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Quasianalytic llyashenko Algebras

Patrick Speissegger

Abstract. We construct a quasianalytic field I of germs at +oo of real functions with logarithmic
generalized power series as asymptotic expansions, such that J is closed under differentiation and
log-composition; in particular, F is a Hardy field. Moreover, the field F o (—log) of germs at 0*
contains all transition maps of hyperbolic saddles of planar real analytic vector fields.

1 Introduction

In his solution of Dulac’s problem, Ilyashenko [2] introduced the class A of germs
at +oo of almost regular functions, and he showed that this class is quasianalytic and
closed under log-composition, by which we mean the following: given f, g € A such
that limy_, 100 1/g(x) = +o0, it follows that f o (—log) o g € A. As a consequence,
A o (—log) is a quasianalytic class of germs at 0* that is closed under composition.
Ilyashenko also showed that if f is the germ at 0* of a transition map near a hyperbolic
saddle of a planar real analytic vector field, then f belongs to A o (—1log); from this, it
follows that limit cycles of a planar real analytic vector field £ do not accumulate on
a hyperbolic polycycle of &. (For a discussion of Dulac’s problem and related termi-
nology used here, we refer the reader to Ilyashenko and Yakovenko [3, §24]. The class
A also plays a role in the description of Riemann maps and solutions of Dirichlet’s
problem on semianalytic domains; see Kaiser [4,5] for details.

That A is closed under log-composition is due to a rather peculiar assumption
built into the definition of “almost regular”: by definition, a function f: (a, +o0) - R
is almost regular if there exist real numbers 0 < vy < v; < --- such that lim; v; = +o0,
polynomials p; € R[X] for each i, and a standard quadratic domain

Q=0Q¢:= {z+C\/1+z:Rez>0}§C, with C > 0,

such that

(i)  f hasabounded holomorphic extension f: Q - C;
(ii) po is a nonzero constant and, for each N € N,

N
f(z) - > pi(z)e™"* = 0(e™"*) aslz| > +o0 in Q.
i=0

Remark 1.1  For an almost regular f as defined here, the function log o f is almost
regular in the sense of [3, Definition 24.27].
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It is the assumption that py be a nonzero constant that makes the class A closed
under log-composition. However, one drawback of this assumption is that the class A
is not closed under addition (because of possible cancellation of the leading terms),
which makes it unamenable to study by many commonly used algebraic-geometric
methods.

We show here that Ilyashenko’s construction of A can be adapted, using his notion
of superexact asymptotic expansion [2, §0.5], to obtain a quasianalytic class F that is
closed under addition and multiplication, contains exp and log, and is closed under
differentiation and log-composition. This construction comes at the cost of replac-
ing the asymptotic expansions above by the following series: for k € Z, we denote
by log, the k-th compositional iterate of log. Recall from van den Dries and Speis-
segger [12] that a generalized power series is a power series F = Y., gk a4 X%, where
X = (Xy,...,Xx), each a, € R and the support of F, supp(F) := {a e R" : a, # 0},
is contained in a cartesian product of well-ordered subsets of R. The set of all gener-
alized power series in X is denoted by R[[X*]]. Moreover, we call the support of F
natural [6] if, for every compact box B ¢ R, the intersection of B n supp(F) is finite.

Definition 1.2 A logarithmic generalized power series is a series of the form

1 1
F( Tt ),
08;, 08y
where iy, ..., ix > —-1and F € R[[X*]] has natural support.

We denote by L the divisible multiplicative group of all monomials of the form

(log; )" -+ (log; )™,

with -1 < i) <--- <igandr,..., 7, € R. Note that L is linearly ordered by setting
m < n if and only if lim,_, o %j:)) < 1. (In fact, L is a multiplicative subgroup of the
Hardy field of all germs at +oo of functions definable in the o-minimal structure Re,y,

see Wilkie [14].) Indeed, this ordering can be described as follows:

* Identify each m € L with a function m: {-1} UN — R in the obvious way. Then for
m,n € L we have m < n in L if and only if m < n in RI="N in the lexicographic
ordering.

For a divisible subgroup L’ of L, We denote by R[[L']] the set of all logarithmic
generalized power series with support contained in L. Note that, by definition, every
series in R[[L']] has support contained in

L’m{(logil)“u-(logik)"‘ i-1<ij < <igandry,...,re <0},

It is straightforward to see that R[[L’]] is an R-algebra under the usual addition and
multiplication of series, and We denote its fraction field by R((L")). (So the general
series in R((L")) is of the form mF, where m € L’ and F € R[[L']].) This notation
agrees with the usual notation for generalized series, see for instance [10]. To simplify
notations, we sometimes write F € R((L")) as F = 3 ,,,c1/ d,»m as in [10]; in this situ-
ation, we call the set supp(F) := {m € L’ : a,, # 0} the support of F. Note that, under
the ordering on L', the set supp(F) is a reverse well-ordered subset of L’ of order-type
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at most w* for some k € N. we call supp(F) L'-natural if supp(F) n (m, +o0) is finite
foranyme L.

For F = ¥ ,cpramm € R((L") and n € L, we denote by F,, := 3,5, amm the
truncation of F above n. A subset A € R((L")) is truncation closed if, for every F € A
and # € L, the truncation F, belongs to A.

Since the support of a logarithmic generalized power series can have order type w*
for arbitrary k € N, we need to make sense of what it means to have such a series as
asymptotic expansion. We do this in the context of an algebra of functions.

Definition 1.3  Let X be an R-algebra of germs at +oo of functions f:(a, ) —» R
(with a depending on f), let L’ be a divisible subgroup of L, and let T: X — R((L"))
be an R-algebra homomorphism. The triple (X, L', T) is a quasianalytic asymptotic
algebra (or gaa algebra for short) if the following hold:

(i) T isinjective;

(ii) the image T(X) is truncation closed;

(iii) for every f € K and every n € L', we have f — T}((Tf),) = o(n).

In this situation, for f € X, we call T(f) the KX-asymptotic expansion of f.

The result of this note can now be stated.

Theorem 1.4 (i)  'There is a quasianalytic asymptotic field (F, L, T) that contains
the class A as well as exp and log.
(ii) The field F is closed under differentiation and log-composition.

The remainder of this paper is divided into six sections: Section 2 discusses some
basic properties of standard quadratic domains; Section 3 introduces strong asymp-
totic expansions; Section 4 contains the construction of (&, L, T); Section 5 contains
the proof of closure under differentiation; and Section 6 that of closure under log-
composition. Finally, Section 7 contains some remarks putting this paper in a wider
context.

In Section 6, we rely on the observation that R((L)) is a subset of the set T of
transseries as defined by van der Hoeven [13]; we use, in particular, the fact that T is
a group under composition.

