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Potential vorticity fronts and the late-time
evolution of large-scale quasi-geostrophic flows
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The late-time behaviour of freely evolving quasi-geostrophic flows with initial
characteristic length scale L larger than or equal to the deformation radius Lp, Lo/Lp > 1,
is studied. At late time the flows are dominated by large multi-level vortices consisting of
ascending terraces of well-mixed potential vorticity (PV), i.e. PV staircases. We examine
how the number of mixed PV levels depends on the initial conditions, in particular Ly/Lp.
For sufficiently large values of Lo/Lp ~ 5, a complete staircase with regular steps forms,
but as Ly/Lp decreases, the staircase becomes more irregular, with fewer mixed levels
and the appearance of a large step centred on zero PV, corresponding to large regions of
near-zero PV separating the multi-level vortices. This occurs because weak PV features in
the initial field with scales smaller than Lp undergo filamentation and are coarse-grained
away or homogenised. For all values of Lo/Lp considered, inverse cascades of potential
energy commence at sufficiently late times. The onset of these cascades, even when the
flow is initialised well within the ‘asymptotic model’ (AM) regime, suggests that the
AM regime is not self-consistent: when potential vorticity fronts are well-resolved, frontal
dynamics eventually drive ongoing flow evolution.
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1. Introduction

Potential vorticity (PV) mixing and the formation of fronts, concentrated bands of strong
PV gradients at the edges of mixed regions, are important processes in large-scale
geophysical flows, with examples ranging from the Earth’s ocean and winter stratosphere
to Jupiter’s banded structure and Great Red Spot (see, e.g. Galperin & Read 2019).
Because of the PV invertibility principle (Dritschel & Mclntyre 2008), along these fronts
run strong, fast-moving jets containing large amounts of kinetic energy. Fronts and jets
are important, for example, in mesoscale oceanic flows, where fronts act as barriers to
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transport of heat, momentum and chemical constituents across the front, while jets may
transport quantities long distances in the along-front direction.

In this paper the long-time dynamics of a canonical geophysical model, shallow
water quasi-geostrophic flow, are studied for a range of initial conditions and model
parameters leading to flow regimes dominated by PV fronts and their collocated jets.
Shallow water quasi-geostrophic flow describes a rapidly rotating shallow fluid layer
with a deformable free surface. This model simplifies the dynamics while retaining key
processes active in real geophysical flows, and has been used to model dynamical features
occurring at oceanic fronts (see, e.g. Pratt & Stern 1986). The system is governed by the
Charney—Hasegawa—Mima equation (see, e.g. Pedlosky 1987)

dq

ot +J(, q) =0, (1.1)

which describes material advection of PV ¢ = (A — Ll_)z)w, where A is the
two-dimensional (2-D) Laplacian, ¢ is the streamfunction, A is the vorticity and J(, -)
is the 2-D Jacobian. The deformation wavenumber kp = Lz_)l is the inverse of the Rossby
deformation length Lp = /gH/f, where g is the gravitational acceleration, H is the mean
layer depth and f is the Coriolis parameter; Lp measures the relative tendencies of gravity
to relax the free surface and of background planetary rotation to maintain free surface
height anomalies. Equation (1.1) also governs quasi-2-D fluctuations of the electrostatic
potential ¥ for a plasma in a uniform strong magnetic field, where then Lp is the ion
Larmor radius (Hasegawa & Mima 1978).
The inviscid quadratic invariants of (1.1) are the total energy

E=Y(—vq) = 3I(IV¥ ) + kp(y*) = K + P, (12)

where K = (|Vr 12) /2 is the kinetic energy and P = k%(wz) /2 is the potential energy, and
the potential enstrophy

0 = NAyq) = LAY + k(I VYD, (1.3)

which is the sum of the barotropic enstrophy Z = (|Av¥|?)/2 and the rescaled kinetic
energy klz)K = klz)(|Vw|2) /2. Here the angle brackets (-) denote an integral over the
domain. The inviscid dynamics also conserve an infinite hierarchy of PV norms
(Casimirs), including the L> norm C = (¢?)/2.

The dynamics of (1.1) have been extensively studied in both the limits L < Lp and
L > Lp, where L is the characteristic length scale of the flow. In the first limit, k\pL < 1,
deformations of the free surface are negligible and the turbulence is effectively governed
by the 2-D Euler equations, or material advection of vorticity Atr. In this case the
quadratic invariants are kinetic energy K, which cascades to large scales, and enstrophy
Z, which cascades to small scales.

