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Abstract

Many of the details that a programmer must manage when programming in a procedural
language are handled by the implementation in a functional language. In a parallel functional
language, we would expect the assignment of processes to processors and the scheduling of
processes to be handled by the implementation. The partitioning of a program into processes
may be handled by the implementation as well.

We will assume that a parallel functional program may create processes dynamically, and
that processes may synchronize in an arbitrary manner. It does not matter whether processes
are defined in the source program or generated by the implementation.

On parallel systems where each processor has some local memory, it is common practice not
to move processes once they have started to execute. We will show that if each process must
be executed on a single processor, then no fully automatic scheduling strategy can ensure good
performance.

We also will show that if all processes are sequential processes (i.e. do not contain internal
parallelism), and if a process may be moved whenever it resumes execution following
synchronization with another process, then good performance can be assured, at least in
theory.

Capsule review

Task scheduling is the quintessential analytical problem of parallel computation. Functional
programs allow a larger number of feasible schedules than do imperative ones because they
entail no hidden inter-task dependencies. The scheduling problem is to determine, by a static
analysis of a functional program, a mapping of tasks to processing resources that respects inter-
task dependencies and makes reasonably economical use of the available processing resources.

This paper shows that in the absence of a priori information as to resource requirements of
tasks, good schedules for parallel execution of tasks on distributed-memory multiprocessors
cannot be found. The results are obtained by considering a pair of simply constructed, yet hard
examples of dependency graphs.

! This work was supported by the Natural Science and Engineering Research Council of Canada.
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1 Introduction

Parallel functional programs differ from parallel procedural programs in several
ways. A functional program is, by definition, deterministic. (Our results also apply to
languages permitting non-determinism, but do not depend on the presence of non-
determinism.) In addition, functional programs tend to be highly dynamic in nature,
so a parallel functional language implementation must support dynamic process
creation and arbitrary process synchronization. The high level nature of functional
programs suggests that details such as the assignment of processes to processors and
the scheduling of processes should be handled by the language implementation rather
than the programmer.

On parallel systems where each processor has some local memory, it is common
practice not to move processes once they have started to execute. We will use the term
distributed program to refer to a program in which a process may not be moved once
it has started execution.

We will show that fully automatic scheduling cannot be done in a way that will
ensure good performance for distributed programs. Depending on how processes are
scheduled, a program may have a speed-up of m, where m is the number of
processors, or a speed-up arbitrarily close to 1 (i.e. no effective parallelism). We will
argue that a practical system will not have sufficient information to be able to choose
a good schedule over a poor schedule.

In addition, the problem of determining a good assignment of processes to
processors is impossible with the information that is likely to be available to a system
at the time the assignment must be done.

These problems are avoided if a process may be moved following synchronization
with another process, provided processes contain no internal parallelism. In this case,
any scheduling strategy that avoids idle processors while there is work to be done is
guaranteed to be within a factor of 2 of an optimal schedule.

Our results may apply to some procedural languages, provided the assumptions
stated above are satisfied.

2 Model, assumptions and terminology

We will model a deterministic distributed program on m processors by an ordered triple
(4, =,f), where A is a set of atomic actions, simply called actions hereafter, c is a
partial order defined on those actions, and /> 4 —{1,2,...,m} is a total function. If
a, < a, then g, must be performed before a,. The function fis an assignment of actions
to processors.

In the remainder of this paper we will assume that each action can be performed
by a processor in one unit of time. This is not a serious restriction in our model, but
simplifies the presentation. A process or task in a high level programming language
corresponds to a collection of actions. A sequential process corresponds to a chain of
actions (i.e. a collection in which for any two actions, 4, and a,, either a,  a, or
a, < a,).
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A schedule is a total function s: 4—>{1,2,...}, subject to the restrictions that

1. If fla,) = fla,) and s(a,) = s(a,) then a, = a,.
2. If a, c a, then s(a,) < s(a,).

A schedule assigns actions to times when they are to be performed, subject to the
restriction that no two actions are performed at the same time on the same processor
and the partial order < is respected. If other than unit execution time actions are
allowed, this definition must be generalized.