The construction of F is based on the following consequence of the Phragmén-
Lindelof principle [3, Theorem 24.36]:

Fact 1.5 ([3, Lemma 24.37]) Let Q < C be a standard quadratic domain and let
¢:Q — C be holomorphic. If ¢ is bounded and, for each n € N, |¢(x)| = o(e™"*) as
x = +o0 in R, then ¢ = 0.

Indeed, we use this consequence of the Phragmén-Lindel6f principle as a black
box. We suspect that other Phragmén-Lindelof principles, such as the one found in
Borichev and Volberg [1, Theorem 2.3], might be used in a similar way to obtain other
qaas.
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2 Standard Quadratic Domains

This section summarizes some elementary properties of standard quadratic domains
and makes some related conventions. For a € R, we set H(a) := {z€ C: Rez > a},
and we define ¢c: H(-1) - H(-1) by ¢c(z) =2+ CV/1+z.

Figure I: A standard quadratic domain and its boundary ¢¢ (iR)

We denote by C the set of all germs at +oo of continuous functions f: R — R. For
f.g¢€C,wewrite f ~ gif f(x)/g(x) >1asx — +oo.
Lemma 2.1 LetC>0.

(i)  The map ¢¢ is conformal with compositional inverse ¢ given by

C? C2
-1

= —-C\/1 —_
o (z)=z+ 5 \/ +z+ 1

in particular, the boundary of Q¢ is the set ¢c(iR).
(i) We have Re ¢pc(ix) ~ %\/E and Im ¢pc(ix) ~ x.
(iii) There exists a continuous fc:[C,+00) — (0, +00) such that
Im¢c(ix) = fo(Re pc(ix)),
for x >0 and fc(x) ~2(x/C)%
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Proof These observations are elementary and left to the reader. ]

Figure 1 shows a standard quadratic domain with its boundary ¢¢(iR). Hence-
forth, we denote by ¢¢ the restriction of ¢ to the closed right half-plane H(0).

Two domains Q, A € H(0) are equivalent if there exists R > 0 such that QnD(R) =
A n D(R), where D(R) := {z:|z] > R}. The corresponding equivalence classes of
domains in H(0) are called germs at oo of domains in H(0). If clear from context, we
shall not explicitly distinguish between a domain in H(0) and its germ at co.

For Ac Cande > 0,let T(A,¢) := {ze C:d(z,A) <€} be the e-neighbourhood
of A.

Convention Given a standard quadratic domain Q and a function g:R — R that
has a holomorphic extension on (), we will usually denote this extension by the cor-
responding boldface letter g. We also write exp and x for the holomorphic extensions
on Q of exp and the identity function x, respectively, and log for the principal branch
oflog on Q. Thus, every m € L has a unique holomorphic extension m on Q. (Strictly
speaking, these extensions depend on ), but we do not indicate this dependence.)

Lemma 2.2 Let C > 0. The following inclusions hold as germs at oo in H(0).
(i) ForD>Cande>0, wehave T(Qp,e€) € Qc.

(ii) Forv > 0, we have
V-ch QVC lfvgl,
Qc ifv>L
(iii) For any standard quadratic domain Q, we havelog(Qc) < Q.
(iv) Wehave Q¢ + Q¢ € Qc¢.

Proof (i) follows from Lemma 2.1 (iii).
(ii) follows from Lemma 2.1 (iii) and the equality

v (x,2(x/C)*) = (vx,2(vx/\/vC)?)
in R2.
(iii) Note thatlog(H(0) n{|z| > 1}) = H(0) n {|Im 2| < m/2}.
(iv) Note first that, for a € C with Rea > 0, the boundary of a + Q¢ in

{zeC:Imz>Ima},

viewed as a subset of R?, is the graph of a function f, c:[C+Rea, +00) — [Ima, +0)
such that

fa,c(x)~1ma+(x—Rea)z.

In particular, if a € dQc, then a = b + ifc(b) for some b > C; therefore,

fuclo)~ SO o

in C, which proves the claim. ]

The following is the main reason for working with standard quadratic domains.
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Lemma 2.3 Let C > 0 and set K := C//3. There exists k € (0,1) depending on C
such that k exp(K+/|z]) < | exp(z)| < exp(|z|) for z € Qc.

Proof Let C > 0 be such that Q = Q¢ and, for r > 0, denote by C, the circle with
center 0 and radius r. Since | exp(x + iy)| = exp x, the point in Q n C, where | exp 2]
is maximal is z = 7. On the other hand, the point z(r) = x(r) + iy(r) in Qn C, where
| exp z| is smallest lies on the boundary of Q,, so that y(r) = fc(x(r)). It follows from
Lemma 2.1 (iii) that

1 4
= VP G <20 | S+
Hence x(r) > K+/r for all sufficiently large r € R, as required. [ |

Convention Given an unbounded domain Q) ¢ H(0) and holomorphic ¢, y: Q —
C, we write y = 0o(¢) in Q if [y(z)/¢(2)| = 0 as |z| > oo in Q.

The reason why the notion of a qaa makes sense for the set of monomials L is that,
for m,n € L, we have m < n if and only if m = o(n). This equivalence remains true
on standard quadratic domains.

Lemma 2.4 Let m,n € L be such that m < n, and let Q) be a standard quadratic
domain. Then m = o(n) in Q.

Remark 2.5 Whileexp™ < x'in L, we have exp™! # o(x™!) in H(0) (or indeed in
any right half-plane).

Proof First, let z € H(0) with |z| > e. Then1 < log|z| = Re(logz) < |logz| and,
since Im(log z) € (-3, 7 ), we also have [log z| < 3log|z|.

Second, define ej :=1and, for k > 0, we set ¢ := e®*. It follows by induction on
k €N, that if z € H(0) with |z| > ey, there exists C = C(k) > 0 such that

0 <log, |z| < |log, z| < Clog, |z].

The previous two observations, together with Lemma 2.3 and the characterization
of the ordering of L given in the introduction, imply that if m € L is such that m <1,
then m = 0(1) in Q. Since L is a multiplicative group, the lemma follows. ]

3 Strong Asymptotic Expansions

Set E := {exp” : r € R}. Note that E is co-initial in L; in particular, a series F € R((E))
has E-natural support if and only if it has L-natural support.

Definition 3.1 Let f € Cand F = ¥ f,exp™" € C((E)). The germ f has strong

asymptotic expansion F (at oo) if

(i) F has E-natural support;

(ii) f has a holomorphic extension f on some standard quadratic domain Q;

(iii) each f, has a holomorphic extension f, on Q such that f, = o(exp®) in Q, for
each s > 0;
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(iv) for each r € R, we have

G+ £.r) f-Y fiexp*=o(exp”") inQ.

s<r

In this situation, Q) is called a strong asymptotic expansion domain of f.

Example 3.2 Let f € C be almost regular with asymptotic expansion

F:= i pnexp ™
n=0

as defined in the introduction. Then F is a strong asymptotic expansion of f.