Conversely, when L > Lp, i.e. the characteristic length scale of the flow is much larger
than Lp, the streamfunction dominates the PV and the turbulent evolution slows down
(Larichev & McWilliams 1991; Iwayama, Shepherd & Watanabe 2002). The limit kpL —
o¢ yields the asymptotic model (AM),

% +J(AY, ) =0, (1.4)
which describes material advection of the streamfunction ¥ by the vorticity Ay on a
rescaled slow time t = ¢t/ k%) (Larichev & McWilliams 1991). The AM is a singular limit
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because T — 0 as Lp — 0, and the evolution slows to a halt; see, e.g. Cushman-Roisin
(1987). This model assumes that small scales never develop. The quadratic invariants of the
AM are the kinetic energy K and the rescaled potential energy P/ k%, which are expected to
undergo forward and inverse cascades, respectively. As L/Lp — 0o, the slow time T — 0,
consistent with the frozen vortical quasi-crystals observed in simulations of smooth PV
fields with length scale L > Lp (Larichev & McWilliams 1991; Boffetta, De Lillo &
Musacchio 2002; Iwayama et al. 2002), and with the analytical results of Tran & Dritschel
(2006), which indicate that smooth vortices much larger than Lp are inactive, cannot
merge and are thus prevented from transferring potential energy to larger scales. The AM
regime may not be self-consistent, however, since forward cascades of kinetic energy may
generate flow features with scales O(Lp) (already anticipated by Larichev & McWilliams
1991).

Large-scale geophysical flows generically form steep PV gradients, or fronts, separating
regions in which PV is well mixed (Mclntyre 1982; Dritschel & McIntyre 2008; Dunkerton
& Scott 2008; Dritschel & Scott 2011; Scott & Dritschel 2018), so theories for perfectly
smooth PV distributions are of limited relevance to the dynamics observed in real
oceanic and atmospheric flows. For equivalent-barotropic turbulence in particular, the
above numerical and analytical results pertaining to smooth PV distributions cannot
be generalized to flows containing steep gradients, even when L >> Lp and the flow is
dominated by potential energy. In the thin jet limit, in which the jets are much thinner
than the length scale of the mixed regions, the dynamics of the waves and nonlinear
disturbances that propagate on the fronts are described to first order by a modified KdV
equation, which links frequency to the length scale of the mixed regions (Nycander,
Dritschel & Sutyrin 1993; Burgess & Dritschel 2019; Burgess 2020).

An outstanding question, addressed here, is whether sharp fronts inevitably form even
for initial conditions with a characteristic length scale L much larger than the Rossby
deformation length Lp, which sets the width of the fronts and their collocated jets.
Answering this question is crucially important to understanding the long-time dynamics of
geophysical flows. Another question is how flow properties such as the number of mixed
levels, typical area of mixed regions and jet spacing depend on the initial conditions and
model parameters.

To begin answering these questions, this paper studies quasi-geostrophic shallow water
flows with initial characteristic length scales Lo larger than or equal to the deformation
length Lp, Lo/Lp > 1. (Note, in geophysical fluid dynamics, the ratio (Lp/Lo)? is known
as the Burger number; see, e.g. Pedlosky 1987.) Two sets of simulations are analysed, one

set with kp = LBI = 25 and the other with kp = 40. In each set, the peak wavenumber

ko =Ly L of the initial energy spectrum, which provides an initial length scale Ly = 1/ko
for the flow, is varied from kg = 5 to kg = kp.

This parameter regime in which the deformation length Lp is small compared with the
characteristic length scale of the flow is most relevant to the ocean. Like oceanic jets,
the jets that emerge are very ‘wiggly’, exhibiting large meanders, and enclose regions of
well-mixed PV, forming rings reminiscent of those seen in the Gulf Stream. We stress that
oceanic flows are much more complicated and the present idealised model omits important
effects active in the ocean, such as baroclinicity. Nonetheless, the model can be used to
derive important insights about meandering jets in the small Lp limit, and has been used
previously to investigate oceanic jets (see, e.g. Pratt & Stern 1986).

