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Abstract

A number of authors have observed that epistemic externalists seem to face a dilemma:
Either deny that Conditionalization is the rational update rule, thereby rejecting traditional
Bayesian epistemology, or deny that the rational update rule maximizes expected accuracy,
thereby rejecting accuracy-first epistemology. Call this the Bayesian Dilemma. I'm not
convinced by this argument. Once we make the premises explicit, we see that it relies on
assumptions the externalist rejects. In this paper, I argue that the Bayesian Dilemma is
nevertheless a genuine dilemma. My argument does not make any assumptions that the
externalist rejects.

| Introduction

Accuracy-first epistemology aims to justify all epistemic norms by showing that they can
be derived from the rational pursuit of accuracy. Take, for example, probabilism—the
norm that credence functions should be probability functions. Accuracy-firsters say
non-probabilistic credences are irrational because they’re accuracy-dominated: For
every non-probabilistic credence function, there’s some probabilistic credence
function that’s more accurate no matter what.! Or take norms of updating, my topic in
this paper. Accuracy-firsters aim to derive the rational updating rule by way of
accuracy; specifically, they claim that the rational updating rule is the rule that
maximizes expected accuracy.?

Externalism, put roughly, says that we do not always know what our evidence is.
Though far from universally accepted, externalism is a persuasive and widely held
thesis, supported by a compelling vision about the kinds of creatures we are—
creatures whose information-gathering mechanisms are fallible, and whose beliefs
about most subject matters are not perfectly sensitive to the facts.

! Joyce (1998).

2 See Greaves and Wallace (2006) and Easwaran (2013). Not all arguments for updating norms appeal to
the norm that one should maximize expected accuracy. Briggs and Pettigrew (2020) give an accuracy-
dominance argument for Conditionalization. See also Nielsen (2021).
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Schoenfield (2017) has shown that following the update rule Metaconditionalization
maximizes expected accuracy.’ However, as she and many other authors note, if
externalism is true, Metaconditionalization is not Bayesian Conditionalization.
Therefore, the externalist seems to face a dilemma: Either deny that
Conditionalization is the rational update rule, thereby rejecting traditional
Bayesian epistemology, or else deny that the rational update rule is the rule that
maximizes expected accuracy, thereby rejecting the accuracy-first program. Call this
the Bayesian Dilemma.*

I'm not convinced by this argument. We'll see that once we make the premises fully
explicit, the argument relies on assumptions that the externalist should reject. Still, 1
think that the Bayesian Dilemma is a genuine dilemma. I give a new argument—I call it
the continuity argument—that does not make any assumptions that the externalist
rejects. Roughly, what I show is that if you're sufficiently confident that you would follow
Metaconditionalization if you adopted Metaconditionalization, then you'll expect
adopting a rule I'll call Accurate Metaconditionalization to be more accurate than adopting
Bayesian Conditionalization.

I'll start in section 2 by introducing an accuracy-based framework for evaluating
updating rules in terms of what I will call actual inaccuracy. In section 3, I'll introduce
externalism. In section 4, I turn to the Bayesian Dilemma. 1 present an argument
purporting to show that the externalist must choose between Bayesian
Conditionalization and accuracy-first epistemology, and I explain why the argument
does not succeed. In section 5, I present the continuity argument showing that the
Bayesian Dilemma is nevertheless a genuine dilemma. Section 6 concludes.

2 The accuracy framework: Actual inaccuracy

Accuracy-first epistemology says that our beliefs and credal states aim at accuracy, or
closeness to the truth; that is, our beliefs and credal states aim to avoid inaccuracy, or
distance from the truth. We said that, according to accuracy-firsters, the rational
update rule is the rule that maximizes expected accuracy. There are different ways of
making that thesis precise. In this section, I'll present my own preferred way. We’ll
start by getting the basics of the accuracy-first framework on the table.

2.1 Basics of the accuracy framework

For technical purposes, it is better to work with measures of inaccuracy rather than
measures of accuracy. An inaccuracy measure I is a function that takes a world w from a
set of worlds €2, and a probability function C defined over P(2), and returns a number
between 0 and 1. This number represents how inaccurate C is in w. C is minimally

3 The name “Metaconditionalization” is due to Das (2019). I believe that this rule was first introduced
and defended by Matthias Hild; see Hild (1998a,b). Hild calls the rule “Auto-Epistemic Conditionalization.”

4 For recent work on the relationship between accuracy-first epistemology and externalism, see
Bronfman (2014), Schoenfield (2017), Das (2019), Gallow (2021), and Zendejas Medina (2023). Note that not
all of these authors argue for the Bayesian Dilemma as I have presented it. For example, Zendejas Medina
argues that the Bayesian Dilemma is not a genuine dilemma; in particular, he claims that the dilemma
only arises if we accept a certain plan coherence principle, and he argues that we should reject this
principle. Das (2019) focuses on the relationship between externalism and accuracy-first arguments for
Ur-Prior Conditionalization (instead of the rule of Conditionalization).
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inaccurate if it assigns 1 to all truths and 0 to all falsehoods; C is maximally inaccurate
if it assigns 1 to all falsehoods and 0 to all truths.

The expected inaccuracy of a probability function C—relative to another probability
function P—is a weighted average of C’s inaccuracy in all worlds, weighted by how
likely it is, according to P, that those worlds obtain. Formally:

E,[1(0)] = ) P(w) - I(C, w). (1)

weQ

I will make three assumptions about inaccuracy measures. Though these assumptions
are not incontrovertible, they are standard in the accuracy-first literature, and I will
not say much to justify them.’

The first assumption is:

Strict Propriety
For any two distinct probability functions P and C, E-[I(C)] < E[I(P)].

