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Quasianalytic Ilyashenko Algebras

Patrick Speissegger

Abstract. We construct a quasianalytic ûeld F of germs at +∞ of real functions with logarithmic
generalized power series as asymptotic expansions, such that F is closed under diòerentiation and
log-composition; in particular, F is a Hardy ûeld. Moreover, the ûeld F ○ (− log) of germs at 0+

contains all transition maps of hyperbolic saddles of planar real analytic vector ûelds.

1 Introduction

In his solution of Dulac’s problem, Ilyashenko [2] introduced the class A of germs
at +∞ of almost regular functions, and he showed that this class is quasianalytic and
closed under log-composition, by which we mean the following: given f , g ∈ A such
that limx→+∞ 1/g(x) = +∞, it follows that f ○ (− log) ○ g ∈ A. As a consequence,
A ○ (− log) is a quasianalytic class of germs at 0+ that is closed under composition.
Ilyashenko also showed that if f is the germ at 0+ of a transitionmap near a hyperbolic
saddle of a planar real analytic vector ûeld, then f belongs toA○ (− log); from this, it
follows that limit cycles of a planar real analytic vector ûeld ξ do not accumulate on
a hyperbolic polycycle of ξ. (For a discussion of Dulac’s problem and related termi-
nology used here,we refer the reader to Ilyashenko and Yakovenko [3, §24]. _e class
A also plays a role in the description of Riemann maps and solutions of Dirichlet’s
problem on semianalytic domains; see Kaiser [4, 5] for details.

_at A is closed under log-composition is due to a rather peculiar assumption
built into the deûnition of “almost regular”: by deûnition, a function f ∶ (a,+∞)→ R
is almost regular if there exist real numbers 0 ≤ ν0 < ν1 < ⋅ ⋅ ⋅ such that limi ν i = +∞,
polynomials p i ∈ R[X] for each i, and a standard quadratic domain

Ω = ΩC ∶= {z + C
√

1 + z ∶ Re z > 0} ⊆ C, with C > 0,

such that
(i) f has a bounded holomorphic extension f ∶Ω → C;
(ii) p0 is a nonzero constant and, for each N ∈ N,

f(z) −
N

∑
i=0

p i(z)e−ν i z = o(e−νN z) as ∣z∣→ +∞ in Ω.

Remark 1.1 For an almost regular f as deûned here, the function log ○ f is almost
regular in the sense of [3, Deûnition 24.27].
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It is the assumption that p0 be a nonzero constant that makes the class A closed
under log-composition. However, one drawback of this assumption is that the classA
is not closed under addition (because of possible cancellation of the leading terms),
which makes it unamenable to study by many commonly used algebraic-geometric
methods.

We show here that Ilyashenko’s construction ofA can be adapted, using his notion
of superexact asymptotic expansion [2, §0.5], to obtain a quasianalytic class F that is
closed under addition and multiplication, contains exp and log, and is closed under
diòerentiation and log-composition. _is construction comes at the cost of replac-
ing the asymptotic expansions above by the following series: for k ∈ Z, we denote
by logk the k-th compositional iterate of log. Recall from van den Dries and Speis-
segger [12] that a generalized power series is a power series F = ∑α∈Rk aαXα , where
X = (X1 , . . . , Xk), each aα ∈ R and the support of F, supp(F) ∶= {α ∈ Rn ∶ aα /= 0},
is contained in a cartesian product of well-ordered subsets of R. _e set of all gener-
alized power series in X is denoted by R[[X∗]]. Moreover, we call the support of F
natural [6] if, for every compact box B ⊆ Rk , the intersection of B∩ supp(F) is ûnite.

Deûnition 1.2 A logarithmic generalized power series is a series of the form

F( 1
logi1

, . . . ,
1

logik

) ,

where i1 , . . . , ik ≥ −1 and F ∈ R[[X∗]] has natural support.

We denote by L the divisiblemultiplicative group of all monomials of the form

(logi1)
r1 ⋅ ⋅ ⋅ (logik)

rk ,

with −1 ≤ i1 < ⋅ ⋅ ⋅ < ik and r1 , . . . , rk ∈ R. Note that L is linearly ordered by setting
m ≤ n if and only if limx→+∞

m(x)
n(x) ≤ 1. (In fact, L is amultiplicative subgroup of the

Hardy ûeld of all germs at +∞ of functions deûnable in the o-minimal structureRexp,
seeWilkie [14].) Indeed, this ordering can be described as follows:
● Identify each m ∈ L with a function m∶{−1} ∪N→ R in the obvious way. _en for

m, n ∈ L we have m < n in L if and only if m < n in R{−1}∪N in the lexicographic
ordering.
For a divisible subgroup L′ of L, We denote by R[[L′]] the set of all logarithmic

generalized power serieswith support contained in L′. Note that, by deûnition, every
series in R[[L′]] has support contained in

L′ ∩ {(logi1)
r1 ⋅ ⋅ ⋅ (logik)

rk ∶ −1 ≤ i1 < ⋅ ⋅ ⋅ < ik and r1 , . . . , rk ≤ 0} .

It is straightforward to see that R[[L′]] is an R-algebra under the usual addition and
multiplication of series, andWe denote its fraction ûeld by R((L′)). (So the general
series in R((L′)) is of the form mF, where m ∈ L′ and F ∈ R[[L′]].) _is notation
agrees with the usual notation for generalized series, see for instance [10]. To simplify
notations, we sometimes write F ∈ R((L′)) as F = ∑m∈L′ amm as in [10]; in this situ-
ation, we call the set supp(F) ∶= {m ∈ L′ ∶ am /= 0} the support of F. Note that, under
the ordering on L′, the set supp(F) is a reversewell-ordered subset of L′ of order-type
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220 P. Speissegger

at most ωk for some k ∈ N. we call supp(F) L′-natural if supp(F)∩ (m,+∞) is ûnite
for any m ∈ L′.
For F = ∑m∈L′ amm ∈ R((L′)) and n ∈ L, we denote by Fn ∶= ∑m≥n amm the

truncation of F above n. A subset A ⊆ R((L′)) is truncation closed if, for every F ∈ A
and n ∈ L, the truncation Fn belongs to A.

Since the support of a logarithmic generalized power series can have order type ωk

for arbitrary k ∈ N, we need to make sense of what it means to have such a series as
asymptotic expansion. We do this in the context of an algebra of functions.

Deûnition 1.3 Let K be an R-algebra of germs at +∞ of functions f ∶ (a,∞) → R
(with a depending on f ), let L′ be a divisible subgroup of L, and let T ∶K → R((L′))
be an R-algebra homomorphism. _e triple (K, L′ , T) is a quasianalytic asymptotic
algebra (or qaa algebra for short) if the following hold:
(i) T is injective;
(ii) the image T(K) is truncation closed;
(iii) for every f ∈K and every n ∈ L′, we have f − T−1((T f )n) = o(n).
In this situation, for f ∈K, we call T( f ) theK-asymptotic expansion of f .

_e result of this note can now be stated.

_eorem 1.4 (i) _ere is a quasianalytic asymptotic ûeld (F, L, T) that contains
the class A as well as exp and log.

(ii) _e ûeld F is closed under diòerentiation and log-composition.

_e remainder of this paper is divided into six sections: Section 2 discusses some
basic properties of standard quadratic domains; Section 3 introduces strong asymp-
totic expansions; Section 4 contains the construction of (F, L, T); Section 5 contains
the proof of closure under diòerentiation; and Section 6 that of closure under log-
composition. Finally, Section 7 contains some remarks putting this paper in a wider
context.

In Section 6, we rely on the observation that R((L)) is a subset of the set T of
transseries as deûned by van der Hoeven [13]; we use, in particular, the fact that T is
a group under composition.

_e construction of F is based on the following consequence of the Phragmén–
Lindelöf principle [3,_eorem 24.36]:

Fact 1.5 ([3, Lemma 24.37]) Let Ω ⊆ C be a standard quadratic domain and let
ϕ∶Ω → C be holomorphic. If ϕ is bounded and, for each n ∈ N, ∣ϕ(x)∣ = o(e−nx) as
x → +∞ in R, then ϕ = 0.