The paper is structured as follows. Section 2 describes the numerical simulations,
including the choice of initial conditions and governing parameters. We then examine
the time evolution of energy and characteristic scales for these simulations in § 3, and
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Figure 1. Initial PV for simulations with Lp = 1/25 and, from (a) to (¢), Lo/Lp = 5, Lo/Lp = 1.67 and
Ly/Lp = 1.

the structure of the PV and kinetic energy fields in §4. The PV field in all cases is
found to form a distinct staircase structure at sufficiently late times, with kinetic energy
concentrated on sharp PV gradients. A simple theory accounting for the observed variation
of this staircase structure with Ly/Lp is developed in § 5. This theory uses the initial energy
to predict the number of steps that develop and the area between them. Our conclusions
are offered in § 6.

2. Numerical simulations

Equation (1.1) is solved by contour advection using the combined Lagrangian advection
method (Dritschel & Fontane 2010) on a 1024% basic inversion grid with effective
resolution (16 x 1024)% = 163842 within a domain of side length of 27. Contour surgery
removes PV filaments at 1/16384 the domain width, but preserves sharp gradients
indefinitely, so is ideally suited to investigating dynamics associated with PV fronts. In
contrast, pseudospectral simulations with Laplacian or hyperviscosity inevitably degrade
PV fronts, so long-time dynamics cannot be investigated as accurately as with contour
advection.

The initial spectrum takes the form

Ck) = c(k3 + K>k 3 e—(P—l)(k/ko)z’ @.1)

where C(k) is the power spectrum of C = (¢%)/2 and p = 3 for all simulations. Without
loss of generality, we take the maximum PV |g,.| = 47, and this only controls the
time scale of the flow evolution (the ‘eddy turn-around time’ is then a unit time in the
limit ky/kp — o0). The maximum PV determines the constant ¢ in (2.1). Two sets of
simulations are conducted, one with deformation wavenumber kp = 25 and the other with
kp = 40. These are sufficiently large to keep domain effects insignificant over the duration
of the simulations. In each set the spectral peak wavenumber is varied from ko =5 to
ko = kp in increments of Aky = 5.

The simulations start with spatially random smooth PV fields, examples of which are
shown in figure 1 for simulations with kp = 1/25 and Ly = 1/5, Lo = 1/15, and Lo =
1/25. Potential vorticity concentrations in the initial field merge and evolve into small
intense vortices, around which the mixed PV regions subsequently organise.
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Figure 2. Time evolution of total energy E (solid line), potential energy P (dash-dot line) and kinetic energy
K (dotted line) for Lp = 1/25 (a) with Ly/Lp =5 (red), Lo/Lp = 2.5 (blue) and Ly/Lp = 1.25 (black), and
Lp = 1/40 (b) with Ly/Lp = 8 (red), Lo/Lp = 2.67 (blue) and Ly/Lp = 1.33 (black).

3. Scale evolution and decay rates

Total energy is very nearly conserved in all simulations, as shown in figure 2. As Ly/Lp
increases, potential energy makes up an increasingly large fraction of the initial energy.
No matter the value of Ly/Lp the kinetic energy decreases at sufficiently late times. This
occurs even for the simulation with Ly/Lp = 8 (b, red), though the decline in kinetic
energy (red dotted line) is somewhat delayed, commencing at about # = 3000, whereas
simulations with smaller values of Lo/Lp show an immediate decrease of kinetic energy.
The delay in kinetic energy decay is related to the fact that the dynamics slow down and
front formation is delayed as Lo/Lp increases. However, the amount of kinetic energy at
later times once the decay has commenced is very similar between simulations with the
same value of Lp, and shows less dependence on the value of the initial characteristic
length scale Ly.

This is especially true for the simulations with Lp = 1/40. Past a certain time, all the
kinetic energy curves roughly collapse and follow the same decay law K ~ =04, This
steeper decay than the 1~ !/3 found for the frontal jets alone (see Burgess 2020) reflects the
kinetic energy contribution of the vortex cores within the mixed regions of non-zero PV
(as opposed to the free cores located in the zero-PV regions). The kinetic energy in these
cores decays more quickly than the kinetic energy in the frontal jets. The flow structure is
discussed further in § 4.