Strict Propriety says that probabilistic credence functions expect themselves to
minimize inaccuracy. Strict Propriety is often motivated by appeal to the norm of
immodesty—roughly, that rational agents should be doing best, by their own lights, in
their pursuit of accuracy.

The second assumption is Additivity, which says, roughly, that the total inaccuracy
score of a credence function at a world is the sum of the inaccuracy scores of each of
its individual credences. More precisely:

Additivity

For any H € P(), there is a local inaccuracy measure ' that takes a world w €
and a credence C(H) in the proposition H to a real number such that:

ICw) = Y #(C(H)

HeP(Q)

The third assumption is a continuity assumption for local inaccuracy measures.
Specifically:

Continuity

iff(x) is a continuous function of x.

Now that we know how to measure the inaccuracy of a credence function, we
turn to updating rules. I will assume that a learning experience can be characterized
by a unique proposition—the subject’s evidence. We define a learning situation as a
complete specification of all learning experiences that an agent thinks she might
undergo during a specific period of time—a specification of all of the propositions
that the agent thinks she might learn during that time. Formally, a learning
situation is an evidence function E that maps each world w to a proposition E(w), the
subject’s evidence in w. I will write [E = E(w)] for the proposition that the subject’s
evidence is E(w):

5 See, among others, Joyce (1998) and Pettigrew (2016) for defenses of Additivity and Continuity. See
Joyce (1998) and Campbell-Moore and Levinstein (2021) for defenses of Strict Propriety.
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[E=Ew]={w e Q:EW)=EW)y} (2)

We define an evidential updating rule as a function g that takes a prior probability
function C and an evidence proposition E(w), and returns a credence function.® In the
next two sections of the paper, we will be talking about two updating rules. The first is
Bayesian Conditionalization.

Bayesian Conditionalization
Jeond (G, EW)) = C(|E(W)).

Bayesian Conditionalization says that you should respond to your evidence E(w)
by conditioning on your evidence; for any proposition H, your new credence in H,
upon receiving your new evidence, should be equal to your old credence in H
conditional on your new evidence. The second rule is Metaconditionalization.

Metaconditionalization
Imeta(C; E(W)) = C(-|[E = E(w)).

Metaconditionalization says that you should respond to your evidence E(w) by
conditioning on the proposition that your evidence is E(w).

2.2 Adopting rules and following rules

I will distinguish adopting an updating rule from following an updating rule. If you follow
a rule, then your posterior credence function is the credence function that the rule
recommends. If you adopt an updating rule, then you intend or plan to follow the rule.
Of course, in general, we can intend or plan to do things without succeeding in doing
those doing things. Intending or planning to follow an updating rule is no exception.
We can intend or plan to follow an updating rule—in my terminology, we can adopt an
updating rule—without following it.”

To see how this might happen, consider Williamson’s well-known case of the
unmarked clock.® Off in the distance you catch a brief glimpse of an unmarked clock.
You can tell that the hand is pointing to the upper-right quadrant of the clock, but you
can’t discern its exact location—your vision is good, but not perfect. What do you
learn from this brief glimpse? What evidence do you gain? That—according to
Williamson—depends on what the clock really reads. If the clock really reads that it is
4:05, the evidence you gain is that the time is between (say) 4:04 and 4:06. If the clock
really reads 4:06, the evidence you gain is that the time is between (say) 4:05 and 4:07.
Suppose that you adopt Bayesian Conditionalization as your update rule, and that the

¢ Not all Bayesians accept the assumption that a learning experience can be characterized by a unique
proposition. Jeffrey (1965) believed that, sometimes, we undergo a learning experience, but we do not
learn with certainty that a unique proposition is true; instead, the experience tells us that a set of
propositions Aj, A,, ..., A, should be assigned probabilities a;,ay,...,a,. I believe that my arguments
can be recast in Jeffrey’s framework, but I do not have the space to explore this question in this paper.

7 My distinction between adopting a plan and following a plan is similar to Schoenfield’s (2015)
distinction between the best plan to follow and the best plan to make. See Gallow (2021), who appeals to a
related distinction between flawless dispositions and (potentially) misfiring dispositions. See also Isaacs and
Russell (2023).

8 Williamson (2000).
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clock in fact reads 4:05. Your evidence is that the time is between 4:04 and 4:06, but
you mistakenly think that your evidence is that the time is between 4:05 and 4:07. As a
result you misapply Bayesian Conditionalization; you condition on the wrong
proposition.’ Despite having adopted Bayesian Conditionalization as your update rule,
you did not follow the rule.

The accuracy-first epistemologist says that the rational updating rule is the rule
that minimizes expected inaccuracy. I said that there are different ways to make this
precise. According to one common way of making it precise, the thesis is a claim about
following updating rules (although the distinction between adopting and following is
often not made explicit). At a first pass, we might understand this thesis as saying that
we are rationally required to follow an updating rule that minimizes expected
inaccuracy. But there is an immediate problem with this first-pass thesis, which
others have recognized. Consider the omniscient updating rule, which tells you to assign
credence 1 to all and only true propositions. The omniscient updating rule is less
inaccurate than any other rule at every world, and so every probabilistic credence
function expects it to uniquely minimize inaccuracy. But we do not want to say that
we are rationally required to follow the omniscient updating rule. To avoid this
implication, theorists refine the thesis by appeal to the notion of an available updating
rule. The refined thesis says that we’re rationally required to follow an updating rule
that is such that (i) following that rule is an available option, and (ii) following that
rule minimizes expected inaccuracy among the available options.!® Following the
omniscient updating rule is not an available option and so we are not required to
follow it.