Indeed, we use this consequence of the Phragmén–Lindelöf principle as a black
box. We suspect that other Phragmén–Lindelöf principles, such as the one found in
Borichev andVolberg [1,_eorem 2.3],might be used in a similarway to obtain other
qaas.
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2 Standard Quadratic Domains

_is section summarizes some elementary properties of standard quadratic domains
and makes some related conventions. For a ∈ R, we set H(a) ∶= {z ∈ C ∶ Re z > a},
and we deûne ϕC ∶H(−1)→ H(−1) by ϕC(z) ∶= z + C

√
1 + z.

C

i

ϕC(iR)

ΩC

Figure 1: A standard quadratic domain and its boundary ϕC(iR)

.

We denote by C the set of all germs at +∞ of continuous functions f ∶R → R. For
f , g ∈ C, we write f ∼ g if f (x)/g(x)→ 1 as x → +∞.

Lemma 2.1 Let C > 0.
(i) _emap ϕC is conformal with compositional inverse ϕ−1

C given by

ϕ−1
C (z) = z + C

2

2
− C

√
1 + z + C

2

4
;

in particular, the boundary of ΩC is the set ϕC(iR).
(ii) We have Re ϕC(ix) ∼ C√

2

√
x and Im ϕC(ix) ∼ x.

(iii) _ere exists a continuous fC ∶ [C ,+∞)→ (0,+∞) such that

Im ϕC(ix) = fC(Re ϕC(ix)),
for x > 0 and fC(x) ∼ 2(x/C)2.

https://doi.org/10.4153/CJM-2016-048-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-048-x


222 P. Speissegger

Proof _ese observations are elementary and le� to the reader.

Figure 1 shows a standard quadratic domain with its boundary ϕC(iR). Hence-
forth, we denote by ϕC the restriction of ϕC to the closed right half-plane H(0).

Two domainsΩ, ∆ ⊆ H(0) are equivalent if there exists R > 0 such thatΩ∩D(R) =
∆ ∩ D(R), where D(R) ∶= {z ∶ ∣z∣ > R}. _e corresponding equivalence classes of
domains in H(0) are called germs at∞ of domains in H(0). If clear from context, we
shall not explicitly distinguish between a domain in H(0) and its germ at∞.
For A ⊆ C and є > 0, let T(A, є) ∶= {z ∈ C ∶ d(z,A) < є} be the є-neighbourhood

of A.

Convention Given a standard quadratic domain Ω and a function g∶R → R that
has a holomorphic extension on Ω, we will usually denote this extension by the cor-
responding boldface letter g. We alsowrite exp and x for the holomorphic extensions
on Ω of exp and the identity function x, respectively, and log for the principal branch
of log on Ω. _us, everym ∈ L has a unique holomorphic extensionm on Ω. (Strictly
speaking, these extensions depend on Ω, but we do not indicate this dependence.)

Lemma 2.2 Let C > 0. _e following inclusions hold as germs at∞ in H(0).
(i) For D > C and є > 0, we have T(ΩD , є) ⊆ ΩC .
(ii) For ν > 0, we have

ν ⋅ΩC ⊆
⎧⎪⎪⎨⎪⎪⎩

ΩνC if ν ≤ 1,
ΩC if ν ≥ 1.

(iii) For any standard quadratic domain Ω, we have log(ΩC) ⊆ Ω.
(iv) We have ΩC +ΩC ⊆ ΩC .

Proof (i) follows from Lemma 2.1 (iii).
(ii) follows from Lemma 2.1 (iii) and the equality

ν ⋅ (x , 2(x/C)2) = (νx , 2(νx/
√

νC)2)
in R2.

(iii) Note that log(H(0) ∩ {∣z∣ > 1}) = H(0) ∩ {∣ Im z∣ < π/2}.
(iv) Note ûrst that, for a ∈ C with Re a ≥ 0, the boundary of a +ΩC in

{z ∈ C ∶ Im z ≥ Im a} ,
viewed as a subset ofR2, is the graph of a function fa ,C ∶ [C+Re a,+∞)→ [Im a,+∞)
such that

fa ,C(x) ∼ Im a + ( x − Re a
C

)
2
.

In particular, if a ∈ ∂ΩC , then a = b + i fC(b) for some b ≥ C; therefore,

fa ,C(x) ∼
b2 + (x − b)2

C2 < fC(x)

in C, which proves the claim.

_e following is themain reason for working with standard quadratic domains.
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Lemma 2.3 Let C > 0 and set K ∶= C/
√

3. _ere exists k ∈ (0, 1) depending on C
such that k exp(K

√
∣z∣) ≤ ∣ exp(z)∣ ≤ exp(∣z∣) for z ∈ ΩC .

Proof Let C > 0 be such that Ω = ΩC and, for r > 0, denote by Cr the circle with
center 0 and radius r. Since ∣ exp(x + iy)∣ = exp x, the point in Ω ∩ Cr where ∣ exp z∣
is maximal is z = r. On the other hand, the point z(r) = x(r)+ iy(r) in Ω∩Cr where
∣ exp z∣ is smallest lies on the boundary ofΩr , so that y(r) = fC(x(r)). It follows from
Lemma 2.1 (iii) that

r =
√
x(r)2 + fC(x(r))2 ∼ x(r)2

√
1

x(r)2 +
4
C4 .

Hence x(r) ≥ K
√

r for all suõciently large r ∈ R, as required.

Convention Given an unbounded domain Ω ⊆ H(0) and holomorphic ϕ,ψ∶Ω →
C, we write ψ = o(ϕ) in Ω if ∣ψ(z)/ϕ(z)∣→ 0 as ∣z∣→∞ in Ω.

_e reason why the notion of a qaamakes sense for the set ofmonomials L is that,
for m, n ∈ L, we have m < n if and only if m = o(n). _is equivalence remains true
on standard quadratic domains.

Lemma 2.4 Let m, n ∈ L be such that m < n, and let Ω be a standard quadratic
domain. _en m = o(n) in Ω.

Remark 2.5 While exp−1 < x−1 in L, we have exp−1 /= o(x−1) in H(0) (or indeed in
any right half-plane).

Proof First, let z ∈ H(0) with ∣z∣ ≥ e. _en 1 ≤ log ∣z∣ = Re(log z) ≤ ∣ log z∣ and,
since Im(log z) ∈ (− π

2 ,
π
2 ), we also have ∣ log z∣ ≤ 3 log ∣z∣.

Second, deûne e0 ∶= 1 and, for k > 0, we set ek ∶= eek−1 . It follows by induction on
k ∈ N, that if z ∈ H(0) with ∣z∣ ≥ ek , there exists C = C(k) > 0 such that

0 ≤ logk ∣z∣ ≤ ∣ logk z∣ ≤ C logk ∣z∣.
_e previous two observations, together with Lemma 2.3 and the characterization

of the ordering of L given in the introduction, imply that if m ∈ L is such that m < 1,
then m = o(1) in Ω. Since L is amultiplicative group, the lemma follows.

3 Strong Asymptotic Expansions

Set E ∶= {expr ∶ r ∈ R}. Note that E is co-initial in L; in particular, a series F ∈ R((E))
has E-natural support if and only if it has L-natural support.

Deûnition 3.1 Let f ∈ C and F = ∑ fr exp−r ∈ C((E)). _e germ f has strong
asymptotic expansion F (at∞) if
(i) F has E-natural support;
(ii) f has a holomorphic extension f on some standard quadratic domain Ω;
(iii) each fr has a holomorphic extension fr on Ω such that fr = o(exps) in Ω, for

each s > 0;

https://doi.org/10.4153/CJM-2016-048-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-048-x


224 P. Speissegger

(iv) for each r ∈ R, we have

(∗ f ,r) f −∑
s≤r
fs exp−s = o(exp−r) in Ω.

In this situation, Ω is called a strong asymptotic expansion domain of f .