To study how the characteristic length scales of total, potential and kinetic energy evolve,
and in particular to look for evidence of inverse transfer of potential energy, we compute
the energy centroid length scales. The centroid length scale of total energy is

PR G s 2 I (G S A ) + kg ([(—A) "4y )?)
E= = 2 : 3.
(Vq) (VY 12) + K (¥2)
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Figure 3. Time evolution of centroid length scales ¢£ of the total energy (solid black line), £p of the potential
energy (dashed magenta line) and £k of the kinetic energy (dotted blue line) for simulations with Lp = 1/40
and Lo/LD =38 (a), I4)/LD =4 (b), Lo/LD =2.67 (C), Lo/LD =2 (d), L()/LD =16 (e) and Lo/LD =1.33 (f)
The ratio £ /¢p (black dash-dot line) is also shown.

where the operator (—A)Y is defined by (—A)Glﬁ(k) = kzelﬂ(k) (Tran & Dritschel
2006). Here, k = |k| is the wavenumber and v (k) is the Fourier transform of . The
characteristic length scales of the kinetic and potential energy are

A 1/4 2 —A)" /Ay 2
(G b B oVl ) (3.2a,b)

(IVy ) (¥2)

In practice, €, £p and {k are computed by summing over spectra and then dividing by the
relevant energy.

At sufficiently late times in all simulations, potential energy is transferred to larger
scales, as evidenced by the increase in the centroid length scale ¢p of the potential
energy as shown in figure 3 for simulations with Lp = 1/40. For the simulation with
Ly/Lp = 8 shown in panel (a), the potential energy length scale is approximately constant
until # &~ 3000, after which it begins to increase, demonstrating that inverse transfer of
potential energy occurs even in this case, in which the flow starts deep in the AM regime,
and theories assuming smooth PV fields would predict impeded inverse potential energy
transfer and an effectively infinite time scale for flow evolution (Tran & Dritschel 2006).
Note that the inverse transfer of potential energy and the decay of kinetic energy begin at
roughly the same time (¢ &~ 3000) for the simulation with Ly/Lp = 8.

For the simulations with smaller Ly/Lp, i.e. Ly/Lp = 2.67 to Lo/Lp = 1.33 shown in
figure 3(c)—(f), the length scale of the kinetic energy first increases and then begins to
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Figure 4. Potential vorticity (a—c) and kinetic energy (d—f) for simulations with Lp = 1/25 and Lo/Lp =
5 (a,d), Lo/Lp = 1.67 (b,e) and Lo/Lp =1 (c,f), all at t =200000. The domain length L =27 is 25
deformation wavelengths 2rtLp.
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flatten out. This indicates the emergence of PV fronts and the concentration of kinetic
energy in the jets collocated with fronts, which have a characteristic width O(Lp).

4. Flow structure

The structure of the flow varies significantly with Ly/Lp as evident in figure 4, which
shows PV fields (panels a—c) and kinetic energy density (panels d—f) for simulations
with Lp = 1/25. For Ly/Lp = 5 (figure 4a), the domain is almost completely occupied
by mixed regions of non-zero PV, and there are about nine mixed levels (including both
positive and negative PV regions). The mixed regions are arranged into what we call
‘multi-level vortices’, which have a ‘wedding cake’ structure, with ascending terraces on
which mixed PV takes increasingly high values. Levels with low and intermediate values
of |g| occupy the most area, and levels with the highest values of |g|, which are close to
the vortex cores where mixing is inhibited, occupy the least area. As Lo/Lp decreases to
1.67 and then 1 (b and c), the multi-level vortices are separated by larger and larger regions
on which ¢ & 0, and the non-zero mixed regions become island-like rather than forming
continuously connected regions spanning the domain. For smaller values of Ly, there are
also fewer non-zero mixed levels, with about four mixed levels for the case Lo/Lp = 1 (¢).