To see this, let r € R; Condition (* ) holds by definition if = vy for some
N €N, so assume that vy_; < r < vy for some N (setting v_; := —oco to make sense of
all cases). The definition of “almost regular” implies that

f- > panexp " —pyexp ¥ =o(exp ™) inQ.

Vp<r

Condition (+¢,,) now follows, because |z| - oo in Q implies Rez — +oo, so that
qexp "~ = o(exp™") in Q, for every polynomial g.

Remark 3.3 Let f ¢ C have strong asymptotic expansion F € C((E)), and let s € R.
Then f - exp® has strong asymptotic expansion F - exp®.

Lemma 3.4 Let f, g € C have strong asymptotic expansions

Yasexp” and ) bsexp,

respectively, in a standard quadratic domain Q. Then

(i)  f + g has strong asymptotic expansion Y. (as + bs) exp™* in

(ii)  fg has strong asymptotic expansion (Y, asexp™*) (X bsexp™®) in Q;

(iii) if f = 0 and sp := min{s € R : a; # 0}, then there exists r > 0 such that
a,, =o(exp™") in Q.

Proof Fixr > 0. Thenin Q,

f+g-Y (as+by)exp = (f- asexp™®) +(g— D bsexp ) = o(exp™”),

s<r s<r s<r

which proves (i). For (ii), write 3 c;exp™ = (X a,exp™) (X bs exp~*), so that ¢, =
Y si+s,=s s, bs,. By Remark 3.3, after replacing f and g by f exp® and g exp*® for some
s < 0, we can assume that a; = b; = 0 for s < 0; then f and g, as well as a; exp™ and
b, exp~* for each s, are bounded in Q. Since

fg— > coexp = (f- Y acexp ) g+ (D acexp”)(g- Y byexp™)

s<r s<r s<r s<r
(D) (Tbew™) - Teew™,
s<r s<r s<r
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it follows that the first and second of these four summands are o(exp™") in Q. As to
the third and fourth summands,

( > a exp_‘) ( > b, exp_s) -> ¢ exp”’

s<r s<r s<r
= ( > a exp’s) ( > by exp’s) - Y, agb, exp™™
s<r s<r S1+8,<r
—851—S§
= > agb,exp 7Y,
51,5251
S1+S2>T

which is o(exp™*) in Q, because the latter sum is finite.
For (iii) set s; := min{s > so : a; # 0} > so. Then Condition (%), with r :=
2(so + s1), implies that a,, exp™* = o(exp™") in Q, so thata,, = 0 (exp‘("s")). [ |

For F=Y, frexp™” € C((E)), we set ord(F) := min {r € R : f, # 0}. Recall that,
given series F, € C((E)) for n € N such that ord(F,) — +co as n — oo, the infinite
sum Y., F, defines a series in C((E)). The next criterion is useful for obtaining strong
asymptotic expansions.

Lemma 3.5 Letf e Cand f, € C, for n € N, and let Q) be a standard quadratic
domain. Assume that each f, has strong asymptotic expansion F, € C((E)) in Q such
that ord(F,) — +oo for n € N, and assume that f has a holomorphic extension f on
Q such that £ - 31 f; = o(f,) in Q, for each n. Then the series Y., F, is a strong
asymptotic expansion of f in Q.

Proof Letr € R, and choose N € N such that ord(F,) > r for all n > N. Then

f, = o(exp")in Q, forn > N,sof - Y7 f; = o(exp™") in Q. Increasing N if
necessary, we may assume that

= N

( Z Fi) exp~" = iZo(Fi)exp*f'

i=0

Therefore, with h, the holomorphic extension of (3. F;)exp-- on Q and h; , the holo-
morphic extension of (F;)exp-r 0n Q, we get

N N N
f-h,=f->h;, - (f— Zfi) + 3 (fi—hi,) = o(exp”) inQ,
i=0 i=0

i=0

as required. ]

To extend the notion of strong asymptotic expansion to series in R((L)), we pro-
ceed as in Definition 1.3.

Definition 3.6 Let X ¢ C be an R-algebra, let L’ be a divisible subgroup of L, and
let T: K — R((L")) be an R-algebra homomorphism. We say that the triple (¥, L', T)
is a strong qaa if

(i) T isinjective;
(ii) the image T(X) is truncation closed;
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(iii) for every f € X, there exists a standard quadratic domain Q such that f and
each g, := T'((Tf),), for n € L', have holomorphic extensions f and g, on
Q, respectively, that satisfy

(3.1 f-g,=0(n) inQ.

In this situation, we call T'(f) the strong K-asymptotic expansion of f and Q a strong
K-asymptotic expansion domain of f.

Lemma 3.7 Let (X,L', T) be a strong qaa, with L' a divisible subgroup of L. Then
(X, L, T) is a strong qaa.

Proof Let f € Xand n € L; if n € L', then the asymptotic relation (3.1) holds by
assumption, so assume n ¢ L’. If n < supp(Tf), then T2 ((Tf),) = f, so the asymp-
totic relation (3.1) holds trivially. So assume also that n ¢ supp(T f) and choose the
maximal p € supp(Tf) such that p < n (which exists because supp(Tf) is reverse
well-ordered). By assumption, writing g, and g, for the holomorphic extensions of
T'((Tf)p) and T'((Tf)n), respectively, o(p) = £ — g, = f — g, — ap, for some
nonzero a € R. Since p = o(n) in Q by Lemma 2.4, the asymptotic relation (3.1)
follows. ]

4 The Construction

4.1 The Initial llyashenko Algebra

In view of Fact 1.5 and in the spirit of [3, §24], we define A to be the set of all f € C
that have a strong asymptotic expansion F = Y, a,exp™" € R((E)). Note that the
condition supp(F) ¢ [0, +o0) implies that f has a bounded holomorphic extension
to some standard quadratic domain.

Lemma 4.1 (i) Ay is an R-algebra.
(ii) Each f € Ag has a unique strong asymptotic expansion Ty f € R((E)).
(ili) The map To: Ao — R((E)) is an injective R-algebra homomorphism.

Proof Part (i) follows from Lemma 3.4 (i), (ii). For part (ii), assume for a contradic-
tion that 0 has a nonzero strong asymptotic expansion Y. a, exp~" € R((E)) of order
so. Then by Lemma 3.4 (iii), we have a,, = o(exp™") for some r > 0; since a;, € R, it
follows that a,, = 0, a contradiction. For part (iii), the map Tj is a homomorphism
by Lemma 3.4 (i), (ii), and its kernel is trivial by Fact 1.5. |

Corollary 4.2  'The triple (A, L, Ty) is a strong qaa.

Proof By Lemma 3.7, it suffices to show that (Ao, E, Ty) is a strong qaa. For r > 0
the function exp™ has a bounded holomorphic extension on H(0), so it belongs to
Ao with Tyexp™ = exp™". Since the support of Ty f for f € A is E-natural, every
truncation of T f is an R-linear combination of exp™”, for various r > 0, and therefore
belongs to A as well. ]
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Examples 4.3 Let p € R[[X*]] be convergent with natural support [6,12]. Then
poexp ! eA,.

