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ON FUNCTIONS DERIVED FROM
REGULARLY VARYING FUNCTIONS

LAURENS DE HAAN*

(Received 9 October 1975; revised 8 March 1976)

Introduction and notation

A generalization of Karamata’s theorem on integrals of regularly varying
functions is proved. Using Laplace-Stieltjes transforms it is shown that any
regularly varying function with exponent a (a +1 & N) is asymptotic to
another regularly varying function all of whose derivations are regularly
varying.

Suppose U is a positive function on R*. U is regularly varying at o (or
0+) with exponent a, in short a-varying, notation U € RV’ (or RVY
respectively), if for all x >0

Ugtx[_) N
U@ "

as t = (or ¢t | 0 respectively); cf. Karamata (1930) and (1933), Feller (1971)
chapter VIII, 8 and XIII, 5.

If U is non-decreasing and if for suitable functions a(¢) >0 and b(¢) and
all x >0

U‘txa’(’—)b(”_)logx

as t — o we say U €I If U is non-increasing and if for suitable functions
a(t)>0 and b(t) and all x >0

U(ix)—-b(t
b0 o,

as 1 | 0 we say U €I1; cf. de Haan (1970), section I, 4.
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432 Laurens de Haan 2]

1. Integrals of regularly varying functions

We start from a well known result. Suppose F is a probability distribu-
tion function and F(0+)= 0. Then (Feller (1971), VIII, 9 th. 2. cf. Pitman
(1968), lemma 3) for « >0, B <0, a + B >0

(P1) f t*dF(t1)€E RV$), & f t*'(1— F(t))dt € RVE),
o 0

(- Foyd
x(1-F(x)) a+§p

& 1-F(x)E RVE & lim =5

J“t"dF(t) L
< lim x"(l—F(x))= a+f’

A variant is the following. Suppose U is non-decseasing, U(0+) =0,
then for a >0, 8 >0

P2) f t*dU(t)ERV), © j t*'U(t)dt € RVE),
4 0

j Ut de |
() : 0 -
& U(x)eE RVS =1 lllrl U ) paay;

fxt"dU(t) 5
le x“U(x) :a+B‘

We want to present some analogous statements. Proofs are given in the
next section. Firstly for probability distributions F and a >0

®3) f t*dF(1) € RV & f 1*7(1 - F(t))dt € RV
0 0
= (1 — F(t))dt f t=dF (1)
. 4] _ . 0 —
(R o) B P (R 09

This is the case a + 8 = 0 of (P1). A sufficient (but not necessary) condition is
1- F(x)€E RV®).
Next suppose U is as above. For a >0

(P4) Uell” & f 1*dU(t)E RVP & f t=dU(t) € RV

This is the case B =0 of (P2).
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Finally suppose U, is non-decreasing, U, is continuous and strictly
increasing, U,(0+)=0. Suppose « >0, B >0.
(P5S) Any two of the following statements imply the others.

a. UERVY

b. U,ERVY

c. JU,(t)dUz(t)ERVf:’lB
0

J'x U,(1)dUx(t)
d. lim =

o T T __ B
e U()UAx)  a+B

This generalizes (P2). Similarly for functions in I we have the
following.
(P6) Suppose U, € RVY (a >0), U, is continuous and strictly increasing,
Ui(x) e e @f U.(1)dUx(r) € RV c»f fiuﬂz(ge RV,
0 x 1
This generalizes (P4).

ReMARK. Property P5 may be used to generalize a result on convergence
of moments for sample extremes, see Pickands (1968).

2. Proofs and remarks

ProoF oF (P3).
f t=dF ()€ RVE
if and only if
tim | "1 dF(x" (1= Fe)) ==
by Feller (1971), VIIL, 9 th. 2 (part iii). Now

lim [ " eaF (x (1= Fa) = =

@ lim [ "1 1= F)dix= (1= Fopp =

is a matter of partial integration. If
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a)= [ - FOyxe (- Fap—e (o)
then

fox 11— F(t))dt = U (1 - F(t))dt} exp f {ta ()} dt

and the latter is in RV{” by the representation theorem for regularly varying
functions. If [5¢7'(1 — F(t))dt € RV{” then by an obvious extension of the
argument in Feller (1971, prop. 8 p. 22)

tim [ "6 = Fo)dix (1= Fao)) = =

Remark. The statements of (P3) with « =1 are the necessary and
sufficient conditions for a weak law of large numbers for positive random
variables (Feller (1971), VI, 7 th. 2).

Remark. The statements of (P3) are implied (Feller (1971), VIII, 9 th. 2)
by the set of equivalent statements (a« >0, B> a — 1)

1-F(x)€e RV‘,*;@j t*7' (1= F(e))dt €1
0

<:>f t“dF(t)enm@f t°(1 - F(1))dt € RV ..,
o 0

(the equivalence of these statements follows from (P4)).

Proor of (P5). U, has a proper inverse U.'. So

f " U(0)dUs(t) = f T UUS(s))ds.