The kinetic energy fields and jet intensity also vary depending on Ly/Lp, as can be
seen in plots (d)-(f) of figure 4. Note that the same colour range is used for all three
plots to facilitate comparison of the jet intensities. Jets are on average weaker and more
densely bunched together when Ly/Lp is larger (figure 4d) and the domain is filled with
more non-zero mixed levels, while smaller Lo/Lp yields fewer mixed levels and stronger
jets (figure 4f). The total length of the jets also varies depending on Lo/Lp: for larger
Lo/Lp (figure 4d), the total jet length is greater, while for smaller Ly/Lp (figure 4f), there

939 A40-7


https://doi.org/10.1017/jfm.2022.194

https://doi.org/10.1017/jfm.2022.194 Published online by Cambridge University Press

B.H. Burgess and D.G. Dritschel

0.000120
0.000105
0.000090
0.000075
0.000060
0.000045
0.000030
0.000015
0

Figure 5. Potential vorticity (a—c) and kinetic energy (d—f) for simulations with Lp = 1/40 and Lo/Lp = 8
(a.d, t =999900), Lo/Lp = 2.67 (b,e, t = 874200) and Lo/Lp = 1.33 (c,f, t = 433 600). The domain length
L = 27 is 40 deformation wavelengths 2mLp.

is less total jet length in the domain but the jets are stronger. This accounts for the very
similar values of kinetic energy, independent of Ly, as seen in figure 2. The difference in
jet strength is also easy to understand because jet speed is proportional to the PV jump
across the front (see, e.g. Nycander et al. 1993). Since the maximum and minimum PV are
~ t4m in the flows shown in figures 4 and 5, the PV jumps across the fronts are larger on
average when there are fewer fronts, yielding stronger jets.

The trends seen in the simulations with Lp = 1/40, whose fields are shown in figure 5,
are similar: more mixed levels fill more of the domain and frontal jets are weaker for the
larger scale initial conditions (Lo/Lp = 2.67, b,e). For the smaller scale initial conditions
(Lo/Lp = 1.33, ¢, f), the mixed regions are separated into island-like vortices surrounded
by a sea of near-zero PV and bounded by strong jets.

For the simulation with Lp = 1/40 and Lo/Lp = 8 shown in plots (a,d) in figure 5,
the mixed regions and jets are not yet well defined, though the PV contours are gathering
together in bundles foreshadowing the emergence of fronts. This simulation has the most
slowly evolving flow, and despite the fact that there is an inverse cascade of potential
energy, a PV staircase is only just starting to emerge by the end of the simulation. Hence,
well-mixed regions of PV and frontal jets coinciding with sharp fronts have not yet had
time to emerge.

5. Potential vorticity staircases
5.1. Jet spacing and Rhines scale

Theoretical arguments link the jet spacing, which is equivalent to the staircase structure, in
zonal flows on the B plane, to the Rhines scale Lg, = +/U/B, where U is a characteristic
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Figure 6. Formation of a PV staircase in the simulation with Lp = 1/25 and Ly/Lp = 5 at the times given.
Here A(q) > qur is the area occupied by PV exceeding a threshold value g,

flow speed, which may be taken as either the root-mean-square (r.m.s.) speed or the jet
speed (Rhines 1975; Dritschel & Mclntyre 2008). There are important differences in the
present system as compared with the extensively studied system of zonal jets on the B
plane. First, in the latter system, merger between mixed regions must be associated with
the loss of a step from the staircase, increasing the jet spacing. By contrast, when g = 0,
the staircase structure and jet spacing are not equivalent: the staircases studied here are
fixed once they emerge, even though the jet spacing continues to grow as mixed PV regions
merge. The staircase structure does not change (other than sharpening) because the area
occupied by each mixed PV level is fixed after the staircase emerges.

Since B = 0 in the present system, the Rhines scale Lg;, also cannot be defined in the
same way. If Lgy is associated with a fixed staircase structure (not with an evolving jet
spacing) then we should expect it to be fixed once the staircase structure is established.
On the other hand, if Lgj, is associated with the evolving jet spacing, which increases as
the mixed regions merge, then we should expect it to grow as well. Since the jet speed
emerges along with the staircase structure and is not expected to change significantly after
the staircase is established, changes in Lg;, cannot be due to changes in the jet speed.
Rather, they must be associated with reductions in an effective vorticity gradient, B,
which we can define as
9max szn’ (5.1)

L()

where L(r) is the distance between PV maxima and minima, which grows as the mixed
regions grow through merger; B.s decreases in time as the length scale of the flow
increases, leading to increases in Lgy,.