To evaluate this proposal, we need to investigate the notion of availability at issue.
A natural thought is that an act is available to you only if you are able to perform the
act, and that you are able to perform an act if and only if, if you tried to perform the
act, you would But on this understanding, even following Bayesian
Conditionalization is not always an available option, according to the externalist.
Return to the example of the unmarked clock. The clock in fact reads 4:05. Your
evidence is therefore that the time is between 4:04 and 4:06. How do you update your
credences? There are two cases. In the first case, you correctly identify your evidence,
and as a result, you condition on your evidence. In this case, it is true that if you tried
to follow Bayesian Conditionalization, you would. In the second case, you mistakenly
take your evidence to be that the time is between 4:05 and 4:07, and as a result, you
condition on the wrong proposition. In this case, it is not true that if you tried to
follow Bayesian Conditionalization then you would, and so it is not true that you are
able to follow Bayesian Conditionalization.

Of course, one might object to this account of ability. Rather than wade any further
into this debate, I will simply observe that however we define availability, if we state
the accuracy-first thesis in terms of following, we’ll be taking for granted that if you

° This analysis of the case of the unmarked clock is due to Gallow (2021).

10 This is roughly how Greaves and Wallace (2006), Schoenfield (2017), and Das (2019) understand it.

11 For defenses of the view that the scope of our options is limited to the scope of our abilities, see
Jeffrey (1965, 1992), Lewis (1981), Hedden (2012), and Koon (2020). For example, Jeffrey (1965) regards
options as propositions and writes, “An act is then a proposition which is within the agent’s power to
make true if he pleases.”

https://doi.org/10.1017/psa.2024.36 Published online by Cambridge University Press


https://doi.org/10.1017/psa.2024.36

Philosophy of Science 329

adopt an available updating rule, you will follow it; we’ll be ignoring possibilities in
which you do not succeed in following your updating rule because you mistake your
evidence. But the example of the unmarked clock suggests that cases like this are
commonplace. We should take them into account. In light of this, I suggest that we
understand the accuracy-first thesis as a thesis about which updating rule we are
rationally required to adopt. To that end, we need to say how to evaluate the
inaccuracy of adopting an updating rule.

2.3 Actual inaccuracy

I propose to measure the inaccuracy of adopting an updating rule in terms of what I
will call actual inaccuracy.'? Roughly, the actual inaccuracy of adopting an updating
rule g in a world w is the inaccuracy, in w, of the credence function you would have if
you adopted g in w.!* To give a more precise definition, I need to introduce credal
selection functions.

A credal selection function is a function f that takes an evidential updating rule g
and a world w, and returns a credence function—the credence function that the
subject would have if she were to adopt the rule g in world w.** Of course, any number
of factors might play a role in determining what credence function a given subject
would have if she were to adopt a certain updating rule. To keep things manageable, I
am going to make some simplfiying assumptions about how we are disposed to
change our credal states if we adopt Bayesian Conditionalization or
Metaconditionalization.

Return to the example of the unmarked clock. Suppose you adopt Bayesian
Conditionalization. In fact, the clock reads 4:05 and so your evidence is that the time is
between 4:04 and 4:06. How do you update your credences? There are, as before, two
cases. In one case, you correctly identify your evidence: to use the terminology that I
will from now on adopt, you guess correctly that your evidence is that the time is
between 4:04 and 4:06. In this case, the conditional

(I) If you adopted Bayesian Conditionalization, you would follow Bayesian
Conditionalization.

is true of you. In the second case, you guess incorrectly that your evidence is that
the time is between 4:05 and 4:07. In this case, the conditional (I) is false—if you
adopted Bayesian Conditionalization you would condition on the wrong proposition. I
will assume that these are the only two cases. Either you guess correctly and
condition on the right proposition, or else you guess incorrectly and condition on the
wrong proposition.'®

12 This term comes from Andrew Bacon’s notion of actual value; see Bacon (2022).

13 Note that when I talk about “worlds” I am talking about big worlds—maximally specific worlds that
settle answers to all questions, including questions about what your evidence is and what credence
function you adopt.

14 Credal selection functions can be defined in terms of Stalnakerian selection functions. A Stalnakerian
selection function h—used in Stalnaker’s (1968) semantics for conditionals—is a function that takes a
proposition A and a world w and returns another world h(A, w)—intuitively, the world that would have
obtained if A had been true in w. Then where Adopt-g is the proposition that the subject adopts updating
rule g, we can define f(g,w) as the credence function you have in h(Adopt — g, w).

15 In the main text I am assuming that when you adopt Bayesian Conditionalization, you follow a
three-step process: (i) you receive some evidence, (i) you guess what your evidence is, and (iii) you
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To make this more precise, fix a set of worlds €2 and an evidence function E defined
on Q. We will let GE be a guess function defined on . This is a function that takes each
world w to a proposition GE (w): the subject’s guess about what her evidence is in w.°
Then, where f; ge is the credal selection function for any subject with guess function
GE and prior C:"7

fC.GE (gconda W) = Jeond (C7 GE(W))a (3)

fC?GE (gmeta7 W) = Jmeta (C7 GE(W)) . (4)

Equation (3) says that the credence function you would have if you adopted Bayesian
Conditionalization in a world w, given that you have prior C and guess function GE, is
the result of conditioning your prior C on GE(w), your guess about what your
evidence is in w. Likewise, (4) says that the credence function you would have if you
adopted Metaconditionalization in a world w, given that you have prior C and guess
function GE, is the result of conditioning your prior C on the proposition that your
evidence is GE(w), your guess about what your evidence is in w.