Example 3.2 Let f ∈ C be almost regular with asymptotic expansion

F ∶=
∞
∑
n=0

pn exp−νn

as deûned in the introduction. _en F is a strong asymptotic expansion of f .
To see this, let r ∈ R; Condition (∗ f ,r) holds by deûnition if r = νN for some

N ∈ N, so assume that νN−1 < r < νN for some N (setting ν−1 ∶= −∞ to make sense of
all cases). _e deûnition of “almost regular” implies that

f − ∑
νn≤r

pn exp−νn −pN exp−νN = o(exp−νN ) in Ω.

Condition (∗ f ,r) now follows, because ∣z∣ → ∞ in Ω implies Re z → +∞, so that
q exp−νN = o(exp−r) in Ω, for every polynomial q.

Remark 3.3 Let f ∈ C have strong asymptotic expansion F ∈ C((E)), and let s ∈ R.
_en f ⋅ exps has strong asymptotic expansion F ⋅ exps .

Lemma 3.4 Let f , g ∈ C have strong asymptotic expansions

∑ as exp−s and ∑ bs exp−s ,

respectively, in a standard quadratic domain Ω. _en
(i) f + g has strong asymptotic expansion∑(as + bs) exp−s in Ω;
(ii) f g has strong asymptotic expansion (∑ as exp−s)(∑ bs exp−s) in Ω;
(iii) if f = 0 and s0 ∶= min{s ∈ R ∶ as /= 0}, then there exists r > 0 such that

as0 = o(exp−r) in Ω.

Proof Fix r ≥ 0. _en in Ω,

f + g −∑
s≤r

(as + bs) exp−s = ( f −∑
s≤r
as exp−s) + (g −∑

s≤r
bs exp−s) = o(exp−r),

which proves (i). For (ii), write ∑ cs exp−s = (∑ as exp−s)(∑ bs exp−s), so that cs =
∑s1+s2=s as1bs2 . By Remark 3.3, a�er replacing f and g by f exps and g exps for some
s ≤ 0, we can assume that as = bs = 0 for s ≤ 0; then f and g, as well as as exp−s and
bs exp−s for each s, are bounded in Ω. Since

fg −∑
s≤r
cs exp−s = ( f −∑

s≤r
as exp−s)g + (∑

s≤r
as exp−s)(g −∑

s≤r
bs exp−s)

+ (∑
s≤r
as exp−s)(∑

s≤r
bs exp−s) −∑

s≤r
cs exp−s ,
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it follows that the ûrst and second of these four summands are o(exp−r) in Ω. As to
the third and fourth summands,

(∑
s≤r
as exp−s)(∑

s≤r
bs exp−s) −∑

s≤r
cs exp−s

= (∑
s≤r
as exp−s)(∑

s≤r
bs exp−s) − ∑

s1+s2≤r
as1bs2 exp−s1−s2

= ∑
s1 ,s2≤r
s1+s2>r

as1bs2 exp−s1−s2 ,

which is o(exp−rx) in Ω, because the latter sum is ûnite.
For (iii) set s1 ∶= min{s > s0 ∶ as /= 0} > s0. _en Condition (∗ f ,r), with r ∶=

1
2 (s0 + s1), implies that as0 exp−s0 = o(exp−r) in Ω, so that as0 = o (exp−(r−s0)).

For F = ∑r∈R fr exp−r ∈ C((E)), we set ord(F) ∶= min{r ∈ R ∶ fr /= 0}. Recall that,
given series Fn ∈ C((E)) for n ∈ N such that ord(Fn) → +∞ as n → ∞, the inûnite
sum∑n Fn deûnes a series in C((E)). _e next criterion is useful for obtaining strong
asymptotic expansions.

Lemma 3.5 Let f ∈ C and fn ∈ C, for n ∈ N, and let Ω be a standard quadratic
domain. Assume that each fn has strong asymptotic expansion Fn ∈ C((E)) in Ω such
that ord(Fn) → +∞ for n ∈ N, and assume that f has a holomorphic extension f on
Ω such that f − ∑n

i=0 fi = o(fn) in Ω, for each n. _en the series ∑n Fn is a strong
asymptotic expansion of f in Ω.

Proof Let r ∈ R, and choose N ∈ N such that ord(Fn) > r for all n ≥ N . _en
fn = o(exp−r) in Ω, for n ≥ N , so f − ∑n

i=0 fi = o(exp−r) in Ω. Increasing N if
necessary, wemay assume that

(
∞
∑
i=0
Fi) exp−r =

N

∑
i=0

(Fi)exp−r .

_erefore, with hr the holomorphic extension of (∑ Fi)exp−r on Ω and hi ,r the holo-
morphic extension of (Fi)exp−r on Ω, we get

f − hr = f −
N

∑
i=0

hi ,r = ( f −
N

∑
i=0
fi) +

N

∑
i=0

(fi − hi ,r) = o(exp−r) in Ω,

as required.

To extend the notion of strong asymptotic expansion to series in R((L)), we pro-
ceed as in Deûnition 1.3.

Deûnition 3.6 Let K ⊆ C be an R-algebra, let L′ be a divisible subgroup of L, and
let T ∶K→ R((L′)) be anR-algebra homomorphism. We say that the triple (K, L′ , T)
is a strong qaa if
(i) T is injective;
(ii) the image T(K) is truncation closed;
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(iii) for every f ∈ K, there exists a standard quadratic domain Ω such that f and
each gn ∶= T−1((T f )n), for n ∈ L′, have holomorphic extensions f and gn on
Ω, respectively, that satisfy

(3.1) f − gn = o(n) in Ω.

In this situation, we call T( f ) the strong K-asymptotic expansion of f and Ω a strong
K-asymptotic expansion domain of f .

Lemma 3.7 Let (K, L′ , T) be a strong qaa, with L′ a divisible subgroup of L. _en
(K, L, T) is a strong qaa.

Proof Let f ∈ K and n ∈ L; if n ∈ L′, then the asymptotic relation (3.1) holds by
assumption, so assume n ∉ L′. If n ≤ supp(T f ), then T−1((T f )n) = f , so the asymp-
totic relation (3.1) holds trivially. So assume also that n /≤ supp(T f ) and choose the
maximal p ∈ supp(T f ) such that p < n (which exists because supp(T f ) is reverse
well-ordered). By assumption, writing gp and gn for the holomorphic extensions of
T−1((T f )p) and T−1((T f )n), respectively, o(p) = f − gp = f − gn − ap, for some
nonzero a ∈ R. Since p = o(n) in Ω by Lemma 2.4, the asymptotic relation (3.1)
follows.

4 The Construction

4.1 The Initial Ilyashenko Algebra

In view of Fact 1.5 and in the spirit of [3, §24], we deûne A0 to be the set of all f ∈ C
that have a strong asymptotic expansion F = ∑r≥0 ar exp−r ∈ R((E)). Note that the
condition supp(F) ⊆ [0,+∞) implies that f has a bounded holomorphic extension
to some standard quadratic domain.

Lemma 4.1 (i) A0 is an R-algebra.
(ii) Each f ∈ A0 has a unique strong asymptotic expansion T0 f ∈ R((E)).
(iii) _emap T0∶A0 → R((E)) is an injective R-algebra homomorphism.

Proof Part (i) follows from Lemma 3.4 (i), (ii). For part (ii), assume for a contradic-
tion that 0 has a nonzero strong asymptotic expansion ∑ ar exp−r ∈ R((E)) of order
s0. _en by Lemma 3.4 (iii), we have as0 = o(exp−r) for some r > 0; since as0 ∈ R, it
follows that as0 = 0, a contradiction. For part (iii), the map T0 is a homomorphism
by Lemma 3.4 (i), (ii), and its kernel is trivial by Fact 1.5.

Corollary 4.2 _e triple (A0 , L, T0) is a strong qaa.

Proof By Lemma 3.7, it suõces to show that (A0 , E , T0) is a strong qaa. For r ≥ 0
the function exp−r has a bounded holomorphic extension on H(0), so it belongs to
A0 with T0 exp−r = exp−r . Since the support of T0 f for f ∈ A0 is E-natural, every
truncation of T0 f is anR-linear combination of exp−r , for various r ≥ 0, and therefore
belongs to A0 as well.
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Examples 4.3 Let p ∈ R[[X∗]] be convergent with natural support [6, 12]. _en
p ○ exp−1 ∈ A0.