Turning to the simulation results, the evolution towards a PV staircase is illustrated for
the case Lp = 1/25, Ly/Lp = 5 in figure 6, which shows the area A occupied by PV values
greater than a given threshold gy, which is allowed to vary from —12 to 12 in increments
of dg, where dq is the fixed increment in PV from one contour to the next. This case starts
in the AM regime (large Lo/Lp) yet nonetheless establishes a distinct staircase structure at
late times. In this diagnostic, there is little evolution apart from sharpening of the staircase.
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Figure 7. Potential vorticity staircases for simulations with Lp = 1/25 and Lo/Lp =5 (a, t = 200000),
Lo/Lp =2.5 (b, t =200000) and Ly/Lp = 1.67 (¢, t =200000); and Lp = 1/40 and Lo/Lp =8 (d, t =
999900), Lo/Lp = 4 (e, t = 605200) and Lo/Lp = 2.67 (f, t = 447 400), respectively.

The number of steps does not change. The flow however remains highly dynamic (see (a,d)
of figure 4), and the kinetic energy continues to decay (see figure 2). Vortices continue to
merge and PV fronts reduce in curvature, albeit at a diminishing rate, in a self-similar
manner (Burgess & Dritschel 2019; Burgess 2020).

As Lo/Lp decreases, the area of the central step (or steps) in the PV staircase increases,
as shown in figure 7. This implies that the mixing of low-level PV is more vigorous and
extensive as Ly/Lp decreases. The mixed area, and indeed the entire staircase structure,
appears to depend only on the ratio Lo/Lp, as can be seen in figure 8, which shows
staircases for Lo/Lp = 1 with Lp = 1/25 (a) and Lp = 1/40 (b). Notably, the PV levels
that emerge depend only on Lo/Lp (for Lp small enough to be able to ignore finite domain
effects). The staircases in figure 7 are better established for Lp = 1/25 (a—c) due to the
significantly faster pace of evolution; longer integrations with Lp = 1/40 as in (d—f) and
Lo/Lp large are likely to produce similarly sharp staircases.

5.2. A model for the staircase structure

In developing its staircase structure, the system must interpolate between the maximum
and minimum PV values, which are protected from dissipation by their strength and fixed
due to material advection of PV, while conserving total energy £ = K + P and keeping the
domain integral of PV zero. As the flow evolves, the energy E is increasingly dominated by
the potential energy, E ~ P. If at late times we have n mixed levels with areas Ay, A»,.. .,
A, and corresponding values of the streamfunction vr1, 3, ..., ¥y, then

E = Ey ~ Y (WiA1 + y3Ar + - + Y 2Aw, (5.2)
939 A40-10
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Figure 8. Potential vorticity staircases for simulations with Lp = 1/25, Lo/Lp = 1 (a, t = 200000) and Lp =
1/40, Lo/Lp = 1 (b, t = 604 500). The structures are the same, suggesting the staircase structure depends only
on the ratio Lo/Lp.

where Ej is the fixed initial energy and we have neglected the unmixed PV in the vortex
cores.

In the mixed regions, which cover most of the domain, the PV ¢ = V2 — k%)w is
dominated by the second term, with relative vorticity V2 being concentrated on the
flanks of the jets bounding the mixed regions. We may therefore approximate g ~ — lz)w,
and the domain integral is

qudA =0~ —kp(Y1A1 + Y2Aa + -+ + Yudy). (5.3)

In predicting the staircase structure we are trying to solve for n, and for the A; and ;
given the initial conditions and these constraints. At this point, to progress further, we must
make the following simplifying assumptions.

e Firstly, we assume a staircase with n equally sized steps, i.e. that the mixed regions
on which g # 0 all have the same area A.

*  We also assume that the PV jumps Ag between mixed regions take on a fixed
constant value

Ag =29mt (5.4)
n

where g+ is the maximum value taken on by mixed PV, with ¢g,,— being the corresponding
minimum mixed PV value. Note that ¢+ < ¢max and gu— > gmin because the extremal
values of PV occur within small strong vortices, which are protected from mixing.
Substituting A; = A and expressing the v; in terms of Ag in (5.3) just yields g+ =
—qgm—, Which is true for a staircase that is symmetric about ¢ = 0. Making the same
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Figure 9. Total energy Ey as a function of the number of steps n with g #= 0, typical non-zero step size Aay,

and maximum mixed PV value g,,+ for simulations with Lp = 1/25 (black open circles) and Lp = 1/40 (blue
open squares). The red line corresponds to the theoretical prediction, (5.5).

substitutions into (5.2) yields, after some algebra,

2
=n+3+-. (5.5)

Note that examining the staircases that emerge in the present system shows that as Lo/Lp
decreases, a large step emerges at ¢ & 0, and the area of this step increases as Lo/Lp
decreases, while the sizes of the steps on which ¢ # 0 remain roughly the same. This large
step at ¢ &~ 0 does not contribute to the energy or to the domain integral of PV, so we can
omit it from the step count, and take the area A of the n steps with non-zero PV values to
be a constant.