The algebra A o (~log) is the class A, = A}"° considered in [6, Definition 5.4]. In
particular, for f € Ay the series Ty (f) o (- log) € R[[X*]] has natural support and, for
r>0and g, := To (To(f))exp-r» we have f(—logx) — g,(~logx) = o(x") as x — 0.

4.2 The Initial llyashenko Field

For f € Ao, we set ord(f) := ord(To(f)). Below, we call f € C infinitely increasing if
f(x) = +oo, small if f(x) — 0 and a unit if f(x) -1, as x - +oo.

Similarly, let G € R((L)), and let g € L be the leading monomial of G; so there
are nonzero a € R and € € R((L)) such that G = ag(1 + €). Note that the leading
monomial of e is small. We call G small if g is small, and we call G infinitely increasing
if both g is infinitely increasing and a > 0.

Remark 4.4 Let G € R((L)), and let g € L be the leading monomial of G; so there
are nonzero a € R and small € € R((L)) such that G = ag(1+¢). Alsoletk € {-1} UN
and F e R(((X_1,...,Xx)™)) be such that F has natural support and

11 1
=F(%@@)

Leta = (a_y,...,ax) € RZ*F be the minimum of the support of F with respect to the

lexicographic ordering on R**, so that g = exp™*'log,* ---log, “*.

Casel: Let P € R[[X*]] be of natural support, and assume that G is small. Then
a>(0,...,0) in the lexicographic ordering of R?*¥,

Case 2: Let P € R[[(%)*]] be of natural support, and assume that G is infinitely in-
creasing. Then a < (0,...,0) in the lexicographic ordering of R?*¥.

In both cases, P o F belongs to R(((X_y, ..., Xx)*)) and has natural support as well.
We therefore define

1 1 1
PoG:=(PoF)| —,—,....,— .
¢ (Pe )( exp log, logk)

This composition is associative in the following sense: whenever P € R[[X* ]] is small
and of natural support and Q € R[[X*]] is of natural support, then Q o (P o G) =
(Q o P) o G. A similar statement holds in Case 2. As usual, we will therefore simply
write Q o P o G for these compositions.

Lemma 4.5 Let f, g e Aoy, and set d := ord(g) > 0.

(i)  There exist unique nonzero g4 € R and € € Ag such that g = ggexp (1 - ¢€) and
ord(e) > 0. In particular, the germ is a unit belonging to A,.

gaexp™
(ii) Assume that g is small with strong asymptotic expansion domain Q, and let P €

R[[X]] be convergent. Then P o g belongs to Ay, has strong asymptotic expansion
domain Q, and satisfies To(P o g) = P o Ty(g).
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Proof (i) Say To(g) = 3,54 &rexp~ . Then take

g-gaexp™?

€= 2 exp*d

which belongs to A, by Lemma 3.4 (ii).

(ii) By Condition (*,,9), the function Pog is a bounded, holomorphic extension of
Pogon Q. Moreover, say P(X) = ¥ a, X" € R[X]]. Since P(z) - ¥, a;iz' = O(z")
at 0 in C by absolute convergence, it follows that Po g — 3" g’ = 0(g") in Q. From
Lemma 3.4, it follows that a,, g" € A has strong asymptotic expansion domain Q and
satisfies Ty (ang") = a, To(g)", for each n. Since g is small, we have d > 0, so we also
getord(g") = ns — oo as n — oco. Part (ii) now follows from Lemma 3.5. |

Let J be the fraction field of A, and extend Tj to an R-algebra homomorphism
To: Fo - R((E)) in the obvious way (also denoted by Tj). Note that the functions in
JFo do not all have bounded holomorphic extensions to standard quadratic domains;
hence the need for first defining A,.

Remark 4.6 Let X be a subfield of C. Let F, G € X((E)), let g be the leading term
of G, and set € := —%. Recall that g = g - (Geom ©€), where Geom = Ypog X" is the
geometric series.

Corollary 4.7 (1) Let f € Fy. Then f has strong asymptotic expansion To(f),
and there exist unique d, f; € R and € € Ag such that f = fyexp @(1+¢€) and
ord(e) > 0.

(i) (Fo, L, Ty) is a strong quasianalytic asymptotic field.

Proof (i) Say f = g/h for some g, h € Ay with h # 0 of order s > 0. By Lemma 4.5 (i)
there are h; € R\ {0} and € € Ag such that h = hyexp™(1 - €) and ord(¢) > 0. In
particular, € is small, so that

exp’

g
= = Geom .
f hsexp—(1-¢€)  h; £ ()

Part (i) now follows from Lemmas 3.4 and 4.5 (ii).

Since the series in To(F) has E-natural support and each monomial in E belongs
to Fy, the triple (Fo, E, Ty) is a quasianalytic asymptotic field. Part (ii) now follows
from Lemma 3.7. ]

4.3 Iteration

We construct strong quasianalytic asymptotic fields (F%, L, Ty ), for nonzero k € N,
such that F_, is a subfield of Fy and T} extends Ty_;, which we summarize by saying
that (Fy, L, Ty ) extends (Fy_1, L, Tx—1). As in the initial stage of the construction, we
will obtain F as the fraction field of a strong qaa (A, L, Ty ) such that

(i) each f € Ay hasabounded, holomorphic extension to some standard quadratic
domain;
(ii) for each f € T, there exists s € R such that S belongs to Ay.

exp*
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Note that, by Lemma 4.5 (i), conditions (i) and (ii) hold for k = 0, provided we set
.A_l = ?_1 =R.

The construction proceeds by induction on k; the case k = 0 is handled above.
So assume k > 0 and that (A;, L, T;) and (F;, L, T;) have been constructed for i =
0,..., k-1 First,we set J} := F_jologand define T}: I} — R((L")) by T\ (folog) :=
(Tk-1f) olog, where L' := {me L: m(-1) =0}.

Corollary 4.8 (J},L, T}) is a strong quasianalytic asymptotic field.

Proof The triple (37, L', T{) is a strong quasianalytic asymptotic field, since log
maps H(0) into any standard quadratic domain. Since L’ is a divisible subgroup of L,
the corollary follows from Lemma 3.7. |

Remark 4.9 Let g € F}. There exists, by condition (ii) above, an s € R such that
g/x° has a bounded holomorphic extension on some standard quadratic domain Q.
Thus g = o(exp”) for every r > 0 and, since J is a field, it follows that g = o(exp™")
for some r > 0 if and only if g = 0.

Now let Ay be the set of all f € C that have a bounded, holomorphic extension on
some standard quadratic domain Q) and a strong asymptotic expansion

> frexp™" € T ((E))

r>0

in Q. (The boundedness assumption is included here, because not all f € F) are
bounded if k > 0.)

