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ON FUNCTIONS DERIVED FROM
REGULARLY VARYING FUNCTIONS

LAURENS DE HAAN*

(Received 9 October 1975; revised 8 March 1976)

Introduction and notation

A generalization of Karamata's theorem on integrals of regularly varying
functions is proved. Using Laplace-Stieltjes transforms it is shown that any
regularly varying function with exponent a (a + 1 j£ N) is asymptotic to
another regularly varying function all of whose derivations are regularly
varying.

Suppose U is a positive function on R+. U is regularly varying at °° (or
0 + ) with exponent a, in short a-varying, notation U G RV^ (or
respectively), if for all x > 0

as / ->x (or t I 0 respectively); cf. Karamata (1930) and (1933), Feller (1971)
chapter VIII, 8 and XIII, 5.

If U is non-decreasing and if for suitable functions a (t) > 0 and b(t) and
all x > 0

as t —* ao we say U G Fl1*'. If U is non-increasing and if for suitable functions
a(t)>0 and b(t) and all x >0

U(tx)-b(t)
a(t) W ^ ' ° g *

as I | 0 we say U G n(0); cf. de Haan (1970), section I, 4.
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432 Laurens de Haan [2]

1. Integrals of regularly varying functions

We start from a well known result. Suppose F is a probability distribu-
tion function and F(0 + ) = 0. Then (Feller (1971), VIII, 9 th. 2. cf. Pitman
(1968), lemma 3) for a > 0, /3 < 0, a + /3 > 0

(PI) t"dF(t)& RVtlpO
Jo Jo

JV'(l-F(f))dt

A variant is the following. Suppose 1/ is non-dec*easing, (7(0 +) = 0,
then for a > 0, /3 > 0

(P2)

f
Hm Jo

t/(x) a + )3

{' rdu(t)
<=> lim „ . , , , .

*^» x t/(x) a + /3
We want to present some analogous statements. Proofs are given in the

next section. Firstly for probability distributions F and a > 0

(P3) f tadF(t)£RVT}€> i t"-\l-F(t))dteRV{o}

Jo Jo

\* t*-\\-F(t))dt r t-dF(t)
° l i m —=71 ? r r ; — = =o O lim -^-. =^-^- = oo.

x°(l-F(x)) «-i"(l-F(x))
This is the case a + /3 = 0 of (PI). A sufficient (but not necessary) condition is
l - F ( i ) G R V ( l

Next suppose U is as above. For a > 0

(P4) u e r r 1 <=> f rd t / (0 G JR VL"' <» f radu(t) G R V(_°2.
Jo Jx

This is the case /3 = 0 of (P2).
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[3] Regularly varying functions 433

Finally suppose U, is non-decreasing, U2 is continuous and strictly
increasing, U2(0 + ) = 0. Suppose a > 0, /3 > 0.
(P5) Any two of the following statements imply the others.

a. Ut

Jo

.. Jo"rn
- - " t/,(x)l/2(Jt) « + /3

This generalizes (P2). Similarly for functions in ir'"' we have the
following.
(P6) Suppose U\ £ RV^ (a > 0), L/] is continuous and strictly increasing,
t/,(0 + ) = 0.

J
This generalizes (P4).

REMARK. Property P5 may be used to generalize a result on convergence
of moments for sample extremes, see Pickands (1968).

2. Proofs and remarks

PROOF OF (P3).

if and only if

lim [' t"dF(t)/{x"(l-F(x))} = *>

by Feller (1971), VIII, 9 th. 2 (part iii). Now

lim f rdF(0/{x°(l-F(x))} = °o
» - • * Jo

O lim f * /-"'(I - F(r))d//{x"(l - F(x))} =
*~~ Jo

is a matter of partial integration. If
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a(x)= I' r-l(l-F(t))dt/{x°(l-F(x))}-**> (x^oo)
Jo

then

Jo* r'(l - F{t))dt = { £ ta\\ - F(r))d/j exp j ' {ta{t)Y'dt

and the latter is in R Vo°' by the representation theorem for regularly varying
functions. If /nf°~'(l - F(t))dt G R V.T1 then by an obvious extension of the
argument in Feller (1971, prop. 8 p. 22)

lim I"" t"\\ - F(t))dt/{x"(l - F(x))} = ».
* ^ ~ Jo

REMARK. The statements of (P3) with a = 1 are the necessary and
sufficient conditions for a weak law of large numbers for positive random
variables (Feller (1971), VII, 7 th. 2).

REMARK. The statements of (P3) are implied (Feller (1971), VIII, 9 th. 2)
by the set of equivalent statements (a > 0, /3 > a - 1)

(* rdF(r)Gnw» f
Jo Jo

(the equivalence of these statements follows from (P4)).