Despite the approximations made, the predicted relationship between Ej and the
measured quantities 7, g4 and A,,, where A, is the typical step area defined in equation
(5.7) below, holds very well, and in fact holds almost exactly for the simulations in which
the non-zero mixed PV levels completely fill the domain, as shown in figure 9. These
simulations are with Lp = 1/25 and Ly/Lp = 5 (open black circle falling on the red line),
Lp =1/40and Ly/Lp = 8 (upper open blue square falling on the red line), and Lp = 1/40
with Ly/Lp = 4 (lower open blue square falling on the red line). The agreement becomes
progressively worse as Log/Lp decreases and the g & 0 mixed level grows in area. The
values of ¢+ used are g, = 5.75 for Lp = 1/25 and ¢;,+ = 5.25 for Lp = 1/40, and
these are estimated from the staircase structures. The number of steps was counted using
an automated procedure, which finds the area A, of the second-largest step (or third, in the
special case of Ly = 1/10 — see figure 7b, where there are two large steps at low values of
PV), and then calculates n as

n=Zj—;+Zl, (5.6)

Ai<Ap Ai>A
939 A40-12
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Figure 10. Measured values of A together with Agy (dashed lines) for kp = 25 (black) and kp = 40 (blue).

and finally subtracts one from the step count if the largest step is located at ¢ ~ 0. This
procedure ensures that tiny steps at higher absolute values of PV are neither completely
ignored nor counted as full steps, and that larger steps at low values of PV (such as appear
for the case Ly = 1/10) are counted as single steps. It also omits the energetically irrelevant
step at ¢ ~ 0 from the step count. The typical area A,, is calculated as

A
A = =2, (5.7)
n

where A, is the total area occupied by steps with non-zero values of mixed PV (except
in the case Lp = 1/25, Lo = 1/10, where both large steps with weak values of PV are
omitted from both the step count n and the calculation of A;,). Figure 10 shows that A is
nearly independent of ky/kp, motivating use of the average step area A,, (across ko/kp)
in figure 9. Hence, the simple assumptions of equal areas between PV steps, and equal PV
jumps at each step, provide a good estimate of the number of steps as a function of the
initial energy Ey.

The area of the central step or steps, whose size reflects the degree of low-level PV
mixing, decreases approximately linearly as Lo/Lp increases, at least up to Ly/Lp ~ 2.4;
see figure 11(b) which shows the largest step size (jump in area) AA;.x (or AAg in the
case that the largest step falls at ¢ &~ 0) normalized by the domain area D as a function of
Lo/Lp. The flow is evidently more vigorous, especially at early times, at smaller values of
Lo/Lp. Indeed, the initial shear, as measured, for example, by the r.m.s. vorticity, increases
as Ly/Lp decreases; see figure 11(a). There is a striking correlation between this shear and
the area of the largest step. Another way to see this is provided in figure 12, showing
how the largest step in PV, Agqj, varies with the initial shear. There is an almost linear
relationship, consistent with simple models of the effects of shear on vortices, where shear
on the order of a tenth of the vortex PV is sufficient to overwhelm the vortex and elongate
it indefinitely (Dritschel 1990; Dritschel & McIntyre 2008). Here, at early times, the shear
mixes the weak PV levels until the resulting step in PV is sufficient to withstand the shear,
which decays as the flow evolves.
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Figure 11. Initial shear, i.e. r.m.s. vorticity as a function of Lo/Lp (a) and largest step size (jump in area) AAmqax
(or AAp in the case that g & 0 on the largest mixed area) normalized by the domain area D as a function of
Lo/Lp (b) for simulations with Lp = 1/25 (open circles) and Lp = 1/40 (open squares).
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Figure 12. Potential vorticity jump Ag; bounding region of zero PV plotted against shear (initial r.m.s.
vorticity) for Lp = 1/25 (black) and Lp = 1/40 (blue).