By Remark 4.9, arguing as in Lemma 4.1, we see that Ay is an R-algebra, each
f € Ak has a unique strong asymptotic expansion 7 f = 5o frexp™" € FL((E)),
and the map 7;: Ax - F} ((E)) is an R-algebra homomorphism. Moreover, it follows
from Fact 1.5 that this map is injective. For f € Ay with 74 f = Y f, exp™’, we now
define Ty f == X5 (T} f;) exp~". For completeness sake, we also set 7 := Tp.

Proposition 4.10  The triple (Ax, L, Ty) is a strong qaa that extends (Ay_1, L, Tx_1).

Proof The map 0: ) ((E)) - R((L)) defined by o(Y. f, exp™") := X (T} fr) exp™" is
an R-algebra homomorphism, and it is injective because T} is injective. Since Ty = oo
Tk, it follows that Ty is an injective R-algebra homomorphism. Nowlet f € Ay be such
that Tx f = X per amm and 7 f = 3,50 frexp ', and let n € L. We show that there
exists g € Ay such that Ty g = (Tx f),. Considering # as a function n: {-1} UN - R,

n

setr:= —n(-1) and n’:= [T7Z, log;

(Tcfdn= >, amm+(Tifr)wexp ™,

m(-1)>n(-1)

() ¢ 1/ sothatn = n’' exp™" and

and let ) be a strong asymptotic expansion domain of f. Note that each f; exp™ has
a bounded holomorphic extension on €. Since

0’1( > amm) => feexp™®

m(-1)>n(-1) s<r
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has finite support in F ((E)), it follows that g; = ¥, f; exp™* belongs to A; and
satisfies 7k g1 = g1and Tk g1 = X,(<1)>n(-1) @m M. On the other hand, by the inductive
hypothesis, there exists h € F} such that T[h = (T} f,). Hence hexp™ € Aj and,
by definition of Ty, we obtain Ty (hexp™") = (T} f;)n exp™". Therefore, we can take
g=g+hexp™.

Finally, after shrinking Q) if necessary, we may assume that Q is also a strong as-
ymptotic expansion domain of g. We now claim that f — g = o(n) in Q, which then
proves the proposition. By the inductive hypothesis, we have f, — h = o(n’) in Q.
Therefore, f, exp™" —hexp™ = 0(n) in Q. On the other hand, let

r":=min{seR:s>rand f, # 0}.

r+r!

Then, by hypothesis, we have f — g; — f, exp™” = o(exp_%ﬂ) in Q. Since exp™ 2 =
o(n) in Q, the proposition follows. [ |

Next identify R((L)) with a subset of R((L"))((E)) in the obvious way, and for
F ¢ R((L"))((E)), set ord(F) := minsupp(F). Note that ord(7x(f)) = ord(Tx(f))
for f € Fy, so we set ord(f) := ord(7x(f)).

Let P € R[[X* ]] have natural support, and let G € F} ((E)) be such that ord(G) > 0.
Then there exists F € F}[[X*]] such that F has natural support, ord(F) > 0, and
G = F(exp™'). Hence P o F belongs to F [[X*]] and has natural support as well.
We therefore define P o G := (P o F)(exp™"), which belongs to F}((E)). Similar
to the situation in Remark 4.4, this composition is associative: if ord(P) > 0 and
Q € R[[X*]] has natural support, then (Qo P)o F=Qo (PoF).

Lemma 4.11 Let g € Ay, and set d := ord(g) > 0.

(i) There exist unique gq € F} and € € Ay such that g = ggexp (1 + €) and
ord(e) > 0.

(i) Assume ord(g) > 0, and let P € R[[X]] be convergent. Then P o g € Ay, and we
have T, (Po g) = Po14(g) and Ty(Po g) = Po Tx(g).

Proof Replacing T by 7 throughout, the proof of Lemma 4.5 gives everything ex-
cept the statement Ty (P o g) = P o Ti(g). However, in the the situation of part
(ii) with the notations from the proof of Lemma 4.5 (ii), since for each r > 0, there
exists N, € N such that (P o 74(f))exp-r = Sonro @n(Tk(f)™")exp-r» it follows that
a(Po1i(f)) = Poa(rk(f))- u

As in the construction of Fy, we now let F; be the fraction field of A and extend
7 and Ty correspondingly.

Corollary 4.12 (i) Let f € Fy. Then f has strong asymptotic expansion 7 (f ), and
there exist unique d € R, f; € F, and € € Ay such that f = fyexp™@(1+¢) and
ord(e) > 0. In particular, f € Ay if and only if f is bounded.

(i) The triple (Fy, L, Ty) is a strong quasianalytic asymptotic field.

Proof (i) Say f = g/h, for some g,h € Ay with h # 0 of order s > 0. By Lem-
ma 4.11 (i), there are nonzero h; € F} and € € Ay such that h = hyexp™(1-¢€) and
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ord(e) > 0. In particular, ¢ is small, so that

B g _exp’
f= heexp~s(1—¢€)  h
Part (i) now follows from Lemmas 3.4 and 4.11 (ii).
(ii) The map Ty is injective, because the restriction of Ty to Ay is. Also, by part (i),
each f € Fy is of the form f = exp” g with ¢ € Ay and r € R. Since (A, L, Ty) is a
strong qaa, it follows that (F%, L, T ) is a strong quasianalytic asymptotic field. ~ ®

£ Geom (€).

Remark 4.13  Since A contains all polynomials in exp, the algebra A, contains the
class A of almost regular maps.

In view of Proposition 4.10 and Corollary 4.12, we set A := Uy Ay and F := Uy T,
and we let T be the common extension of all T, to F; we denote the restriction of T
to A by T as well. It follows that (A, L, T) is a strong qaa and (F, L, T) is a strong
quasianalytic asymptotic field such that J is the fraction field of A. This finishes the
proof of Theorem 1.4 (i).

5 Closure Under Differentiation

The next lemma is a version of LHopital’s rule for holomorphic maps on standard
quadratic domains.

Lemma 5.1 Let0 < C < D and ¢: Q¢ — C be holomorphic.

(i) LetreRbesuchthat d =o(exp™") in Qc. Then ¢’ = o(exp™") in Qp.
(i) If ¢ is bounded in Qc, then ¢’ is bounded in Qp.

Proof (i) By Lemma 2.2 (i), there is R > 0 such that D(z,2) € Q¢ for every z € Qp
with |z| > R. Let z € Qp be such that |z| > R, and let w, € {w : |w — 2| = 1} be such that
|¢(w2)| = maxy,_; -1 [¢(w)]. Then by Cauchy’s formula, we have |¢'(z)| < [¢(w.)|-
On the other hand,

—r(Rew;-2) 2r ,—rw :
— _ e z =e e z 1fr<0
|e rZ|_erRez>{ >

e—r(Re we+2) _ e~ 2e ™= ify > 0.