We will now use credal selection functions to define the actual accuracy of adopting
an evidential updating rule. Let g be any evidential updating rule. Let GE be any guess
function. Let C be any prior. We define V. ge(g, w), the actual inaccuracy, in w, of
adopting rule g given prior C and guess function GE, as follows:

Actual Inaccuracy

Vege(9:w) = 1[fece(9.w),w].

The actual inaccuracy, in w, of adopting the updating rule g given that you have guess
function GE and prior C is the inaccuracy, in w, of the credence function you would
have if you adopted rule g in w, given that C is your prior and GE is your guess
function,!®

condition your prior on your guess. But it is far from obvious that adopting an updating rule always
involves the intermediate step (ii). As an anonymous referee points out, it may be that you simply respond
to your evidence without forming any (explicit or implicit) beliefs about what your evidence is. In the end,
[ want to agree with this. I do not think that the externalist has to think of adopting Conditionalization as
involving my intermediate step (ii). What I do think is that the kinds of motivations that lead us to accept
externalism should also lead us to believe that, at least sometimes, you will adopt Conditionalization as
your update rule yet fail to follow Conditionalization because you condition your prior on the wrong
proposition. If we accept that your evidence can come apart from the proposition that you condition on
in this way, we can think of Gt as representing the proposition that you condition on (in the case of
Conditionalization). For simplicity, I will continue to talk about guesses about your evidence in the main
text, but it is important to remember that the formalism does not have to be interpreted in this way.

16 Isaacs and Russell (2023) also use the term “guess function.” Note, however, that they use the term
differently from how I am using it here. In particular, their guess functions are used to model guesses
about which world you are in. (In their framework, worlds are coarse—they settle some questions, but not
all.) There are many interesting connections between my framework and the framework used in Isaacs
and Russell, but I do not have the space to address them here.

7 Here I assume that GE(w) = E(w') for some w' € Q.

18 Note that the actual inaccuracy of adopting g in w is not always the inaccuracy of your credence
function in w. Suppose you do not adopt g in w. Then the actual inaccuracy of adopting g in w is the
inaccuracy, in w, of the credence function you would have if you had adopted g in w.
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Assuming (3), the actual inaccuracy of adopting Bayesian Conditionalization in a
world w for a subject with prior € and guess function GF is

II:)L;?.GE (gcond7 W)v W]= I[gcond(c, GE(W)), W:I . (5)

Assuming (4), the actual inaccuracy of adopting Metaconditionalization in a world w
for a subject with prior C and guess function GF is

I[fC,GE (gmetaa W)7 W] = I[gmeta (C, GE(W)), W]. (6)

The expected actual inaccuracy of adopting Bayesian Conditionalization and of
adopting Metaconditionalization are defined in (7) and (8), respectively:

Z C(W) . II:fC,GE (gcond7 W): W] = Z C(W) . I[gcond (C7 GE(W))7 W]a (7)

weQ weQ
D2 €0 - 1[fe g (gmerss W) w] = D2 CO0) - U gmea (€, GEW)) W] (@)
weQR weQ

Returning to the accuracy-first thesis that the rational updating rule is the rule
that does best in terms of accuracy. I have argued that this claim is best understood as
a claim about which updating rule we should adopt. We can now make this claim more
precise using the notion of actual inaccuracy. I propose to formulate the accuracy-
first thesis, which I call Accuracy-First Updating, as follows:

Accuracy-First Updating

You are rationally required to adopt an evidential updating rule that minimizes
expected actual inaccuracy.
Let’s turn now to epistemic externalism.

3 Externalism

To characterize externalism, we need to first characterize internalism. Internalism
says, roughly, that for certain special propositions, when those propositions are
true we have a special kind of access to their truth. Let’s say that you have access to a
proposition if and only if, whenever it is true, your evidence entails that it is true.
Then internalism says that, for certain special propositions, whenever those
propositions are true, your evidence entails that they are true. There are different
brands of internalism, depending on what kinds of propositions are taken to be
special. According to some, the special propositions are propositions about our own
minds, such as the proposition that I am in pain. These internalists say that
whenever I am in pain, my evidence entails that I am in pain—I can always tell that I
am in pain by carefully attending to this evidence, my own experiences. In this
paper we will be mainly interested in one form of internalism—evidence internalism.
On this view, propositions about what our evidence is are special propositions in the
sense that whenever they’re true, our evidence entails that they are true.

Evidence Internalism

If your evidence is the proposition E(w), then your evidence entails that your
evidence is E(w).
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Let evidence externalism be the denial of evidence internalism. More precisely:

Evidence Externalism

Sometimes, your evidence is some proposition E(w), but your evidence does not
entail that your evidence is E(w).

Why accept evidence externalism? One standard argument appeals to our
fallibility. The externalist says that all of our information-gathering mechanisms are
fallible. Now, it is no surprise that our mechanisms specialized for detecting the state
of our external environment—such as whether it is raining, or whether there is a
computer on my desk—can lead us astray. What is controversial about externalism is
its insistence that what is true of these propositions about my external environment
is true of nearly all propositions, including the proposition that I am in pain or that I
feel cold. The externalist says that, sometimes, I am feeling cold, but my mechanisms
specialized for detecting feelings of coldness misfire, telling me that I am not feeling cold.

The externalist asks us to consider a case in which my information-gathering
mechanisms have misfired. As a matter of fact, I'm feeling cold, but my mechanisms
specialized for detecting feelings of coldness misfire, telling me that I'm not feeling
cold. Since it is false that I'm not feeling cold, it is not part of my evidence that I'm not
feeling cold. But I have no reason to believe that anything is amiss—it is not part of
my evidence that it is not part of my evidence that I'm not feeling cold."”