_e algebraA0 ○ (− log) is the classA1 = A1,0
1 considered in [6, Deûnition 5.4]. In

particular, for f ∈ A0 the series T0( f )○(− log) ∈ R[[X∗]] has natural support and, for
r ≥ 0 and gr ∶= T−1

0 (T0( f ))exp−r , we have f (− log x)− gr(− log x) = o(x r) as x → 0+.

4.2 The Initial Ilyashenko Field

For f ∈ A0, we set ord( f ) ∶= ord(T0( f )). Below, we call f ∈ C inûnitely increasing if
f (x)→ +∞, small if f (x)→ 0 and a unit if f (x)→ 1, as x → +∞.

Similarly, let G ∈ R((L)), and let g ∈ L be the leading monomial of G; so there
are nonzero a ∈ R and є ∈ R((L)) such that G = ag(1 + є). Note that the leading
monomial of є is small. We callG small if g is small, andwe callG inûnitely increasing
if both g is inûnitely increasing and a > 0.

Remark 4.4 Let G ∈ R((L)), and let g ∈ L be the leading monomial of G; so there
are nonzero a ∈ R and small є ∈ R((L)) such that G = ag(1+ є). Also let k ∈ {−1}∪N
and F ∈ R(((X−1 , . . . , Xk)∗)) be such that F has natural support and

G = F( 1
exp

,
1

log0
, . . . ,

1
logk

) .

Let α = (α−1 , . . . , αk) ∈ R2+k be theminimum of the support of F with respect to the
lexicographic ordering on R2+k , so that g = exp−α−1 log−α00 ⋅ ⋅ ⋅ log−αkk .

Case 1: Let P ∈ R[[X∗]] be of natural support, and assume that G is small. _en
α > (0, . . . , 0) in the lexicographic ordering of R2+k .
Case 2: Let P ∈ R[[( 1

X )∗]] be of natural support, and assume that G is inûnitely in-
creasing. _en α < (0, . . . , 0) in the lexicographic ordering of R2+k .

In both cases, P ○ F belongs to R(((X−1 , . . . , Xk)∗)) and has natural support as well.
We therefore deûne

P ○G ∶= (P ○ F)( 1
exp

,
1

log0
, . . . ,

1
logk

) .

_is composition is associative in the following sense: whenever P ∈ R[[X∗]] is small
and of natural support and Q ∈ R[[X∗]] is of natural support, then Q ○ (P ○ G) =
(Q ○ P) ○ G. A similar statement holds in Case 2. As usual, we will therefore simply
write Q ○ P ○G for these compositions.

Lemma 4.5 Let f , g ∈ A0, and set d ∶= ord(g) ≥ 0.
(i) _ere exist unique nonzero gd ∈ R and є ∈ A0 such that g = gd exp−d(1 − є) and

ord(є) > 0. In particular, the germ g
gd exp−d

is a unit belonging to A0.
(ii) Assume that g is small with strong asymptotic expansion domain Ω, and let P ∈

R[[X]] be convergent. _en P ○ g belongs toA0, has strong asymptotic expansion
domain Ω, and satisûes T0(P ○ g) = P ○ T0(g).
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Proof (i) Say T0(g) = ∑r≥d gr exp−r . _en take

є ∶= − g − gd exp−d

gd exp−d
,

which belongs to A0 by Lemma 3.4 (ii).
(ii)ByCondition (∗g ,0), the function P○g is a bounded, holomorphic extension of

P ○ g on Ω. Moreover, say P(X) = ∑ anXn ∈ R[[X]]. Since P(z)−∑n
i=0 a iz i = O(zn)

at 0 in C by absolute convergence, it follows that P ○ g −∑n
i=0 gi = o(gn) in Ω. From

Lemma 3.4, it follows that an gn ∈ A0 has strong asymptotic expansion domain Ω and
satisûes T0(an gn) = anT0(g)n , for each n. Since g is small, we have d > 0, so we also
get ord(gn) = ns →∞ as n →∞. Part (ii) now follows from Lemma 3.5.

Let F0 be the fraction ûeld of A0 and extend T0 to an R-algebra homomorphism
T0∶F0 → R((E)) in the obvious way (also denoted by T0). Note that the functions in
F0 do not all have bounded holomorphic extensions to standard quadratic domains;
hence the need for ûrst deûning A0.

Remark 4.6 Let K be a subûeld of C. Let F ,G ∈ K((E)), let g be the leading term
of G, and set є ∶= −G−g

g . Recall that FG = F
g ⋅ (Geom ○є), where Geom = ∑∞

n=0 Xn is the
geometric series.

Corollary 4.7 (i) Let f ∈ F0. _en f has strong asymptotic expansion T0( f ),
and there exist unique d , fd ∈ R and є ∈ A0 such that f = fd exp−d(1 + є) and
ord(є) > 0.

(ii) (F0 , L, T0) is a strong quasianalytic asymptotic ûeld.

Proof (i) Say f = g/h for some g , h ∈ A0 with h /= 0 of order s ≥ 0. By Lemma 4.5 (i)
there are hs ∈ R ∖ {0} and є ∈ A0 such that h = hs exp−s(1 − є) and ord(є) > 0. In
particular, є is small, so that

f = g
hs exp−s(1 − є) = exp

s

hs
g Geom(є).

Part (i) now follows from Lemmas 3.4 and 4.5 (ii).
Since the series in T0(F0) has E-natural support and each monomial in E belongs

to F0, the triple (F0 , E , T0) is a quasianalytic asymptotic ûeld. Part (ii) now follows
from Lemma 3.7.

4.3 Iteration

We construct strong quasianalytic asymptotic ûelds (Fk , L, Tk), for nonzero k ∈ N,
such that Fk−1 is a subûeld of Fk and Tk extends Tk−1,whichwe summarize by saying
that (Fk , L, Tk) extends (Fk−1 , L, Tk−1). As in the initial stage of the construction, we
will obtain Fk as the fraction ûeld of a strong qaa (Ak , L, Tk) such that
(i) each f ∈ Ak has a bounded, holomorphic extension to some standard quadratic

domain;
(ii) for each f ∈ Fk , there exists s ∈ R such that f

exps belongs to Ak .
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Note that, by Lemma 4.5 (i), conditions (i) and (ii) hold for k = 0, provided we set
A−1 = F−1 ∶= R.

_e construction proceeds by induction on k; the case k = 0 is handled above.
So assume k > 0 and that (Ai , L, Ti) and (Fi , L, Ti) have been constructed for i =
0, . . . , k−1. First,we setF′k ∶= Fk−1○log and deûne T ′

k ∶F′k → R((L′)) by T ′
k( f ○log) ∶=

(Tk−1 f ) ○ log, where L′ ∶= {m ∈ L ∶ m(−1) = 0} .

Corollary 4.8 (F′k , L, T ′
k) is a strong quasianalytic asymptotic ûeld.

Proof _e triple (F′k , L′ , T ′
k) is a strong quasianalytic asymptotic ûeld, since log

maps H(0) into any standard quadratic domain. Since L′ is a divisible subgroup of L,
the corollary follows from Lemma 3.7.

Remark 4.9 Let g ∈ F′k . _ere exists, by condition (ii) above, an s ∈ R such that
g/x s has a bounded holomorphic extension on some standard quadratic domain Ω.
_us g = o(expr) for every r > 0 and, since F′k is a ûeld, it follows that g = o(exp−r)
for some r > 0 if and only if g = 0.