6. Conclusions

This paper has examined the late-time evolution of freely evolving quasi-geostrophic
shallow water turbulence in the inviscid limit. We have focused on the less studied regime
in which the Rossby deformation length, Lp, the fundamental scale above which flow
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interactions are strongly suppressed, is much smaller than the domain scale. Under these
conditions, the flow evolution proceeds much more slowly than in classical 2-D turbulence
(Lp — o0, see Dritschel et al. 2008). We have considered how the initial characteristic
scale of the flow Lo, in relation to Lp, affects the flow structures which emerge at
sufficiently late times.

For large Lo/Lp, it was theorised that the flow remains large scale (of characteristic
scale L(t) >> Lp) for all time (Larichev & McWilliams 1991; Iwayama et al. 2002). Our
simulations show, however, that small-scale frontal structures eventually emerge — sharp
PV fronts co-located with jets of width O(Lp) — and these subsequently dominate the
evolution. Despite the slow initial evolution when Lo/Lp >> 1, smaller scales inevitably
develop as PV is mixed by Rossby wave breaking. While this is weak, when it is sustained
for long enough, the mixing becomes so complete that near staircases form in the PV: these
take the form of plateaus of near uniform PV separated by virtual discontinuities. These
staircases form in separate islands, which slowly move through a sea of near-zero PV.
Near the centre of each island there is a small vortex, also of width O(Lp). These vortices
contain the highest-magnitude PV values in the flow.

The formation of PV staircases occurs for all Ly/Lp studied, down to Ly/Lp = 1, but
likely for all smaller values as well since the initial mixing is even more vigorous in
these cases. The key difference between different values of Lg/Lp is the form of the
final staircase, specifically the area occupied by PV values below a given threshold. Large
Lo/Lp results in a staircase with nearly equal steps in PV and in area. Smaller Lo/Lp
results in greater mixing of low-level PV, resulting in a larger area of mixed PV close to
the zero value. This mixing was associated with the initial shear: the region of mixed PV
is bounded by PV jumps proportional to the initial shear, which grows as Lo/Lp reduces.

Finally, we developed a simple theory to describe the PV staircase which emerges, and
how it depends on Ly/Lp. The theory predicts the average number of steps, the average
area of the PV levels (excluding the zero PV level) and the associated average PV jump,
purely in terms of the initial energy of the flow.

In this work we have ignored the effects of a background planetary vorticity gradient
B, which has historically been associated with zonal jet formation and inhomogeneous PV
mixing (Rhines 1975; Dritschel & Mclntyre 2008; Galperin & Read 2019). Here, even with
B =0, jets emerge and come to dominate the flow, and the PV mixing can be so complete
as to form a near PV staircase — without forcing. Small Lp facilitates this process by
sustaining large-amplitude waves on scales L > Lp which break and mix, or merge during
collisions with other vortices. This wave breaking and vortex merger continues indefinitely
and self-similarly (in an unbounded domain), progressively sharpening the PV staircase.
It appears inevitable that the staircase becomes ‘perfect’ as t — o0, i.e. the PV becomes
piecewise uniform, except perhaps in the vortices occupying the island centres.

While the model examined in this paper is a great simplification of naturally occurring
geophysical flows, it nonetheless provides new insight into the way tracers like PV can
mix in turbulent flows. Most previous studies have focused on the simpler barotropic
limit L/Lp — 0, in the presence of a background planetary vorticity gradient §, or
their multi-layer (predominantly two-layer) analogues. Here, we have focused on the less
well-examined situation in which L/Lp >> 1, and when 8 = 0. One might have expected
no jet formation in this case, but in fact it is widespread. Instead of a background
planetary vorticity gradient, local variations in PV provide the necessary ingredient for
inhomogeneous PV mixing and consequent jet formation, seen here as PV staircases
within slowly drifting and weakly interacting islands of anomalous PV. In the barotropic
limit, mixing weakens and all but ceases without some forcing mechanism to maintain
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mixing: freely decaying flows tend to form weak jets without sharp PV variations. Here,
by contrast, when L/Lp >> 1, freely decaying flows continue to mix so long as the PV
anomalies are permitted to grow through occasional mergers. This alone is adequate for
steepening PV gradients, and for maintaining their steepness. No forcing or damping is
required. In this sense, the present model is the simplest model capable of jet formation. It
isolates the essential mechanism: inhomogeneous PV mixing.
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