We define length(s, (A, =,f)) = max {s(a)| ae A} to be the length of a schedule. We
will write length(s) for length(s, (A, =, f)) when (4, <,f) is clear from context. An
optimal schedule for (4, <,f) is a schedule s, such that length(s) < length(t) for any
other schedule ¢ for (4, <,f).

We call a schedule work conserving if a processor never idles when it could work.
Clearly, there is a work conserving schedule of optimal length so we will restrict all
our discussion to such schedules.

For the present, we will assume that the number of processes in a distributed
program equals the number of processors, with one process per processor. Hence, we
will use the term process to mean the set of actions assigned to a given processor. A
process may contain internal parallelism. That is, the actions within a process do not
need to be totally ordered with respect to <. If a reader likes to think of a process
as a totally ordered set of actions (i.. a sequential process) then he or she may wish
to regard the collection of actions assigned to a given processor as a collection of
processes that happen to be assigned to the same processor. In Section 5 we will
consider the problem of assigning processes to processors for the general case where
there are more processes than processors.

Many algorithms in classical scheduling theory require complete information, at
the time scheduling is done, on the number of actions and how actions synchronize.
In a practical system for distributed computing, a scheduler is likely to have only
limited information. For example, if a system could determine how much time a
process will require (i.e. how many actions the process contains), it could solve the
halting problem. Therefore, a processor is unlikely to know how many actions are
assigned to it, although it can know how many runnable actions it currently has.
Similarly, if process synchronization operations are contained in conditional
expressions then a system cannot predict how actions will synchronize. Hence, we
make the following assumption:

Assumption All runnable actions appear the same to a scheduler.

In job shop scheduling (e.g. see Coffman, 1976) partially ordered unit execution
time sets of actions are assigned to processors. The basic model differs from our
model in that there is no predetermined assignment; any action can be processed on
any machine. Jaffe (1980) refined this basic model to include types of action and
corresponding types of processor. He showed that with k types of action and m,
identical processors for actions of type i, the length ® of any work conserving
schedule satisfies ® < [(k +1)—1/max{m,,m,,...,m,}] x ®,,,, where w,,, is the length
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of the optimal schedule. Our model thus corresponds to a special case of Jaffe’s model
where k = m, the number of processors, and m, =m,=...=m,, = 1.

3 Worst case performance for distributed programs

In this section we will represent deterministic distributed programs on m processors
by diagrams. Each circle or oval will represent an action. The partial order < is the
transitive closure of the relation defined by arrows between actions. Finally, we
denote the set of actions assigned to a single processor by drawing a box around those
actions. (The processor identity numbers are not relevant, so are not specified.)
Perhaps the simplest example of a program that is highly sensitive to the order in
which actions are scheduled is the one given in Fig. 1, which we will refer to as

Fig. 1. Example 1.

Example 1. If each processor schedules runnable actions from left to right, then this
program is clearly sequential. There will never be two processors running at the same
time. The execution time for m processors each with k actions will be mk. On the other
hand, if actions are scheduled from right to left, then the actions in the right hand
column and the bottom row will run sequentially. By the time these have finished all
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Fig. 2. Example 1 best case.

the other actions (in the shaded square in Fig. 2) will have completed, since the
bottom processor will be the last to start and the last to finish. This will result in an
execution time of 2m+k—2. As the number of actions per processor increases, the
speedup will approach the number of processors, since

I mk _
o omrk—2 "

The problem here is that each processor contains a single critical action. All other
processors are blocked waiting for this action to run. Since we assume that a
processor cannot determine which process is critical, we cannot insure good
performance.

We have found a wide variety of program structures that result in the same
problem, and have not been able to see any reasonable restrictions that will avoid
critical actions delaying other processors. Another example that avoids the high
degree of branching found in Example 1 but has more synchronization between
processors, is given as Example 2 in Fig. 3. This situation might result if the actions
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Fig. 3. Example 2.

assigned to each processor consist of a number of processes that happen to be placed
on the same processor. In the best case actions are scheduled from right to left. All
the actions on a given diagonal may be executed in a single step as shown in Fig. 4.
This results in an execution time of m+k—1 as illustrated in Fig. 4. Since there are
mk actions, the sequential execution time would be mk. Hence the best case parallel
execution time produces a speedup of mk/(m+k —1), which goes to m in the limit as
k becomes large. On the other hand, if processes are scheduled from left to right, then
the actions outside the grey triangle in the upper right corner of Fig. 5 will be executed
sequentially, taking time mk—(m--2)(m—1)/2. As k becomes large the speedup
drops to one in the limit.