4 The Bayesian Dilemma and the externalist reply

In the introduction I said that some have argued that externalists face a dilemma, the
Bayesian Dilemma: Either deny that we are rationally required to adopt Bayesian
Conditionalization as our update rule or else deny that the rational update rule is the
rule that maximizes expected accuracy, thereby rejecting the accuracy-first program.
In this section, I present a core piece of that argument, Schoenfield’s result that you
can expect following Metaconditionalization to be more accurate than following any
other updating rule. But as we’ll see, this result cannot do the work that others have
thought it can. It doesn’t follow from Schoenfield’s result that you expect adopting
Metaconditionalization to be more accurate than adopting Bayesian
Conditionalization, and 1 have argued that that it is adopting, not following, that
the accuracy-first updating thesis should concern.
Let’s begin by stating Schoenfield’s result.

Theorem 1. Let E be any learning situation. Consider any updating rule g and any prior C
such that g(C, E(W)) # Gmeta(C, E(W)) for some w such that C(w) > 0. Then

D CW) Mgeu (€, EW)] < > C(w) - T[g(C, Ew)].

weQ weQ

Here is what Theorem 1 says. Consider any evidential updating rule g that disagrees
with Metaconditionalization in learning situation E. Consider any subject who leaves

19 Versions of this argument can be found in McDowell (1982, 2011), Williamson (2000), Weatherson
(2011), and Salow (2019).
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open worlds where g and Metaconditionalization disagree. Then, Theorem 1 says, that
the subject will expect the recommendation of Metaconditionalization to be strictly less
inaccurate than the recommendation of g in that learning situation.

But, as Schoenfield and others observe, if evidence externalism is true,
Metaconditionalization is not Bayesian Conditionalization. Remember, Baysian
Conditionalization says that you should respond to your evidence E(w) by
conditioning on E(w). Metaconditionalization says that you should respond to
E(w) by conditioning on the proposition that your evidence is E(w), the proposition
[E = E(w)]. If evidence externalism is true, then E(w) is not always the same
proposition as [E = E(w)]. In particular, sometimes E(w) will not entail the
proposition [E = E(w)], and when this happens, Metaconditionalization and Bayesian
Conditionalization will disagree.

Let E be any learning situation in which [E = E(w)]#E(w) for some world w.
Consider any subject who leaves open some such worlds. Then Theorem 1 entails that
the subject will expect the recommendation of Metaconditionalization to be less
inaccurate than the recommendation of Bayesian Conditionalization in learning
situation E. Formally:

D CW)  Mera (€ EW)] < D~ CW) - Tgeona (C, EW)). ©)

weQ we

But it doesn’t follow from Theorem 1 that the subject expects adopting—intending or
planning to follow—Metaconditionalization to be less inaccurate than adopting
Bayesian Conditionalization. That would follow from Theorem 1 only if we knew that
the subject would follow Metaconditionalization if she adopted Metaconditionalization,
and that she would follow Bayesian Conditionalization if she adopted Bayesian
Conditionalization.

To see this, let GF be the subject’s guess function in learning situation E. Let Guess
Right be the proposition that the subject’s guess about her evidence in learning
situation E is right. Formally:

Guess Right = {w € Q: GE(w) = E(w)}. (10)

Let Guess Wrong be the proposition that the subject’s guess about her evidence in E is
not right. Formally:

Guess Wrong = {w € Q : GE(w) ZE(w)}. (11)

Say that a subject with guess function GF is infallible in learning situation E if, for any
w € Q, Guess Right is true in w. If we assume that our subject is infallible in learning
situation E, then for all w € Q,

f;Z,GE (gcond7 W) = gcond(c7 E(W))v (12)

)CC,GE (gmetav W) = gmeta(C7 E(W)) (13)

If (12) and (13) are true, then Theorem 1 entails that the subject expects adopting
Metaconditionalization to be less inaccurate than adopting Bayesian
Conditionalization. Formally:
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> €0 1[fe e (gmews W) W] < 32 C) - I[foge (Geonar W) w]- (19

we2 weQ

But of course the externalist will insist that creatures like us are not infallible.
Remember, the externalist says my beliefs about what evidence I have are not
perfectly sensitive to the facts about what evidence I have. Return to the case of the
unmarked clock. In fact my evidence is that the time is between 4:04 and 4:06. But my
mechanisms specialized for detecting what evidence I have misfire, and so I
mistakenly think that my evidence is some other proposition—that the time is
between 4:05 and 4:07. Importantly, the externalist maintains that no amount of
careful attention to my evidence will insure me against error. For the externalist,
even ideally rational, maximally attentive agents are not always certain of the true
answer to the question of what their evidence is. That is just to say that even ideally
rational, maximally attentive agents are not always such that, if they adopted
Metaconditionalization, they would follow Metaconditionalization.

In short, (13) is often false for agents like us—agents with fallible information-
gathering mechanisms. But without (13), we can’t derive (14) from (9). We can’t
conclude that, for fallible agents like us, adopting Metaconditionalization has lower
expected actual inaccuracy than adopting Bayesian Conditionalization.

Let me summarize. If evidence externalism is true, then Theorem 1 tells us that,
under certain conditions, we will expect following Metaconditionalization to be less
inaccurate than following any other evidential updating rule. It doesn’t follow,
however, that we expect adopting Metaconditionalization to be less inaccurate than
adopting any other rule.” In particular, it doesn’t follow that we expect adopting
Metaconditionalization to be less inaccurate than adopting Bayesian
Conditionalization. That would follow only if we knew that we’re infallible, but we
cannot, on pain of begging the question against the externalist, simply assume that
this is so. So we have not shown that if evidence externalism is true, then we must
choose between the rule that maximizes expected accuracy and Bayesian
Conditionalization.”