Therefore,
‘ ¢'(2)

e—rz

$(wz)

e—VWZ

< ezM

Since |w,| ~ |z] and ¢ = o(exp™") in Q¢, the conclusion follows.
The proof of (ii) is similar and left to the reader. [ |

We now set D := {f € C: f is differentiable} and for F = ¥, f,exp™" € D((E)), we
define F' := 3 (f] - rf;) exp™" € C((E)).

Proposition 5.2 Letk e Nand f € Fy. Then f' € Fy and 1 (f') = (11.f)’.

Proof Weproceedbyinductiononk. Let7x(f) =Y frexp™". Ifk = 0, then (74 f)' €
F1((E)) because the coefficients of 7 f are real numbers. If, on the other hand, k > 0,
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then f, = g, o log for some g, € Fy_y, so that

! o lO /
fi= 88 = L e log e
by the inductive hypothesis, so that again (75 )" € I} ((E)).

To finish the proof of the proposition, we may assume (by the quotient formula for
derivatives) that f € Aj. Let C > 0 be such that Q¢ is a domain of strong asymptotic
expansion of f, and let D > C. By Lemma 5.1 (ii), the map f': Qp — C is a bounded,
holomorphic extension of f’. Moreover, if r > 0, then

f' = > (f - sf;) exp ™ = (f— > exp’s), =o(exp") inQp,

S<r s<r

by Lemma 5.1 (i) and Condition (*f,,), so that f’ € Ay. [ |

Finally note that, for m € L, the derivative m’ is a linear combination of elements
of L such that max supp(m’) — 0 as m — 0 in L. Therefore, for F = Y a,,m € R((L)),
we define F' := ) a,,m’, and we note that the map F — F’ is a derivation on R((L)).

Corollary 5.3  Fis closed under differentiation and for f € F, wehave T(f") = (Tf)".

Proof Letk € Nand f € Fy; we proceed by induction on k to show that T(f") =
(Tf).Ifk =0,then T(f) = 70(f) and (Tf)" = (70f)’, so the claim follows from
Proposition 5.2 in this case. So we assume k > 0 and the claim holds for lower values
of k.

Say 7k (f) = X frexp™". Then T(f) = 3. T(f;) exp™" by definition, while 7, (f") =
(txf) = 2(f] = rf;) exp™". It follows from the inductive hypothesis that
T(f) =2 T(ff = rfe)exp " =3 (T(f) - rT(fr)) exp™”
=2 ((Tf) =rT(fy)exp™" = (Tf)',

as claimed. |

6 Closure Under log-composition

Note that since JF is a field, it is closed under log-composition if and only if for all
f,g € Fsuchthatlim,_,,c g(x) = +00, the composition f ologog belongs to F. First
we show that, for infinitely increasing ¢ € J, the map log og always has a holomorphic
extension that maps standard quadratic domains into standard quadratic domains.

Lemma 6.1 Let g € J and Qg be a strong F-asymptotic expansion domain of g,
and assume that g is infinitely increasing. Then, for some standard quadratic domain
Q € Q, the function log og has a holomorphic extension 1, on QU such that, for every
standard quadratic domain Q, there exists a standard quadratic domain A ¢ Q with

(1)(a) < Q.

Proof Leta > 0, m € L be the leading monomial of I and small € € F be such
that ¢ = am(1 + €). Shrinking Q, if necessary, we can assume that Q, is also a
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strong F-asymptotic expansion domain of € with corresponding holomorphic ex-
tension e: ), — C. Then by the asymptotic relation (3.1), we have g = am(1 + e)
with e = 0(1) in €; in particular, after shrinking Q, again if necessary, the func-
tion log a + log(1 + €) has holomorphic extension loga + log(1 + e) on . such that
log(1+e) = o(1) in Q,. Since logog = loga +logom + log(1 + €), we can therefore
assume by Lemma 2.2 that g = m € L. However, log om is an R-linear combination of
log;, for various i € N. Let iy be the smallest i such that log; appears in this R-linear
combination. Since m is infinitely increasing, the coefficient of log, in this R-linear
combination must be positive. Since log; = o(log; ) in H(0), for i > iy, it follows
as above that we may even assume that m = log, . But this last case follows from
Lemma 2.2 (iii). |

Formal log-composition in R((L))

Let G € R((L)), and let g € L be the leading monomial of G; so there are nonzero
a € Rand small € € R((L)) such that G = ag(1+¢).

(L1) Assume thata > 0. Note thatlog og is an R-linear combination of elements of
the set {log, : k € N}. Therefore, with Fi, € R[[X]] the Taylor series at 0 of log(1+x),
we define logoG := loga + logog + (Fiog © €). Note that if G is small and G > 0,
then —logoG = logoz, and if G is infinitely increasing, then so is log oG. Thus, for
G infinitely increasing and nonzero i € N, we define log; oG := logo(log;_, oG) by
induction on i.

(L2) Recallthat L' = {m e L:m(-1) =0}, and let F e R((L")). So there are [ ¢ N
and P € R(((Xo, ..., X;)")) with natural support such that

1 1
F:P(@,...,@),

i.e., the support of F contains no exponential monomials. Assume that G is infinitely
increasing. Then by (L1), there exist k; € N and Q; € R(((X_y,...,Xx,)*)) with
natural support such that

1 1 1

exp’log,” " Tog,,

= o ), forieN.

(¢}
log;
Since G is infinitely increasing, each @ o G is small, and it follows that
P(QO) e Ql) € R(((X()) e )Xk)*)))

where k = max{ko, ..., k; }. Therefore, we set

) eR(L)),
exp log, log,

(L3) Let F € R((L)), and let ] € Nand P € R(((X-1,...,X;)*)) with natural

FoG::P(QO,...,Ql)(

support be such that
F_p(L b L)
- \exp'log,”" log, /"
Then we set ) )
Folog:=P( —,...,— |;
ook ( log, 1Ogl+1)
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note that F o log € R((L")).

Lemma 6.2 Let F € R((L")) and G € R((L)) be such that G is infinitely increasing.
Then (F olog) o G = F o (logoG).

Proof Let Q; stand for @ o G asin (L2). Then for i € N, we have by (L1) that

1 1 1 1
logoG) = G=Qiul — —,....m—).
log; ° (log°G) log; ’ < +1( exp log, logk,-+1)
On the other hand, let/ € Nand P € R(((Xo, ..., X;)*)) with natural support be such
that F = P(@,..., @) Then by (L2), we have
1 1 1
Fo(logoG) =P(Qy,..., — e |
o(Ogo ) (Ql Ql+1)(exp logo logk)

where k := max{kj, ..., k41 }. On the other hand, by (L3), we have

1 1
Folog=P( —,...,— ),
( log, logkm )
so again by (L2), we get
1 1 1
Fol G=P(Qs..., — ),
( o Og) o (Ql Ql+1)( exp logo logkm )

and the lemma is proved. ]

We continue working in the setting of (L1)-(L3) above.