Now let Ak be the set of all f ∈ C that have a bounded, holomorphic extension on
some standard quadratic domain Ω and a strong asymptotic expansion

∑
r≥0
fr exp−r ∈ F′k((E))

in Ω. (_e boundedness assumption is included here, because not all f ∈ F′k are
bounded if k ≥ 0.)
By Remark 4.9, arguing as in Lemma 4.1, we see that Ak is an R-algebra, each

f ∈ Ak has a unique strong asymptotic expansion τk f ∶= ∑r≥0 fr exp−r ∈ F′k((E)),
and themap τk ∶Ak → F′k((E)) is anR-algebra homomorphism. Moreover, it follows
from Fact 1.5 that this map is injective. For f ∈ Ak with τk f = ∑ fr exp−r , we now
deûne Tk f ∶= ∑r≥0(T ′

k fr) exp−r . For completeness’ sake, we also set τ0 ∶= T0.

Proposition 4.10 _e triple (Ak , L, Tk) is a strong qaa that extends (Ak−1 , L, Tk−1).

Proof _emap σ ∶F′k((E)) → R((L)) deûned by σ(∑ fr exp−r) ∶= ∑(T ′
k fr) exp−r is

anR-algebra homomorphism, and it is injective because T ′
k is injective. Since Tk = σ○

τk , it follows thatTk is an injectiveR-algebrahomomorphism. Now let f ∈ Ak be such
that Tk f = ∑m∈L amm and τk f = ∑r≥0 fr exp−r , and let n ∈ L. We show that there
exists g ∈ Ak such that Tk g = (Tk f )n . Considering n as a function n∶{−1} ∪N → R,
set r ∶= −n(−1) and n′ ∶=∏∞

i=0 log
n(i)
i ∈ L′, so that n = n′ exp−r and

(Tk f )n = ∑
m(−1)>n(−1)

amm + (T ′
k fr)n′ exp−r ,

and let Ω be a strong asymptotic expansion domain of f . Note that each fs exp−s has
a bounded holomorphic extension on Ω. Since

σ−1( ∑
m(−1)>n(−1)

amm) =∑
s<r
fs exp−s
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has ûnite support in F′k((E)), it follows that g1 ∶= ∑s<r fs exp−s belongs to Ak and
satisûes τk g1 = g1 and Tk g1 = ∑m(−1)>n(−1) amm. On the other hand, by the inductive
hypothesis, there exists h ∈ F′k such that T ′

kh = (T ′
k fr)n′ . Hence h exp−r ∈ Ak and,

by deûnition of Tk , we obtain Tk(h exp−r) = (T ′
k fr)n′ exp−r . _erefore, we can take

g ∶= g1 + h exp−r .
Finally, a�er shrinking Ω if necessary, we may assume that Ω is also a strong as-

ymptotic expansion domain of g. We now claim that f − g = o(n) in Ω, which then
proves the proposition. By the inductive hypothesis, we have fr − h = o(n′) in Ω.
_erefore, fr exp−r −h exp−r = o(n) in Ω. On the other hand, let

r′ ∶= min{s ∈ R ∶ s > r and fr /= 0} .

_en, by hypothesis, we have f − g1 − fr exp−r = o(exp− r+r′
2 ) in Ω. Since exp− r+r′

2 =
o(n) in Ω, the proposition follows.

Next identify R((L)) with a subset of R((L′))((E)) in the obvious way, and for
F ∈ R((L′))((E)), set ord(F) ∶= min supp(F). Note that ord(τk( f )) = ord(Tk( f ))
for f ∈ Fk , so we set ord( f ) ∶= ord(τk( f )).

Let P ∈ R[[X∗]] have natural support, and letG ∈ F′k((E)) be such that ord(G) > 0.
_en there exists F ∈ F′k[[X∗]] such that F has natural support, ord(F) > 0, and
G = F(exp−1). Hence P ○ F belongs to F′k[[X∗]] and has natural support as well.
We therefore deûne P ○ G ∶= (P ○ F)(exp−1), which belongs to F′k((E)). Similar
to the situation in Remark 4.4, this composition is associative: if ord(P) > 0 and
Q ∈ R[[X∗]] has natural support, then (Q ○ P) ○ F = Q ○ (P ○ F).

Lemma 4.11 Let g ∈ Ak , and set d ∶= ord(g) ≥ 0.
(i) _ere exist unique gd ∈ F′k and є ∈ Ak such that g = gd exp−d(1 + є) and

ord(є) > 0.
(ii) Assume ord(g) > 0, and let P ∈ R[[X]] be convergent. _en P ○ g ∈ Ak , and we

have τk(P ○ g) = P ○ τk(g) and Tk(P ○ g) = P ○ Tk(g).

Proof Replacing T0 by τk throughout, the proof of Lemma 4.5 gives everything ex-
cept the statement Tk(P ○ g) = P ○ Tk(g). However, in the the situation of part
(ii) with the notations from the proof of Lemma 4.5 (ii), since for each r ≥ 0, there
exists Nr ∈ N such that (P ○ τk( f ))exp−r = ∑Nr

n=0 an(τk( f )n)exp−r , it follows that
σ(P ○ τk( f )) = P ○ σ(τk( f )).

As in the construction of F0, we now let Fk be the fraction ûeld ofAk and extend
τk and Tk correspondingly.

Corollary 4.12 (i) Let f ∈ Fk . _en f has strong asymptotic expansion τk( f ), and
there exist unique d ∈ R, fd ∈ F′k , and є ∈ Ak such that f = fd exp−d(1 + є) and
ord(є) > 0. In particular, f ∈ Ak if and only if f is bounded.

(ii) _e triple (Fk , L, Tk) is a strong quasianalytic asymptotic ûeld.

Proof (i) Say f = g/h, for some g , h ∈ Ak with h /= 0 of order s ≥ 0. By Lem-
ma 4.11 (i), there are nonzero hs ∈ F′k and є ∈ Ak such that h = hs exp−s(1 − є) and
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ord(є) > 0. In particular, є is small, so that

f = g
hs exp−s(1 − є) = exp

s

hs
g Geom(є).

Part (i) now follows from Lemmas 3.4 and 4.11 (ii).
(ii) _emap Tk is injective, because the restriction of Tk toAk is. Also, by part (i),

each f ∈ Fk is of the form f = expr g with g ∈ Ak and r ∈ R. Since (Ak , L, Tk) is a
strong qaa, it follows that (Fk , L, Tk) is a strong quasianalytic asymptotic ûeld.

Remark 4.13 SinceA0 contains all polynomials in exp, the algebraA1 contains the
class A of almost regular maps.

In view of Proposition 4.10 and Corollary 4.12, we setA ∶= ⋃k Ak and F ∶= ⋃k Fk ,
and we let T be the common extension of all Tk to F; we denote the restriction of T
to A by T as well. It follows that (A, L, T) is a strong qaa and (F, L, T) is a strong
quasianalytic asymptotic ûeld such that F is the fraction ûeld of A. _is ûnishes the
proof of_eorem 1.4 (i).

5 Closure Under Differentiation

_e next lemma is a version of L’Hôpital’s rule for holomorphic maps on standard
quadratic domains.

Lemma 5.1 Let 0 < C < D and ϕ∶ΩC → C be holomorphic.
(i) Let r ∈ R be such that ϕ = o(exp−r) in ΩC . _en ϕ′ = o(exp−r) in ΩD .
(ii) If ϕ is bounded in ΩC , then ϕ′ is bounded in ΩD .

Proof (i) By Lemma 2.2 (i), there is R > 0 such that D(z, 2) ⊆ ΩC for every z ∈ ΩD
with ∣z∣ > R. Let z ∈ ΩD be such that ∣z∣ > R, and letwz ∈ {w ∶ ∣w − z∣ = 1} be such that
∣ϕ(wz)∣ = max∣w−z∣=1 ∣ϕ(w)∣. _en by Cauchy’s formula, we have ∣ϕ′(z)∣ ≤ ∣ϕ(wz)∣.
On the other hand,

∣e−rz ∣ = e−r Re z ≥
⎧⎪⎪⎨⎪⎪⎩

e−r(Rewz−2) = e2re−rwz if r ≤ 0,
e−r(Rewz+2) = e−2re−rwz if r ≥ 0.

_erefore,

∣ ϕ
′(z)
e−rz ∣ ≤ e2∣r∣∣ ϕ(wz)

e−rwz
∣ .