We shall write U, o Us'(s) for the compound function U,(U;'(s)).
Assume a) and b). Then U, U:'€ RV}, and hence
y Uz '(x)
J U,(1)dU:(t) f U.(£)dU,(¢)
. 0 s 0
MITHO0) MR 3006

U,e U3s'(s)ds
= lim 22 -_B
x—=  xU o U7'(x) a+p’

Assume b) and c). The compound function

Uz'(x) x
f U.(t)dU,(t) = f U,°U;'(s)ds
0 0
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then belongs to RV$ i, Since U,° U3' is monotone, it follows U,c U;' €
RV, Hence
U =U-~U;'°U&ERVY.
Assume a) and c¢). It is well known that there is a continuous and strictly

increasing function U, such that U0 +)=0 and U,(x)~ U;(x) as x — «.
Then [3 Ux()dU(¢) ~ {5 U(t)dU(t) as x — x. The compound function

U;‘(x) x
f UL(1)dUs(t) = f sdUso Us'(s)

is in RV., By (P2 then U, U3'€RV${, Hence U,=
UsoUi'o U € RVY.
Assume d) then

x Uytx)
fUIOUS'(S)dS f U o U;'(s)ds

. 0 -1 0

lim xU,~ U;'(x) = lim Ux(x)U,° Uz'(Ux(x))

fx UL(t)dUs(t)
= lim 2 __B )
s~ Ui(x)Ux(x) a+p

Hence U,° U;'€ RV§,. Once we know this a) and b) are equivalent. If in
addition to d) we assume c) then U,(x)Ux)= U,(x)U,c U7 (Uxx))=
UsoUs(x)E€ RVY), where Uy(x)=xU,oU;'(x). Clearly U,E RV§i.y,
hence U,€ RV,

The implications abd = ¢ and bcd = a are trivial. Suppose abc then
from U,oU;'€ RV, it follows as above

f‘ UL dU1) f U,o Us'(s)ds
im2—— — —im L -_B

== U(x)UxAx)  x== xU,oU7'(x) a+f’
Proor oF (P6).

U,elI” & Uon;‘eH""@f tdU,- U7'(t)E RV
(

)
x U, (x)
= L Ul(t)dUz(t)zﬁ tdU,o U7'(t)E RV
and similarly for the third statement of (P6). The second equivalence above
follows from de Haan (1970), theorem 1.4.1.b.
As to the first equivalence: suppose U. € [1'” and U7' € RV, then for
all x >0
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U, (u’—") . U:‘(r)> - UAU/'(1))

lim Ui () - log xa:: = log x

For the converse implication write U, = U,o U7'eo U,.

3. Derivatives
We prove the following:

THEOREM 1. Any a-varying function U with a + 1 & N is asymptotic to a
function U, with the property that the absolute values of all its derivatives are
regularly varying.

Proor. First let a <<0. There is a decreasing function U such that

U(x)~ Ui(x) as x — =. Define Ui(x) = U (%) then U, € RVY.. Denote its
Laplace-Stieltjes transform by Us. Then Ui(x)~{T(1-a)}"'Us (%) as
x | 0.S0o U(x)~{I'(1-a)}'Us(x) as x — = and latter function satisfies the
requirements (property 8 p. 22 de Haan.(1970)).

Next let @ >0 (a € N). There is an increasing function U, such that

U,(0+)=0 and U(x)~ U.(x) as x — =. Denote its Laplace-Stieltjes trans-
form by U,. Then

1 - (1
U(X)’“ Uz(x)"‘m U, (;) as x —>x,
We shall prove that U,(x)=(I' (1+ a))"'U, (%) satisfies the requirements.

We have (Abramowitz and Stegun (1970) Ch. 24, 1.2.1.c.)

d" l — S n_‘ n*]> _qyn —nAm’(m)<l>
dx" Uz<x>_,,.2:|m!(m—1 (=1)x U x/’

By property 8 of de Haan (1970), p. 22) for m =1,2,---

x*"'Ug"”(%)~(—a)(—a—1)---(—a—m + 1)U, (%)

as x >, Hence as x —» >

O (5) o (1) 2 (P05
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=<—"‘+"_1> nt (= 1rx U, (l>

n X
= a(a—-1)(a—n+1)x"U, (i)

ReMARK. A. A. Balkema has given another proof of this result using the
convolution of the function with a probability distribution.

The theorem says that within each equivalence class of asymptotically
equivalent regularly varying functions there is at least one function satisfying
the requirements. A similar statement with a different definition of the
equivalence class holds for functions in II. This is the analogue of the previous
theorem for a =0.

THEOREM 2. Any function U €11, i.e. any non-decreasing function
satisfying

lim U(x)-b(t) _ log x

1> a(t)

for all x >0 and suitably chosen functions a(t) >0 and b(t) has a companion
function U, such that (- 1)""'U{"(x)E RV®) forn=1,2,--- and

limJM — U = (.

a0

Proor. The Laplace-Stieltjes transform U (t) of U exists for all t >0.
We shall prove that U,(x) = U(x'e™") satisfies the requirements; here y is
Euler’s constant. By de Haan (1976) U € 1 and
- (1
U@y - U (;)
O

As in the previous proof we have
d" - (1\_ & n! n—1> _ ,‘,,,_,,'.v(m)(_1_>
dx"U(x>—,,,§::1m!(m—l (=D U™ )

By the lemma in de Haan (1976) we have for the derivative — U(1/x) €
RV and by property 8, p. 22 of de Haan (1970) form =1,2,---asx —> ®©

o (1 o (1
-mypym) (2} ¢ _ m+1 _ [V [V
U (x) (— 1y (m - 1) x0T (x)

Hence as x —» «
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d" U<l>~(-1)"x*""U‘” (%) mi:, <n—1>gm :nl!)!n!(_l)m1

dx" X m-—1

G R CRRNA (]
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