(L4) For r € R, we let P, € R[[X]] be the Taylor series at 0 of (1 + x)", and we
define G” := a’g" - (P, o €). Note that if G is infinitely increasing, then so is G".

(L5) For r € R, we let Feypr be the Taylor series at 0 of the function x — exp(rx),
and we set exp” o(logoG) := a’g"(Fexpr © (Fiog © €). Note that this series has order
r-ord(g); thus, for F = Y, f,exp™ € R((L)) with f, € R((L")) we set F o (logoG) :=
5 (f; o (IogoG)) - G,

Corollary 6.3 Let F,G € R((L)) be such that G is infinitely increasing. Then
(Folog) oG = Fo(logoG).

Proof Note that P,(x) = (1+x)" = exp(rlog(1+x)) = (FexproFlog)(x) for r € Rand
small x € R, so that P, 0 € = Fexpr © Fog 0 €. It follows from (L3), (L4) and Lemma 6.2
that F o (logoG) = (Folog) o G. [ |

In the situation of the previous corollary, we write F o log oG for the composition
F o (logoG) = (F olog) o G, called the log-composition of F with G.

6.1 Closure Under log-composition
First we show that J is closed under log-composition.

Lemma 6.4 Let f,g € Fy and assume that g is infinitely increasing. Then
fologoge Foand Ty(f ologog) = To(f) ologoTo(g).
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Proof It suffices to prove the lemma for f € Ag. Let Q and A be strong asymp-
totic expansion domains for f and g, respectively. (Recall that “strong asymptotic
expansion” and “strong F-asymptotic expansion” mean the same thing for h € J.)
By Lemma 6.1, after shrinking Q) if necessary, the germ log og has a holomorphic ex-
tension I, on Q such that (I;) (Q) ¢ A. Therefore, the function h := f o logog has
bounded, holomorphic extension f o1, on Q.

Moreover, for each r > 0, the germ g~" = exp™" o(log og) has bounded holomor-
phic extension exp™" ol; on Q. On the other hand, writing g = am(1+ ¢) with a > 0,
m € L the leading monomial of g, and € € Ay small, we get ¢g™" = a™"m™"(P_, o ¢),
where P_, is the Taylor series expansion of x — (1 + x)™" at 0. It follows from
Lemma 4.5 (ii) that g™ € F with strong asymptotic expansion domain Q such that
To(g™")=a " m " (P_,0Ty(e)) = To(g)™" by (L1). Setting d := ord(g) < 0, it follows
in particular that ord(g™") = —rd.

Now say that To(f) = X,59 arexp™ ", and let r > 0. Since f has strong asymptotic
expansion Ty(f) in A, we have f — Y., a;exp™ = o(exp™") in H(0), so that

fol,— ) a;(expolg) = o(exp " oly) inQ.
s<r
By the previous paragraph, we have a,g~° € J, with strong asymptotic expansion
domain Q, for each s > 0, and ord(a;¢g™*) = —sd — +o0 as s > +o0. Since To(f) has
L-natural support, it follows from Lemma 3.5 that f € Ao with To(f) = > a,To(g) ™"
On the other hand, since To(f) clog = > a,x™", we have To(f) ologoTo(g) = To(f),
and the lemma is proved. ]

Nextlet k,l € N, f € Jy, and g € J;, and assume that g is infinitely increasing. The
remaining difficulty in the proof of Theorem 1.4 (ii) lies in making sense of the strong
asymptotic expansion of f ologog.

Remark 6.5 Setsg = ord(g) < 0, and let g, € F] and € € A, be such that g =
g5, exp**(1+¢€) and ord(e) > 0. There are two cases to consider.

Casel: so < 0. Say 7(f) = X f,exp™" and let r € supp(7x(f)). Since f, € F}, there
exists m(r) € Nsuch that x™"(") < |f,| < x™("); and since g € T, there exists n(r) € N
such that x (") < logog < x"("). Hence there exists N () € N such that

xNO < £, ologog < xN,

If we already know (by induction on k, say) that each f, o logog belongs to J; for
some j € N independent of r, then by Corollary 4.12 (i), there exist h, € F’ and
d(r) € R such that f, ologog ~ h, exp?("). Since (as above for f,) the germ h, is also
polynomially bounded, it follows that d(r) = ord(f, o logog) = 0, so that

ord(7;(f, ologog)7i(g)™") = ~7so.

Since exp™" ologog = ¢g7" for each r, this suggests that the series

. 7i(frologog)Ti(g) ™

reR

is a candidate for the strong asymptotic expansion of f ologog in this case.
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Case 2: so = 0. The assumption that g is infinitely increasing then implies that g, € ]
is infinitely increasing as well; in particular, we must have [ > 0. By Taylor’s Theorem,
since logog = logogy + Fiog © € and logogy is infinitely increasing while Fog o € is
small, we have
oo (l) o 10 ° ;
fologog = ; w (Fiogoe)'.
This suggests the following: if we already know (by induction on I, say) that each
) ologogy belongs to 5’ for some j > I independent of i, then the series

(i) .
Zwﬁ(ﬂogoey

i=0

is a candidate for the strong asymptotic expansion of f o logog in this case.

In view of Case 2 above, we need a formal version of the Taylor expansion theorem.
It relies on the observation that the logarithmic generalized power series belong to the
set T of transseries as defined by van der Hoeven [13].

Lemma 6.6 Let F e R((L)), let k >0, and let G € R((L")) and H € R((L)) be such
that G is infinitely increasing and H is small. Then, as elements of T, we have

°°F(1)
Fo(G+H)=31°CH

i=0

Proof By [13, Theorem 5.12], there exists a transseries G* € T such that Go G = x.
Since H is small, so is the transseries 8 := Ho G ™! i.e., we have 8 < 1in the notation of
[13]. On the other hand, for m € L, we have that m" := (logm)’ is bounded, so that
m' 8 is small as well. It follows from [13, Proposition 5.11(c)] that

[e2e) F l

Fo(x+9)= Z

Composing on the right with G then proves the lemma. ]

Theorem 6.7 Letk,l € N, f € Fy, and g € JF, and assume that g is infinitely
increasing. Then f ologog € Ty, and T(f ologog) = (Tf) ologo(Tg). Moreover,
writing g = g, exp ** (1 + €) with so = ord(g) and ord(e) > 0, and writing 1, (f) =
> frexp™’, we have

Ti+1(f ologog) = 276R7k71+l(frOlogog)‘[l(g)_’ if so < 0,
k+! g8 S %ﬁ(ﬂogoe)i ifso =0,

where Fiqg is the Taylor series at 0 of the function x + log(1+ x).
Proof Since J} is the fraction field of Ay, we can assume that f € A;. By Lemma
6.1 there is a strong F-asymptotic expansion domain Q of g such that I,(Q) ¢ A

where A is a strong J-asymptotic expansion domain of f. In particular, the germ
h = f ologog has a holomorphic extension h := f o1, on Q.
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We proceed by induction on the pair (k, ) € N? with respect to the lexicographic
ordering of N2, The case k = I = 0 corresponds to Lemma 6.4, so we assume (k, [) >
(0,0) and the theorem holds for lower values of (k,I). Let f, € F be such that
Tk(f) = Xyso frexp™’, and let g, € I be such that 7;(g) = X ,cg grexp™". Set sq :=
ord(g) < 0. We distinguish two cases.