Since ∣wz ∣ ∼ ∣z∣ and ϕ = o(exp−r) in ΩC , the conclusion follows.
_e proof of (ii) is similar and le� to the reader.

We now set D ∶= { f ∈ C ∶ f is diòerentiable} and for F = ∑ fr exp−r ∈ D((E)), we
deûne F′ ∶= ∑( f ′r − r fr) exp−r ∈ C((E)).

Proposition 5.2 Let k ∈ N and f ∈ Fk . _en f ′ ∈ Fk and τk( f ′) = (τk f )′ .

Proof We proceed by induction on k. Let τk( f ) = ∑ fr exp−r . If k = 0, then (τk f )′ ∈
F′k((E)) because the coeõcients of τk f are real numbers. If, on the other hand, k > 0,
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then fr = gr ○ log for some gr ∈ Fk−1, so that

f ′r =
g′r ○ log

x
= g′r
exp

○ log ∈ F′k

by the inductive hypothesis, so that again (τk f )′ ∈ F′k((E)).
To ûnish the proof of the proposition,wemay assume (by the quotient formula for

derivatives) that f ∈ Ak . Let C > 0 be such that ΩC is a domain of strong asymptotic
expansion of f , and let D > C. By Lemma 5.1 (ii), themap f ′∶ΩD → C is a bounded,
holomorphic extension of f ′. Moreover, if r ≥ 0, then

f ′ −∑
s≤r

(f ′s − sfs) exp−s = ( f −∑
s≤r
fs exp−s)

′
= o(exp−r) in ΩD ,

by Lemma 5.1 (i) and Condition (∗ f ,r), so that f ′ ∈ Ak .

Finally note that, for m ∈ L, the derivative m′ is a linear combination of elements
of L such that max supp(m′)→ 0 as m → 0 in L. _erefore, for F = ∑ amm ∈ R((L)),
we deûne F′ ∶= ∑ amm′, and we note that themap F ↦ F′ is a derivation on R((L)).

Corollary 5.3 F is closedunder diòerentiation and for f ∈ F,we haveT( f ′) = (T f )′.

Proof Let k ∈ N and f ∈ Fk ; we proceed by induction on k to show that T( f ′) =
(T f )′. If k = 0, then T( f ) = τ0( f ) and (T f )′ = (τ0 f )′, so the claim follows from
Proposition 5.2 in this case. So we assume k > 0 and the claim holds for lower values
of k.

Say τk( f ) = ∑ fr exp−r . _en T( f ) = ∑T( fr) exp−r by deûnition, while τk( f ′) =
(τk f )′ = ∑( f ′r − r fr) exp−r . It follows from the inductive hypothesis that

T( f ′) =∑T( f ′r − r fr) exp−r =∑(T( f ′r ) − rT( fr)) exp−r

=∑((T fr)′ − rT( fr)) exp−r = (T f )′ ,

as claimed.

6 Closure Under log-composition

Note that since F is a ûeld, it is closed under log-composition if and only if for all
f , g ∈ F such that limx→+∞ g(x) = +∞, the composition f ○ log ○g belongs toF. First
we show that, for inûnitely increasing g ∈ F, themap log ○g always has a holomorphic
extension that maps standard quadratic domains into standard quadratic domains.

Lemma 6.1 Let g ∈ F and Ωg be a strong F-asymptotic expansion domain of g,
and assume that g is inûnitely increasing. _en, for some standard quadratic domain
Ω′

g ⊆ Ωg , the function log ○g has a holomorphic extension lg on Ω′
g such that, for every

standard quadratic domain Ω, there exists a standard quadratic domain ∆ ⊆ Ω′
g with

(lg)(∆) ⊆ Ω.

Proof Let a > 0, m ∈ L be the leading monomial of F and small є ∈ F be such
that g = am(1 + є). Shrinking Ωg if necessary, we can assume that Ωg is also a
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strong F-asymptotic expansion domain of є with corresponding holomorphic ex-
tension e∶Ωg → C. _en by the asymptotic relation (3.1), we have g = am(1 + e)
with e = o(1) in Ωg ; in particular, a�er shrinking Ωg again if necessary, the func-
tion log a + log(1 + є) has holomorphic extension log a + log(1 + e) on Ωg such that
log(1 + e) = o(1) in Ωg . Since log ○g = log a + log ○m + log(1 + є), we can therefore
assume by Lemma 2.2 that g = m ∈ L. However, log ○m is anR-linear combination of
logi , for various i ∈ N. Let i0 be the smallest i such that logi appears in this R-linear
combination. Since m is inûnitely increasing, the coeõcient of logi0 in this R-linear
combination must be positive. Since logi = o(logi0) in H(0), for i > i0, it follows
as above that we may even assume that m = logi0 . But this last case follows from
Lemma 2.2 (iii).

Formal log-composition in R((L))

Let G ∈ R((L)), and let g ∈ L be the leading monomial of G; so there are nonzero
a ∈ R and small є ∈ R((L)) such that G = ag(1 + є).

(L1) Assume that a > 0. Note that log ○g is anR-linear combination of elements of
the set {logk ∶ k ∈ N}. _erefore,with Flog ∈ R[[X]] theTaylor series at 0 of log(1+x),
we deûne log ○G ∶= log a + log ○g + (Flog ○ є). Note that if G is small and G > 0,
then − log ○G = log ○ 1

G , and if G is inûnitely increasing, then so is log ○G. _us, for
G inûnitely increasing and nonzero i ∈ N, we deûne logi ○G ∶= log ○(logi−1 ○G) by
induction on i.

(L2) Recall that L′ = {m ∈ L ∶ m(−1) = 0}, and let F ∈ R((L′)). So there are l ∈ N
and P ∈ R(((X0 , . . . , X l)∗)) with natural support such that

F = P( 1
log0

, . . . ,
1

logl
) ,

i.e., the support of F contains no exponential monomials. Assume that G is inûnitely
increasing. _en by (L1), there exist k i ∈ N and Q i ∈ R(((X−1 , . . . , Xk i )∗)) with
natural support such that

1
logi

○G = Q i(
1
exp

,
1

log0
, . . . ,

1
logk i

) , for i ∈ N.

Since G is inûnitely increasing, each 1
logi

○G is small, and it follows that

P(Q0 , . . . ,Q l) ∈ R(((X0 , . . . , Xk)∗)),
where k = max{k0 , . . . , k l}. _erefore, we set

F ○G ∶= P(Q0 , . . . ,Q l)(
1
exp

,
1

log0
, . . . ,

1
logk

) ∈ R((L)).

(L3) Let F ∈ R((L)), and let l ∈ N and P ∈ R(((X−1 , . . . , X l)∗)) with natural
support be such that

F = P( 1
exp

,
1

log0
, . . . ,

1
logl

) .

_en we set
F ○ log ∶= P( 1

log0
, . . . ,

1
logl+1

) ;
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note that F ○ log ∈ R((L′)).

Lemma 6.2 Let F ∈ R((L′)) and G ∈ R((L)) be such that G is inûnitely increasing.
_en (F ○ log) ○G = F ○ (log ○G).

Proof Let Q i stand for 1
logi

○G as in (L2). _en for i ∈ N, we have by (L1) that

1
logi

○ (log ○G) = 1
logi+1

○G = Q i+1(
1
exp

,
1

log0
, . . . ,

1
logk i+1

) .

On the other hand, let l ∈ N and P ∈ R(((X0 , . . . , X l)∗))with natural support be such
that F = P( 1

log0
, . . . , 1

log l
). _en by (L2), we have

F ○ (log ○G) = P(Q1 , . . . ,Q l+1)(
1
exp

,
1

log0
, . . . ,

1
logk

) ,

where k ∶= max{k1 , . . . , k l+1}. On the other hand, by (L3), we have

F ○ log = P( 1
log1

, . . . ,
1

logk l+1

) ,

so again by (L2), we get

(F ○ log) ○G = P(Q1 , . . . ,Q l+1)(
1
exp

,
1

log0
, . . . ,

1
logk i+1

) ,

and the lemma is proved.