20 steel (2018) makes this same point in a different context. He observes that the Greaves and Wallace
accuracy argument for Bayesian Conditionalization at best shows that Bayesian Conditionalization is the
optimal rule to follow; it does not show that Bayesian Conditionalization is the optimal rule to try to follow.

2 Here I state the Bayesian Dilemma in terms of adopting an updating rule because I prefer to state the
accuracy-first thesis as a thesis about rule adoption, not a thesis about rule following. As I mentioned in
section 2, many theorists (implicitly) take the accuracy-first thesis to be a thesis about following. For these
theorists, the Bayesian Dilemma is a choice between (i) the claim that we’re required to follow Bayesian
Conditionalization and (ii) the claim that we're required to follow a rule that minimizes expected
inaccuracy. The argument for this version of the Bayesian Dilemma runs as follows. Following
Metaconditionalization is an available option, and following Metaconditionalization minimizes expected
inaccuracy among the available options. Therefore, if accuracy-first epistemology is true, we’re required
to follow Metaconditionalization. But if externalism is true, Metaconditionalization is not Bayesian
Conditionalization. So the externalist must choose between accuracy-first epistemology and Bayesian
Conditionalization. I don’t think the externalist should be persuaded by this version of the argument,
either. In particular, they should deny that following Metaconditionalization is always an available
option. Earlier I said that a standard constraint on option availability is that an act is available only if you
are able to perform the act. But, for the reasons I discuss in the main text, the externalist should deny that
we are always able to follow Metaconditionalization.
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5 The Bayesian Dilemma reconsidered

In this section, I show that we can establish the Bayesian Dilemma without the
assumption of infallibility. I give a new argument—I call it the continuity argument—
showing that if you are sufficiently confident that you will correctly identify your
evidence, then you will expect a rule that I call Accurate Metaconditionalization to have
less expected inaccuracy than adopting Bayesian Conditionalization. In section 5.1 I'll
begin by saying what Accurate Metaconditionalization is, and then I'll present the
continuity argument. In section 5.2 I will consider whether other rules are immune to
the continuity argument.

5.1 The continuity argument

Metaconditionalization said that you should respond to your evidence E(w) by
conditioning on the proposition that your evidence is E(w). Accurate
Metaconditionalization says that you should respond to your evidence E(w) by
conditioning on the proposition that your evidence is E(w) and that you have guessed
right. (Remember, Guess Right = {w € Q : GE(w) = E(w)}.) More precisely:

Accurate Metaconditionalization
Where C is any prior such that C(E = E(w)|Guess Right) > 0 for all w € £,
Jace—meta(C; E(W)) = C(-|Guess Right A E = E(w)).
For simplicity, I will assume:
feoE (ace—metas W) = Gace—meta (C; GE(W)) = C(-|Guess Right A E = GE(w)).  (15)

Equation (15) says that the credence function you would have if you adopted
Accurate Metaconditionalization is the result of conditioning your prior on the
proposition that your evidence is GE (w), your guess about what your evidence is in w,
and that you have guessed right.

I am going to show that for a wide class of fallible subjects, if the subject is
sufficiently confident that she will correctly identify her evidence, then adopting
Accurate Metaconditionalization will have lower expected actual inaccuracy than
adopting Bayesian Conditionalization for her. Here is roughly how the argument will
go. I will begin by showing that we can state the expected actual inaccuracy of adopting
an updating rule as a function of your credence x in the proposition Guess Right. In
particular, we can state the expected actual inaccuracy of adopting Accurate
Metaconditionalization as a function of x, and we can state the expected actual
inaccuracy of adopting Bayesian Conditionalization as a function of x. Importantly, both
functions are continuous functions of x. We will show that when x = 1, adopting
Bayesian Conditionalization has greater expected actual inaccuracy than adopting
Accurate Metaconditionalization. Since both functions are continuous, it follows there
is some § > 0 such that if x > 1 — §, then adopting Bayesian Conditionalization has
greater expected actual inaccuracy than adopting Accurate Metaconditionalization.

Let’s now turn to the details. To begin, I am going to introduce and define a new
kind of function, which I'll call a probability extension function. We can think of a
probability extension function as a specification of the conditional credences of
some hypothetical subject, conditional on each member of the partition
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{Guess Right, Guess Wrong} that the subject leaves open. We then feed the
probability extension function a possible credence x in Guess Right (a real number
between 0 and 1) and the function returns a (complete) probability function—the
probability function determined by the conditional credence specifications,
together with x.

To make this more precise, fix a set of worlds €. Let E be any evidence function,
and let GE be any guess function. Let A be the set of probability functions over P(2).
We define Apgy, as

Agight = {Pr : Px € A and Py (Guess Right) = 1}, (16)
and we define Aoy, in a similar way:
Awrong = {Pw : Py € A and Py (Guess Wrng) = 1}. (17)

For each pair (Pg,Py) consisting of a Pr € Apigne and a Py € Ayyyong, We define a
probability extension function Ap p.) as a function that takes a real number x
?eltlween 0 and 1 and returns a probability function A, )(x) over P(2) defined as
ollows:

Aipg py) O () = PR()X + Py (1) (1 — x). (18)

Each probability extension function is indexed to a pair (Pg, Py ). In what follows I will
leave off the subscripts for the sake of readability.