These examples raise two questions. First, can we locate processes on processors
more sensibly and reduce the problem? Second, is the expected performance better
than the worst case performance illustrated here? The first of these questions is
addressed in section 5. The second is considered in the following section.

4 Expected performance for distributed programs

It is unrealistic to make any assumption about the ¢ average structure of a distributed
program’. That is, we cannot define a probability space for all possible programs that
is going to meaningfully relate to programs found in the real world.
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Fig. 4. Example 2 best case.

However, we can assume that actions that cannot be distinguished are executed in
a random order, and design a scheduler to do this. However, if we reconsider
Example 1 in Fig. 1, we see that on average half the noncritical actions will be
executed before the critical one, on each processor. This would result in a speedup on
m processors of 2 rather than 1 in the limit as & becomes large, which is not
satisfactory. This is the best we can hope to do in this example without some
information about what actions will do.

5 Process placement

So far we have assumed that all actions are preassigned to specific processors. In this
section we will assume that actions are grouped into processes, that all actions in a
given process must be assigned to the same processor, but that different processes may
be assigned independently. We will show by example that it is not possible to place
processes wisely without knowledge of what is yet to happen.

We will remove the restriction that each action requires exactly one unit of time to
execute. Consider the collection of m? processes, to be run on m processors, illustrated
in Fig. 6. Each process consists of two actions, an a action and a corresponding b
action. No b action can be performed until all a actions are finished. We will assume
that each g action requires one unit of time, but b actions are of two types. Nice type

https://doi.org/10.1017/50956796800000940 Published online by Cambridge University Press


https://doi.org/10.1017/S0956796800000940

72 F. Warren Burton and V. J. Rayward-Smith

|

Sl

Fig. 5. Example 2 worst case.

Fig. 6. Synchronizing processes.

b actions require one unit of time, but nasty type b actions require & units of time, for
some arbitrary, large, value k. (If the reader wishes to continue to think in terms of
unit execution time actions, replace each nasty type b action with a chain of k unit
execution time actions.) A process containing a nice or nasty action will be called a
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nice or nasty process, respectively. There are m nasty processes and m(m—1) nice
processes.

We will assume that a computer system must assign each process to a processor
before that process starts execution. Furthermore, we will assume that the system
cannot distinguish a nasty process from a nice one before the type b action starts
executing. (Again, if we could tell how much time a computation was going to require
in advance, we would solve the halting problem.) Since all type a actions must be
performed before any type b action, all processes must be assigned to processors
before the character of any process is known.

In the best case, each processor will be assigned 1 nasty process and m—1 nice
processes. The resulting schedule will require 2m + k — 1 units of time (2 units for each
nice process and k+ 1 units for the nasty process). All processes will be busy until all
work is done, so the speed-up will be m.

On the other hand, with m® processes, at least one processor must have at least m
processes, no matter how processes are assigned to processors. If one processor
happens to be assigned all m nasty processes, then the schedule length will be m(k +1),
giving a speed-up of only m(2m+k—1)/(m(k+1)). As k becomes large, nasty
processes become increasingly dominant and the speed-up drops to arbitrarily close
to 1. Hence, with process placement, as with scheduling, there are cases where
programs may have a speed-up equal to the number of processors, virtually no speed-
up, or anything in between. In this case, if processes were assigned to processors in
a completely random fashion, we would not expect to do too badly.

The problem of assigning processes to processors is considered in more detail
elsewhere (Warren Burton et al., 1992).

6 Scheduling on a shared memory machine

The problems we have experienced in the previous sections result from each action
being tied to a particular processor. In all of the bad examples at least one processor
had a choice of actions to perform while other processors sat idle.

There are two sources for scheduling problems with distributed programs, both of
which result from the requirement that a process must run on a single processor.
First, if a process contains internal parallelism, as in Example 1 in Fig. 1, then a
number of actions that could otherwise be performed in parallel must run sequentially
(in any order). Second, if a process may be delayed waiting for a process on another
processor, then a processor may accumulate a large amount of work to be done in the
future. The example in Section 5 resulted from the fact that processors had long term
commitments of unknown size. That is, a processor with no runnable actions may
have an arbitrary amount of delayed work.