We continue working in the setting of (L1)–(L3) above.
(L4) For r ∈ R, we let Pr ∈ R[[X]] be the Taylor series at 0 of (1 + x)r , and we

deûne Gr ∶= ar gr ⋅ (Pr ○ є). Note that if G is inûnitely increasing, then so is Gr .
(L5) For r ∈ R, we let Fexpr be the Taylor series at 0 of the function x ↦ exp(rx),

and we set expr ○(log ○G) ∶= ar gr(Fexpr ○ (Flog ○ є). Note that this series has order
r ⋅ ord(g); thus, for F = ∑ fr exp−r ∈ R((L)) with fr ∈ R((L′)) we set F ○ (log ○G) ∶=
∑( fr ○ (log ○G)) ⋅G−r .

Corollary 6.3 Let F ,G ∈ R((L)) be such that G is inûnitely increasing. _en
(F ○ log) ○G = F ○ (log ○G).

Proof Note that Pr(x) = (1+x)r = exp(r log(1+x)) = (Fexpr ○Flog)(x) for r ∈ R and
small x ∈ R, so that Pr ○ є = Fexpr ○ Flog ○ є. It follows from (L3), (L4) and Lemma 6.2
that F ○ (log ○G) = (F ○ log) ○G.

In the situation of the previous corollary, we write F ○ log ○G for the composition
F ○ (log ○G) = (F ○ log) ○G, called the log-composition of F with G.

6.1 Closure Under log-composition

First we show that F0 is closed under log-composition.

Lemma 6.4 Let f , g ∈ F0 and assume that g is inûnitely increasing. _en
f ○ log ○g ∈ F0 and T0( f ○ log ○g) = T0( f ) ○ log ○T0(g).
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Proof It suõces to prove the lemma for f ∈ A0. Let Ω and ∆ be strong asymp-
totic expansion domains for f and g, respectively. (Recall that “strong asymptotic
expansion” and “strong F-asymptotic expansion” mean the same thing for h ∈ F0.)
By Lemma 6.1, a�er shrinking Ω if necessary, the germ log ○g has a holomorphic ex-
tension lg on Ω such that (lg) (Ω) ⊆ ∆. _erefore, the function h ∶= f ○ log ○g has
bounded, holomorphic extension f ○ lg on Ω.

Moreover, for each r ≥ 0, the germ g−r = exp−r ○(log ○g) has bounded holomor-
phic extension exp−r ○lg on Ω. On the other hand, writing g = am(1 + є) with a > 0,
m ∈ L the leading monomial of g, and є ∈ A0 small, we get g−r = a−rm−r(P−r ○ є),
where P−r is the Taylor series expansion of x ↦ (1 + x)−r at 0. It follows from
Lemma 4.5 (ii) that g−r ∈ F0 with strong asymptotic expansion domain Ω such that
T0(g−r) = a−rm−r(P−r ○T0(є)) = T0(g)−r by (L1). Setting d ∶= ord(g) < 0, it follows
in particular that ord(g−r) = −rd.

Now say that T0( f ) = ∑r≥0 ar exp−r , and let r ≥ 0. Since f has strong asymptotic
expansion T0( f ) in ∆, we have f −∑s≤r as exp−s = o(exp−r) in H(0), so that

f ○ lg −∑
s≤r
as(exp−s ○lg) = o(exp−r ○lg) in Ω.

By the previous paragraph, we have as g−s ∈ F0 with strong asymptotic expansion
domain Ω, for each s ≥ 0, and ord(as g−s) = −sd → +∞ as s → +∞. Since T0( f ) has
L-natural support, it follows from Lemma 3.5 that f ∈ A0 with T0( f ) = ∑ arT0(g)−r .
On the other hand, since T0( f )○ log = ∑ arx−r ,we have T0( f )○ log ○T0(g) = T0( f ),
and the lemma is proved.

Next let k, l ∈ N, f ∈ Fk , and g ∈ Fl , and assume that g is inûnitely increasing. _e
remaining diõculty in the proof of_eorem 1.4 (ii) lies in making sense of the strong
asymptotic expansion of f ○ log ○g.

Remark 6.5 Set s0 ∶= ord(g) ≤ 0, and let gs0 ∈ F′l and є ∈ Al be such that g =
gs0 exp

−s0(1 + є) and ord(є) > 0. _ere are two cases to consider.

Case 1: s0 < 0. Say τk( f ) = ∑ fr exp−r and let r ∈ supp(τk( f )). Since fr ∈ F′k , there
existsm(r) ∈ N such that x−m(r) ≤ ∣ fr ∣ ≤ xm(r); and since g ∈ Fl , there exists n(r) ∈ N
such that x−n(r) ≤ log ○g ≤ xn(r). Hence there exists N(r) ∈ N such that

x−N(r) ≤ fr ○ log ○g ≤ xN(r) .

If we already know (by induction on k, say) that each fr ○ log ○g belongs to F j for
some j ∈ N independent of r, then by Corollary 4.12 (i), there exist hr ∈ F′j and
d(r) ∈ R such that fr ○ log ○g ∼ hr expd(r). Since (as above for fr) the germ hr is also
polynomially bounded, it follows that d(r) = ord( fr ○ log ○g) = 0, so that

ord(τ j( fr ○ log ○g)τ l(g)−r) = −rs0 .

Since exp−r ○ log ○g = g−r for each r, this suggests that the series

∑
r∈R

τ j( fr ○ log ○g)τ l(g)−r

is a candidate for the strong asymptotic expansion of f ○ log ○g in this case.
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Case 2: s0 = 0. _e assumption that g is inûnitely increasing then implies that g0 ∈ F′l
is inûnitely increasing as well; in particular, wemust have l > 0. By Taylor’s _eorem,
since log ○g = log ○g0 + Flog ○ є and log ○g0 is inûnitely increasing while Flog ○ є is
small, we have

f ○ log ○g =
∞
∑
i=0

f (i) ○ log ○g0
i!

(Flog ○ є)i .

_is suggests the following: if we already know (by induction on l , say) that each
f (i) ○ log ○g0 belongs to F′j for some j ≥ l independent of i, then the series

∞
∑
i=0

f (i) ○ log ○g0
i!

τ l(Flog ○ є)i

is a candidate for the strong asymptotic expansion of f ○ log ○g in this case.

In view of Case 2 above,we need a formal version of theTaylor expansion theorem.
It relies on the observation that the logarithmic generalized power series belong to the
set T of transseries as deûned by van der Hoeven [13].

Lemma 6.6 Let F ∈ R((L)), let k > 0, and let G ∈ R((L′)) and H ∈ R((L)) be such
that G is inûnitely increasing and H is small. _en, as elements of T, we have

F ○ (G +H) =
∞
∑
i=0

F(i) ○G
i!

H i .

Proof By [13,_eorem 5.12], there exists a transseriesG−1 ∈ T such thatG ○G−1 = x.
Since H is small, so is the transseries δ ∶= H ○G−1 i.e., we have δ ≺ 1 in the notation of
[13]. On the other hand, for m ∈ L, we have that m† ∶= (logm)′ is bounded, so that
m†δ is small as well. It follows from [13, Proposition 5.11(c)] that

F ○ (x + δ) =
∞
∑
i=0

F(i)

i!
δ i .

Composing on the right with G then proves the lemma.

_eorem 6.7 Let k, l ∈ N, f ∈ Fk , and g ∈ Fl , and assume that g is inûnitely
increasing. _en f ○ log ○g ∈ Fk+l and T( f ○ log ○g) = (T f ) ○ log ○(T g). Moreover,
writing g = gs0 exp

−s0(1 + є) with s0 = ord(g) and ord(є) > 0, and writing τk( f ) =
∑ fr exp−r , we have

τk+l( f ○ log ○g) =
⎧⎪⎪⎨⎪⎪⎩

∑r∈R τk−1+l( fr ○ log ○g)τ l(g)−r if s0 < 0,

∑i∈N
f (i)○log ○g0

i ! τ l(Flog ○ є)i if s0 = 0,

where Flog is the Taylor series at 0 of the function x ↦ log(1 + x).