We can use probability extension functions to specify the expected actual
inaccuracy of adopting an updating rule, for some subject, as a function of her
credence in Guess Right. To see this, fix a learning situation E, a guess function GE, and
an evidential updating rule g. Each probability extension function A determines a
function that takes a credence x in Guess Right and returns the expectation, relative to
A(x), of the actual inaccuracy of adopting rule g given guess function GE. For example,

consider
> 2000 1[fy0 65 (Gmess W), W) | = D 2000 - Tgewa(2(0, GEw)), wl. (19)
weQ we

This is a function that takes a credence x in Guess Right and returns the expectation,
relative to A(x), of the actual inaccuracy of adopting Metaconditionalization given
guess function GE. Similarly, we have

D200 1[fy0 6 (Geonas W), W) | = D 2000) - Tgeona (), GEw)), wl. (20)

weQ weEQR
This is a function that takes a credence x in Guess Right and returns the expectation,
relative to A(x), of the actual inaccuracy of adopting Bayesian Conditionalization
given guess function GE.

For any probability extension function A, we define C, as follows:

C, = {C € A:C = A(C(Guess Right))}. (21)

We're thinking of A as a specification of the conditional credences of some
hypothetical subject, conditional on each member of {Guess Right, Guess Wrong} that
the subject leaves open. We can then think of C; as the set of all probability functions
that agree with A with respect to those assignments of conditional credences.
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Importantly, every probability function C € A belongs to C, for some probability
extension function 1.%

We will show that for any probability extension function A satisfying certain
constraints, and any probability function C in C,, if C(Guess Right) is sufficiently high,
then the expected actual inaccuracy, relative to C, of adopting Accurate
Metaconditionalization will be lower than the expected actual inaccuracy of adopting
Bayesian Conditionalization. More precisely:

Theorem 2. Let E be any learning situation, GE any guess function, and A any probability
extension function such that:

(i) A(1)(E(w)) > 0 for all w € ;
(i) A(W)(E =Ew) >0foralwe
(ii)) gmeta(A (1), E(W)) # geona (A (1), E(w)) for some w € Guess Right.

Then there’s a §, > 0 such that, for all ¢ € C;, if C(Guess Right) > 1 —§;, then

D €00 - fe 0 (ce-mews )5 ] < D €00 - T[fe 6 (Geanas ), ]

weQ weQ
The proof of Theorem 2 relies on a lemma.

Lemma 1 Let E be any learning situation, GE any guess function, and A any probability
extension function satisfying conditions (i) and (ii) in our statement of Theorem 2. Then

) % 2000 1{fi1. (G ) )
(i) 3 200 - 1[f, 05 (9eonts W) W)

weQ
are both continuous at 1.
I leave the proof of Lemma 1 to the appendix.
Proof of Theorem 2. Consider any learning situation E, any guess function GE, and
any probability extension function A satisfying (i), (i), and (iii). It follows from
Theorem 1 that

D D W) [ Grner (1), EW)), w] < D AD)W) - I[geona(A(1), Ew)), w].  (22)

we2 we

This says that any subject whose prior is A(1) expects following
Metaconditionalization in learning situation E to have lower expected inaccuracy
than following Bayesian Conditionalization in learning situation E. Note that
A(1)(Guess Right) = 1. This means that, for all w € Q such that A(1)(w) > 0,

gmeta()‘(l)7 E(W)) = fA(l)‘GE (gmetaa W)7 (23)

22 1f C(Guess Right) > 0 and C(Guess Wrong) > 0, then let A = Ap, p,y where Pr(-) = C(-|Guess Right)
and Py (-) = C(-|Guess Wrong). If C(Guess Wrong) = 1, then let A = A p,) Where Py is any probability
function in Agy, and Py (-) = C(-). If C(Guess Right) =1, let A = Ajp, p,y where Py is any probability
function in A and Pr(-) = C().
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Jeond(A(1), E(w)) = fx(l),GE (gcondv W)' (24)
Given (23) and (24), (22) entails

Z A-(l)(w) : I[fk(l),GE (gmetav W),W] < Z A-(l)(w) : II:fA(l),GE (gcond7 W)» W]- (25)
weQ weQ2

This says that any subject whose prior is A(1) and whose guess function is GE
expects adopting Metaconditionalization in learning situation E to have lower
expected inaccuracy than adopting Bayesian Conditionalization in learning
situation E.

Equation (25) and Lemma 1 together entail that

> 2000 [ fon 6 @mess W) w] < 3020 1[0 (Geonas W) 0] (26)

we2 we2
We know that for all C € C;, C = A(C(Guess Right)). Therefore, it follows from
(26) that

There’s a §, > 0s.t.,for all C € C,,if C(Guess Right) > 1—§6,,then

Z C(W) : Ilif)h(l),GE (gmetav W)a W] < Z C(W) : II:fC,GE (gcond7 W) ) W:I- (27)
weQ weQ

This says that for any subject whose prior probability functions is in C,, if the
subject is sufficiently confident in Guess Right, then she will expect adopting
Metaconditionalization with respect to A(1) to have strictly lower actual inaccuracy
than adopting Bayesian Conditionalization with respect to her own prior. Remember,
we're assuming that

fC,GE (gaccfmetav W) = Jacc—meta (Cv GE(W)) = C(-|Guess nght ANE = GE(W)) (28)

We are also assuming that

fe G (Imetas W) = gmeta(C, GE(W)) = C(-|E = GE(w)). (29)
It follows that
fC‘GE (gacc—metaa W) = f;t( | Guess Right),GE (gmetm W) . (30)
We know that, for all C € C;, if C(Guess Right) > 0 then
C(-|Guess Right) = A(1). (31)

Equations (28) and (29) together entail that for all C € C;, if C(Guess Right) > 0, then

feoe (gaccfmeteu W) = fx(1).,GE (gmeta7 W)- (32)

Given (30), (27) entails
There’s a §; > 0 s.t.,for all C € Cy,if C(Guess Right) > 1—§,, then

Z C(W) : I[fC,GE (gaccfmetm W)a W:I < Z C(W) : Il:ﬁ:,GE (gcond7 W)7 W:I . (33)
weQ weERQ

This says that for any subject whose prior probability functions is in C, and whose
guess function is GE, if the subject is sufficiently confident in Guess Right, then she will
expect adopting Accurate Metaconditionalization in learning situation E to have
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strictly lower actual inaccuracy than adopting Bayesian Conditionalization in learning
situation E. This completes the proof of Theorem 2.