So far, we have assumed that each process must run on a single processor. If we
remove this restriction, and allow any processor to run any process at any time, then
all of our problems vanish. The worst possible work conserving schedule takes less
than twice as long as the best possible schedule. In fact, the schedule length can be
bounded in terms of the number of processors and the average parallelism in the
problem (that is, the speed-up that would be possible with an unbounded number of
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processors). Eager et al. (1989) have shown that if p is the average parallelism, 7] is
the time required by the program on one processor, 7, is the time required on m
processors, and S,, = 7,/T, is the speed-up on m processors, then min(p,m)/2 <
mp/(m+p—1) < S,, < min(p, m). If either m or p is very large compared to the other
value, then the speed-up approaches the smaller of these two values. For example, if
the average parallelism in a program exceeds the number of processors, then a speed-
up equal to at least half the number of processors is guaranteed, and the guaranteed
speed-up must approach the number of processors as the average parallelism becomes
large. On the other hand, the speed-up cannot be greater than the minimum of the
average parallelism and the number of processors. This result suggests that we do not
need to worry much about scheduling.

The above result assumes that any processor can perform any action. However, it
is sufficient to allow processes to be moved following a synchronization operation in
which the processes have been suspended waiting for action by another process,
provided each process is sequential. If each process, once started, runs until either it
terminates or it is suspended, then at any point in time at most one action is tied to
a particular processor. That action is the one that follows the action most recently
executed in the current process. Any other runnable action must have become
runnable following a synchronization operation, and therefore may be moved to
another processor.

The above strategy is most practical on a shared memory multiprocessor, where
moving a process to another processor does not involve moving data. The above
theoretical results ignore overheads in moving processes and maintaining global
information on runnable processes and/or idle processors. Even if the policy is not
followed exactly, it may provide guidance in the design of a parallel functional
language implementation. For example, in a small diameter network such as a
hypercube, processes might be transferred only to adjacent processors. Alternatively,
processes might be moved only when less than half the processors are idle.

7 Conclusion

We have seen that it is not safe to rely on automatic process placement or scheduling
for arbitrary distributed programs. If the goal for a computer system is to support
general purpose parallel processing at a high level, with dynamic process creation and
arbitrary process synchronization, then we believe that a system allowing processes
to be moved cheaply is essential for guaranteed performance. However, there are
several other possibilities that should be mentioned.

It has been observed that in practice even fairly simple load balancing algorithms
tend to give good performance for certain types of distributed computing applications
(Eager et al. 1986). If we take reasonable care in the type of program we write, and
are willing to take our chances with no guaranteed speedup, then we are likely to be
in luck most of the time. This approach should not be considered for safety critical
real-time programs.

Letting the programmer manage process placement and scheduling appears to be
another solution. This may be practical in an application where there is a fixed
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number of processes, with this number depending on the number of processors. This
is not likely to be practical for highly dynamic programs, and hence is an unsuitable
approach for a general purpose functional language.

Since the scheduling problem appears to be more critical than the problem of
assigning processes to processors, a system might place processes randomly and
require a programmer to assign priorities to processes to guide a scheduler.

It is tempting to regard the problems we have discussed as a basic limitation of
distributed systems. Moving processes is easier in a shared memory system, or a
system where remote memory accesses are cheap. However, even with shared memory
parallel computers there can be analogous problems. With fine grain parallelism,
memory contention becomes the problem. If we view actions as accessing a particular
memory module rather than being performed on a particular processor, then the
order in which actions access memory modules is analogous to the order in which
actions are executed on a processor. In fact, the same problem arises with any kind
of resource where each action is required to use a particular instance of the resource.

While we have considered only the effect of scheduling on time in deterministic
programs, there are other issues that should be mentioned. Scheduling decisions may
make spectacular differences in the space requirements of a parallel program (Warren
Burton, 1988). If a program is nondeterministic, then any difference in the schedule
can completely alter the behaviour of a program. For example, in combinatorial
search algorithms, such as branch-and-bound, minor scheduling differences may
make major differences in the time required by a program (Warren Burton et al.,
1981; Lai and Sprague, 1985).
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