Case 1: so < 0. By the inductive hypothesis, each f, o logog belongs to Fy_,;. Since
freRifk=0and F) ¢ F,_,,, if k > 0, it follows from Remark 6.5(1) that the series
H := Y0 Tko141(fy 0 logog);(g) ™" belongs to F;_,,,((E)) € F,,((E)), and we
claim that 74,;(h) = H.

To prove the claim, let r € supp(7x(f)); it suffices, by Lemma 3.5, to show that
h-Y . (fiolg)g™ = o((f, olg)g™") in Q. However, by assumption we have

f-Y fexp™ = o(exp™)

s<r

in A, for any ' > r such that ¥’ < ord(f - ¥, fs exp~*); in particular,
h->(fiol)g™ =0 (g_'l) in Q.
s<r
On the other hand, by Case 1 of Remark 6.5, the germ f, o logog is polynomially

bounded, so that g™ = o((f, o l;)g™") in Q, which proves the claim.
Finally, by the inductive hypothesis we have, for r > 0, that

fsologog T(fs) ologoT(g)
T = =(T ologoT(g).
(Z ) 2=, (T(f))r ologoT(g)
Since ord((f; ologog)g™) — +oo as s — +oo, we get T(h) = T(f) ologoT(g), and
the theorem is proved in this case.
Case2: so = 0. Then [ > 0 and there exists hy € JF;_; such that gy = hg o log. By
the inductive hypothesis and Proposition 5.2, each f () ologohg belongs to Fy.;-1, s0
that () o logogy belongs to F, 5 in particular, the series
() o logo .
H:=%" wrl (Fiogo€)’
ieN :
belongs to F; ., (E)), where € := (g — go)/go. Based on Case 2 of Remark 6.5, we now
claim that 74,;(h) = H.
To prove the claim, note first that it is clear from Case 2 of Remark 6.5 if (") = 0
for some n € N, since the series H is given by a finite sum in this case. Henceforth
assume that f(") £ 0 for all n; since ord(Fiog © €) > 0, we have

ord ((Fiog 0€)') = 0o as i — oo.

Shrinking Q) if necessary, we may assume that Q is also a strong F-asymptotic expan-
sion domain of € and of log og, with corresponding holomorphic extensions e and
lg,, respectively. By Lemma 3.5, it therefore suffices to show that

n £(i) o

h->

i1
=0 b

£(m) 51

n!

1 .
8o (Flog Oe)l _ 0( 8o (Flog Oe)n)
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in Q, for n € N. However, it follows from Corollary 4.12 (i) that |f("*1) (z)]| < e?! for
some p € N and sufficiently large z € Q. Also, since T(go) € F] and g is infinitely
increasing, the leading monomial of gy belongs to L, so the leading monomial of
logogy is log; for some i > 1. Hence [l4, ()| < qlog | for some g € N and sufficiently
large z € Q. Finally, since ord(e) > 0, it follows that [(Fiog © €)(2)| < |2|"|e™?| for
sufficiently large z € Q, where s = ord(Fjog 0 €) > 0 and r € N. Combining these three
estimates with Taylor’s formula, one obtains

-3,

i1
=0 b

f(i) olgo —(n+1)s |

(Fiog © e)i‘ < K|x' exp

in Q, for some t € N and K > 0. On the other hand, since [f") (z)| > e ?l for
some p € N and sufficiently large z € Q, since |lg,(z)| < glog|z| for some g € N and
sufficiently large z € Q, and since | (Fiogoe)(2)| > |z|"|e”*| for sufficiently large z € O
for some r € N, we have

£(n) 51
| (Fuog 0@)"| 2 K'lx " exp™™|

in Q, for some u € Nand K’ > 0. By Lemma 2.4, we have

x'exp ("Vs — o(x M exp ™) inQ,

so the claim follows.
Finally, since ord (Fjog0€)’ — 00 as i — oo, it follows from the inductive hypothesis,
Proposition 5.2, and Lemma 6.6 that

(1) o ]10g O 0 .
T(h) = o(ri()) = 3 U288 o

ieN

() 51logo i
_ ZN T(f) 11|0g T(go) Fiog o T(e)'
= T(f) o (logoT(go) + Fog © T(e))

=T(f)ologoT(g),

so the theorem follows in this case as well. [ |

7 Concluding Remarks

As mentioned in the introduction, the purpose of this paper is to extend Ilyashenko’s
construction [2] of the class of almost regular maps to obtain a quasianalytic asymp-
totic field containing them. My reason for doing so is the conjecture that this class
generates an o-minimal structure over the field of real numbers. This conjecture, in
turn, might lead to locally uniform bounds on the number of limit cycles in suban-
alytic families of real analytic planar vector fields all of whose singularities are hy-
perbolic; see [6] for explanations and a positive answer in the special case where all
singularities are, in addition, non-resonant. (For a different treatment of the general
hyperbolic case, see Mourtada [7].)
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My hope is to settle the general hyperbolic case by adapting the procedure in [6],
which requires three main steps:

(1) extend Ilyashenko’s class A into a qaa;

(2) construct such algebras in several variables, such that the corresponding system
of algebras is stable under various operations (such as blowings-up, say);

(3) obtain o-minimality using a normalization procedure.

While this paper contains a first successful attempt at Step (1), Step (2) poses some
challenges. For instance, it is not immediately obvious what the nature of logarithmic
generalized power series in several variables should be; they should at least be stable
under all the operations required for Step (3).

In collaboration with Tobias Kaiser, we are taking the approach of enlarging the
set of monomials itself, in such a way that this set is already stable under the required
operations; a natural candidate for such a set of monomials is the set of all functions
definable in the o-minimal structure Ry, exp (see [9,11]). However, working with this
large set of monomials requires us to revisit Step (1) and further adapt the construc-
tion discussed here to the corresponding generalized power series. A joint paper (in
collaboration with Tobias Kaiser and my student Zeinab Galal) addressing this gen-
eralization of Step (1) is in preparation.

Acknowledgements I thank Zeinab Galal, Tobias Kaiser, Jean-Philippe Rolin, and
Tamara Servi for valuable discussions on these notes, and the referee for careful read-
ing and valuable feedback.
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