Proof Since Fk is the fraction ûeld of Ak , we can assume that f ∈ Ak . By Lemma
6.1 there is a strong F-asymptotic expansion domain Ω of g such that lg(Ω) ⊆ ∆,
where ∆ is a strong F-asymptotic expansion domain of f . In particular, the germ
h ∶= f ○ log ○g has a holomorphic extension h ∶= f ○ lg on Ω.
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We proceed by induction on the pair (k, l) ∈ N2 with respect to the lexicographic
ordering of N2. _e case k = l = 0 corresponds to Lemma 6.4, so we assume (k, l) >
(0, 0) and the theorem holds for lower values of (k, l). Let fr ∈ F′k be such that
τk( f ) = ∑r≥0 fr exp−r , and let gr ∈ F′l be such that τ l(g) = ∑r∈R gr exp−r . Set s0 ∶=
ord(g) ≤ 0. We distinguish two cases.

Case 1: s0 < 0. By the inductive hypothesis, each fr ○ log ○g belongs to Fk−1+l . Since
fr ∈ R if k = 0 and F′l ⊆ F′k−1+l if k > 0, it follows from Remark 6.5(1) that the series
H ∶= ∑r≥0 τk−1+l( fr ○ log ○g)τ l(g)−r belongs to F′k−1+l((E)) ⊆ F′k+l((E)), and we
claim that τk+l(h) = H.

To prove the claim, let r ∈ supp(τk( f )); it suõces, by Lemma 3.5, to show that
h −∑s≤r(fs ○ lg)g−s = o((fr ○ lg)g−r) in Ω. However, by assumption we have

f −∑
s≤r
fs exp−s = o(exp−r′)

in ∆, for any r′ > r such that r′ < ord( f −∑s≤r fs exp−s); in particular,

h −∑
s≤r

(fs ○ lg)g−s = o (g−r′) in Ω.

On the other hand, by Case 1 of Remark 6.5, the germ fr ○ log ○g is polynomially
bounded, so that g−r′ = o((fr ○ lg)g−r) in Ω, which proves the claim.
Finally, by the inductive hypothesis we have, for r ≥ 0, that

T(∑
s≤r

fs ○ log ○g
g s ) =∑

s≤r

T( fs) ○ log ○T(g)
T(g)s = (T( f ))r ○ log ○T(g).

Since ord(( fs ○ log ○g)g−s)→ +∞ as s → +∞, we get T(h) = T( f ) ○ log ○T(g), and
the theorem is proved in this case.
Case 2: s0 = 0. _en l > 0 and there exists h0 ∈ Fl−1 such that g0 = h0 ○ log. By
the inductive hypothesis and Proposition 5.2, each f (i) ○ log ○h0 belongs toFk+l−1, so
that f (i) ○ log ○g0 belongs to F′k+l ; in particular, the series

H ∶=∑
i∈N

f (i) ○ log ○g0
i!

τ l(Flog ○ є)i

belongs to F′k+l((E)),where є ∶= (g− g0)/g0. Based onCase 2 of Remark 6.5,we now
claim that τk+l(h) = H.

To prove the claim, note ûrst that it is clear from Case 2 of Remark 6.5 if f (n) = 0
for some n ∈ N, since the series H is given by a ûnite sum in this case. Henceforth
assume that f (n) /= 0 for all n; since ord(Flog ○ є) > 0, we have

ord ((Flog ○ є)i)→∞ as i →∞.

Shrinking Ω if necessary,wemay assume that Ω is also a strong F-asymptotic expan-
sion domain of є and of log ○g0, with corresponding holomorphic extensions e and
lg0 , respectively. By Lemma 3.5, it therefore suõces to show that

h −
n

∑
i=0

f(i) ○ lg0
i!

(Flog ○ e)i = o(
f(n) ○ lg0

n!
(Flog ○ e)n)
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in Ω, for n ∈ N. However, it follows from Corollary 4.12 (i) that ∣f(n+1)(z)∣ ≤ e p∣z∣ for
some p ∈ N and suõciently large z ∈ Ω. Also, since T(g0) ∈ F′l and g0 is inûnitely
increasing, the leading monomial of g0 belongs to L′, so the leading monomial of
log ○g0 is logi for some i ≥ 1. Hence ∣lg0(z)∣ ≤ q log ∣z∣ for some q ∈ N and suõciently
large z ∈ Ω. Finally, since ord(є) > 0, it follows that ∣(Flog ○ e)(z)∣ ≤ ∣z∣r ∣e−sz ∣ for
suõciently large z ∈ Ω, where s = ord(Flog ○ є) > 0 and r ∈ N. Combining these three
estimates with Taylor’s formula, one obtains

∣h −
n

∑
i=0

f(i) ○ lg0
i!

(Flog ○ e)i ∣ ≤ K∣xt exp−(n+1)s ∣

in Ω, for some t ∈ N and K > 0. On the other hand, since ∣f(n)(z)∣ ≥ e−p∣z∣ for
some p ∈ N and suõciently large z ∈ Ω, since ∣lg0(z)∣ ≤ q log ∣z∣ for some q ∈ N and
suõciently large z ∈ Ω, and since ∣(Flog○e)(z)∣ ≥ ∣z∣−r ∣e−sz ∣ for suõciently large z ∈ Ω
for some r ∈ N, we have

∣
f(n) ○ lg0

n!
(Flog ○ e)n ∣ ≥ K′∣x−u exp−ns ∣

in Ω, for some u ∈ N and K′ > 0. By Lemma 2.4, we have

xt exp−(n+1)s = o(x−u exp−ns) in Ω,

so the claim follows.
Finally, since ord(Flog○є)i →∞ as i →∞, it follows from the inductivehypothesis,

Proposition 5.2, and Lemma 6.6 that

T(h) = σ(τk(h)) =∑
i∈N

T( f (i) ○ log ○g0)
i!

T(Flog ○ є)i

=∑
i∈N

T( f )(i) ○ log ○T(g0)
i!

Flog ○ T(є)i

= T( f ) ○ (log ○T(g0) + Flog ○ T(є))
= T( f ) ○ log ○T(g),

so the theorem follows in this case as well.

7 Concluding Remarks

As mentioned in the introduction, the purpose of this paper is to extend Ilyashenko’s
construction [2] of the class of almost regular maps to obtain a quasianalytic asymp-
totic ûeld containing them. My reason for doing so is the conjecture that this class
generates an o-minimal structure over the ûeld of real numbers. _is conjecture, in
turn, might lead to locally uniform bounds on the number of limit cycles in suban-
alytic families of real analytic planar vector ûelds all of whose singularities are hy-
perbolic; see [6] for explanations and a positive answer in the special case where all
singularities are, in addition, non-resonant. (For a diòerent treatment of the general
hyperbolic case, seeMourtada [7].)
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My hope is to settle the general hyperbolic case by adapting the procedure in [6],
which requires threemain steps:

(1) extend Ilyashenko’s class A into a qaa;
(2) construct such algebras in several variables, such that the corresponding system

of algebras is stable under various operations (such as blowings-up, say);
(3) obtain o-minimality using a normalization procedure.

While this paper contains a ûrst successful attempt at Step (1), Step (2) poses some
challenges. For instance, it is not immediately obviouswhat the nature of logarithmic
generalized power series in several variables should be; they should at least be stable
under all the operations required for Step (3).

In collaboration with Tobias Kaiser, we are taking the approach of enlarging the
set ofmonomials itself, in such a way that this set is already stable under the required
operations; a natural candidate for such a set ofmonomials is the set of all functions
deûnable in the o-minimal structureRan,exp (see [9, 11]). However, working with this
large set of monomials requires us to revisit Step (1) and further adapt the construc-
tion discussed here to the corresponding generalized power series. A joint paper (in
collaboration with Tobias Kaiser and my student Zeinab Galal) addressing this gen-
eralization of Step (1) is in preparation.

Acknowledgements I thank Zeinab Galal, Tobias Kaiser, Jean-Philippe Rolin, and
Tamara Servi for valuable discussions on these notes, and the referee for careful read-
ing and valuable feedback.
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