PROOF OF (P5). U2 has a proper inverse [/?'. So

We shall write (7,° U2'(s) for the compound function U](U2'(s)).
Assume a) and b). Then U, ° t/T1 £ RV(™/p, and hence

f
U,{t)dU2{t) j U,(t)dU2(t)

>—~ Ul(y)U2(y) " -

f
= I™I™ xUioUVix) a +

Assume b) and c). The compound function

f 2 U,{t)dU2{t)= I"'
Jo Jo
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then belongs to R Vf '^ + p). Since U, ° U2' is monotone, it follows C/i ° L/2' £
R V ' ; \ . Hence

(7,= [/."[/^^ERVr.

Assume a) and c). It is well known that there is a continuous and strictly
increasing function Ui such that 173(0 + ) = 0 and Ut(x)~ U^(x) as x—*°°.
Then /,* U>(t)dU2(t)~ /« U,(t)dU2(t) as x -» oc. The compound function

I""'" ' U,{t)dU2(t) = f
Jo Jo

is in RVL"V + (JI. By (P2) then U2° U^1 G RV^'p. Hence L/2 =

Assume d) then

Ul°U2'(s)ds Ut°U2\s)ds

!'™ xt/,°l/2'(jc) = I™ t/2(x)[/,°l72'([/2(x))

y JO P

Hence Ut° U2' G RV^V- Once we know this a) and b) are equivalent. If in
addition to d) we assume c) then Ul(x)U2(x) = U2(x)Ul° U2\U2(x)) =
Ui°U2{x)<ERVi:ll) where U,(x) = xU, ° U2\x). Clearly l / . e R V ^ . ^ ,
hence (J,£RVjT'.

The implications abd => c and bed => a are trivial. Suppose abc then
from U,° U2' G RVP i. it follows as above

= I1™ xLr,o[72-'(x) = a +/3 '

PROOF OF (P6).

Jo

and similarly for the third statement of (P6). The second equivalence above
follows from de Haan (1970), theorem 1.4.1 .b.

As to the first equivalence: suppose U2 G I7<3C) and t/71 G RV'*-', then for
all x > 0
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- T = l o g X.
c

For the converse implication write U2= U2° U^1 ° U,.

3. Derivatives

We prove the following:

THEOREM 1. Any a-varying function U with a + 1 £? N is asymptotic to a
function U, with the property that the absolute values of all its derivatives are
regularly varying.

PROOF. First let a < 0. There is a decreasing function U2 such that

U(x)~ U2(x) as x ^oc. Define l/,(x)= U2 ( - ) then [/,£ RV("l Denote its

Laplace-Stieltjes transform by I/,. Then (/,(*) ~ { T(l - a)y'U, (-) as
\ X /

x { 0. So U(x) ~ {F (1 - a)}"' l / 3 ( x ( a s x ^ x a n d latter function satisfies the
requirements (property 8 p. 22 de Haan.(1970)).

Next let a > 0 (a ^ N). There is an increasing function U2 such that
l/2(0 + ) = 0 and U(x)~ U2(x) as x -> ^. Denote its Laplace-Stieltjes trans-
form by L/2. Then

l;) as

We shall prove that t/,(jc) = (F (1 + a)) '(72 I — ) satisfies the requirements.
\X /

We have (Abramowitz and Stegun (1970) Ch. 24, 1.2.I.e.)

By property 8 of de Haan (1970), p. 22) for m = 1,2, • • •

x~mU2
m) (-) ~ (- a)(- a - \) • • • (- a - m +1)U2 (-

as x^ac . Hence as x-*35
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= a(a - 1) • • • (a - n + l ) x "

REMARK. A. A. Balkema has given another proof of this result using the
convolution of the function with a probability distribution.

The theorem says that within each equivalence class of asymptotically
equivalent regularly varying functions there is at least one function satisfying
the requirements. A similar statement with a different definition of the
equivalence class holds for functions in 11. This is the analogue of the previous
theorem for a — 0.

THEOREM 2. Any function U E n1"', i.e. any non-decreasing function
satisfying

.. U(tx)-b(t)
!!2 =

for all x >0 and suitably chosen functions a(t)>0 and b(t) has a companion
function U, such that ( - l)n + 1 l / ( r )(x)G RV™ for n = 1,2,-•• and

PROOF. The Laplace-Stieltjes transform U(t) of U exists for all t > 0 .
We shall prove that t / i (x)= U(x~'e~y) satisfies the requirements; here y is
Euler's constant. By de Haan (1976) U £ n<0> and

U(t)-U^)
hm 77; = y.

a{t)
As in the previous proof we have

d"
dx"

By the lemma in de Haan (1976) we have for the derivative - L7a)(l/Jc)'
R V'0? and by property 8, p. 22 of de Haan (1970) for m = 1,2, • • • as x -»°°

Hence as x —> °°
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dx" \xj v ; V x / ^ . V m - l / m!

= ( - l ) " x " ' ( n - l ) ! t/(
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