiR = R.

(iii) Ewvery R, is R-flat as a left R-module and as a right R-module,
where R, = R[T;]

(iv) w.gl.dimR < oo

(v) R is left coherent.
Then w.gl. dim R < sup;.; w.gl. dim R,.

For a proof, see [6, Proposition 1].

Proof of Theorem 2.3. Let R denote the ring S(X,d). Then under
the hypothesis of Theorem 2.1, R is nothing but the A-algebra A4{X,Y}
in two variables X and Y and with the relation XY — YX =1,

Let m be the maximal ideal of A. Let T, =A[X] — m[X] and T, =
A[Y] — m[Y] be two multiplicatively closed subsets of R.

Since S(X,d) is without proper divisors of zero T, and T, are right
as well ag left reversible.

To prove that T, is right permutable it is enough to show that given
f in T, and Y” there exist g in T, and & in S(X, d) such that Y"g = fh.
Taking ¢ = f**' we see that Y f*+ = > .., "Cd(f**HY"* But
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di(f**Y) = fh, for some h; in A[X]. Therefore Y"f"*' = fh where h =
2 o<i<n "Cih Y™

Similarly we prove that T, is left permutable and 7T, is right and
left permutable. This shows that R[T7;'] is R-flat as a right R-module
as well as left R-module for every ¢ =1, 2.

Since R is left noetherian and l.gl. dim R < n + 2 we see that all
the conditions of the previous proposition except the second condition
are satisfied.

Assume for the time being that the second condition is also satisfied.
Then

w.gl. dim B < max w.gl. dim R,

when R; = R[T;'].

Let d be the A-derivation of A[Y] given by dY = 1. If S’ is the
localization of A[Y] with respect to the prime ideal m[Y] and d’ is the
derivation of S’ induced by d then R[T;'] is nothing but the Ore-exten-
sion of S’ with respect to d’. Hence w.gl. dim R[T;'] = L.gl. dim R[T;'] <€
1+ gl.dimS’. But gl. dim S’ = n. Therefore w.gl. dim R[T;!] < n 4+ 1.

Similarly we can show that w.gl. dim R[T{'] < » + 1.

Hence w.gl.dimR <% + 1. But we already know that n 4+ 1<
l.gl. dim R = w.gl. dim R.

Hence the equality.

The lemma given below shows that 7T, and 7T, satisfy the second
condition of the proposition.

LEMMA 2.5. Under the hypothesis of Theorem 2.3, if feT, and
geT, then fR + gR = R.

Proof. We will prove the result by using induction on the global
dimension of A.

If gl.dimA =0, then A is a field of char = 0. The result in this
case is proved in [6, p. 25-26].

Agsume the result for n — 1. Let gl.dimA =n. If 4= fR 4 gR
then by our induction hypothesis there exists an integer r» > 1 such that
m'C 4 N A, where m is the maximal ideal of A. (Since for every prime
ideal p of A other than m, #, = RE,) We will prove that ACZ N A by
proving that m'C # N A.

Let aem™!. We can write f = f, +f, and g = g, + 9, where all
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the coefficients of f;, and g, are in m and all nonzero coefficients of f,
and g, are units in A. Because of the choice of f and g we get f, = 0,
90 # 0.

Since m" C # N A, fiane# and g,aec#. This shows that f,-ae X
and g,-ac#. We will prove a e #Z by showing that f,R 4 g,R = R.

Let A be the completion of A with respect to the m-adic topology.
A contains a subfield & isomorphic to A [m.

We can regard f, and g, as elements of k[X] and k[Y] respectively.
Since char k # 0, there exist &, and &, in k{X, Y} such that fih, + g,h, = 1.
This shows that f,R + g,R = R where R = A®,R.

Let & = f,R + g,R. Since A is faithfully flat over A, and since we
have R/ ®, A = B/al = 0, we get R/s/ = 0, i.e. /R + g, = R. There-
fore ae # = fR + gR. This shows that A # N A i.e. # = R. This
completes the proof of Lemma 2.5.

The proof of Theorem 2.4 is complete.

COROLLARY 2.6. Let A,\S) = S{X,,---,X,,d8/0X,,---,0/0X,} be the
Weyl algebra of index n with coefficients in S, where S is a commuta-
tive noetherian ring which contains Q. Then

gl. dimA,(S) =n + gl.dim S .

Proof of Corollary 2.6. We will prove the result by induction on
n. Theorem 2.3 proves the result when » = 1. Assume the result for
n — 1.

Let A,(S)=8{X,,---,X,,0/0X,,---,0/0X,}. We can assume without
loss of generality that S is a regular local ring with maximal ideal m.
Let T, = S[X,] — m[X,] and T, = S[6/0X,] — m[3/0X,] be the multipli-
catively closed sets satisfying the conditions of the Proposition 2.4.

If B=S{X,,..-,X,,0/0X,,---,0/0X,_,}, then T, consists of central
elements of B. Therefore the S-derivation of B given by 9/6X, can be
extended to a derivation d’ of B[T;!]. Since A,(S) is the Ore-extension
of B with respect to derivation 0/0X,, A,(S)[T;!] is the Ore-extension
of B[T;'] with respect to the derivation d’. Therefore l.gl. dim A,(S)[T"']
< 1+ lLgl dim B[T;1].

But BTl = S{X,, ---, X,_y,0/0X,, -++,0/0X,_;} where S’ is the
localization of S[X,] with respect to T,. Therefore by induction
hypothesis l.gl. dim B[T;'l=n — 1+ gl. dimS" =n — 1 4+ gl. dim S. This
shows that l.gl. dim A,(S)[T'] < » + gl. dim S. Similarly we prove that
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l.gl. dim A, (S)[T;11 < n + gl. dim S. Therefore by Proposition 2.4 we
get that lgl.dimA4,8) <n + gl.dimS. But we already know that
L.gl. dim A,(S) > »n + L.gl. dim S. Hence the equality.

Remark. Theorem 2.3 is a generalization of a Theorem of Rinehart
[5, Proposition 2].

Remark. Corollary 2.6 is a generalization of a Theorem of Roos [6,
Theorem 1].
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