Let’s take stock. In section 4, 1 presented Schoenfield’s showing that following
Metaconditionalization has greater expected actual accuracy than following Bayesian
Conditionalization. But, I argued, we cannot conclude from this fact that adopting
Metaconditionalization has greater expected actual accuracy than adopting Bayesian
Conditionalization. That would follow only if we said that we're infallible in every
learning situation, and we cannot, on pain of begging the question against the
externalist, assume that this is so. In this section I have shown that we can do without
the assumption of infallibility. Theorem 2 shows that for a wide class of fallible
subjects and learning situations, if the subject is sufficiently confident that she will
correctly identify her evidence in that learning situation, then adopting Accurate
Metaconditionalization will have greater expected actual accuracy for her than
adopting Bayesian Conditionalization.?®

This is not good news for the project of reconciling accuracy-first externalism with
Bayesian epistemology. The externalist who wishes to justify Bayesian
Conditionalization on the basis of accuracy should hope to find a natural class of
fallible agents for whom Bayesian Conditionalization is the most accurate updating
procedure in expectation. We should be pessimistic about the prospects for this
project on the basis of the results of this paper. Theorem 2 shows that adopting
Accurate Metaconditionalization will have greater expected actual accuracy than
adopting Conditionalization for some agents in any such class—so long as it includes
agents who are sufficiently confident that they will correctly identify their evidence,
and I can see no principled reason to exclude all such agents.

5.2 Guess conditionalization

Let me take a moment to address a concern about the significance of this result, and
its relationship to other results in the literature. Those who have read Gallow (2021)
or Isaacs and Russell (2023) might wonder: Haven't these authors already shown us
how fallible agents should update their credences? Gallow (2021) argues that we can

2 1t is worth emphasizing that you don’t have to be that confident that you will correctly identify your
evidence. There are models of the unmarked clock in which anything over 50% will do. 1t is also worth
taking a moment to see how this result interacts with considerations of availability that are often
discussed in the context of Schoenfield’s result. We said that many theorists (implictly) take the
accuracy-first thesis to be a thesis about which rule to follow. On this understanding, the thesis says,
roughly, that we're rationally required to follow an updating rule that is such that (i) following that rule
is an available option, and (ii) following that rule minimizes expected inaccuracy among the available
options. In footnote 4 I said that the externalist should deny that Metaconditionalization is (always) an
available option. My result does not assume that following Accurate Metaconditionalization (or
Metaconditionalization for that matter) is an available option; I assume only that adopting Accurate
Metaconditionalization is an available option. I see no principled reasons for denying that this is so. The
externalist says that I cannot make it the case that I am always certain of the true answer to the question
of what my evidence is. They do not deny that I can try or plan to be certain of the true answer to the
question of what my evidence is. It is also worth noting that the results in this section do not depend on
any assumptions about the structure of evidence. In particular, I have not assumed that evidence obeys
introspection principles and I have not assumed that evidence is factive.
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use a version of a result due to Greaves and Wallace (2006) to show that a rule that I
will call Guess Conditionalization is the best rule for fallible agents.*

Guess Conditionalization
9G—cond (C7 GE (W)) = C( |GE =GF (W)) .

However, 1 believe that the argument that Gallow is alluding to requires certain
assumptions about the nature of our fallibility that the externalist should reject. To
see this, remember that our guess function GF is a function that takes each world w to
the subject’s guess, in w, about what her evidence is. If we are interested in subjects
who are trying to follow Guess Conditionalization, we need another guess function
G that takes each world w to the subject’s guess, in w, about what her guess is in w. Let
us assume that

fC"GGE (9G—cond> W) = JG—cond (Ca GGE (W)) (34)

This says that the credence function you would have if you adopted Guess
Conditionalization in learning situation E is the result of conditioning your prior on
your guess about what your guess is.?> With this assumption in place, the Greaves and
Wallace-style argument that Guess Conditionalization is the best rule for fallible
agents requires us to assume that subjects are guess-infallible:

For all worlds w, G®(w) = GF(w). (35)
If we assume that our subject is guess-infallible then, for all w € €,
fC,GGE (ngcondv W) = JG—cond (C: GE(W)) (36)

This says that if the subject adopts Guess Conditionalization, then she would follow
Guess Conditionalization.

But the externalist should insist that creatures like us are not guess-infallible.
According to the externalist, my beliefs about what I have guessed are not perfectly

% Note that Gallow himself is actually interested in a slightly different rule, which he calls Update
Conditionalization. The differences between Update Conditionalization and Guess Conditionalization do
not matter for my purposes.

% In the main text I assume (i) that you use your first-order guesses (your guesses about what your
evidence is) when you try to follow Conditionalization, Metaconditionalization, or Accurate
Conditionalization, and (ii) that you use your second-order guesses (your guesses about what your
guesses are) when you try to follow Guess Conditionalization. One might question this assumption: Why
couldn’t I use my first-order guesses for Guess Conditionalization, too? I agree that my assumption that
we always use our second-order guesses for Guess Conditionalization is not necessarily true, and I have
made this assumption primarily to simplify the presentation of the argument in the main text. To avoid
the argument that Guess Conditionalization is best, we do not have to assume that you always use your
second-order guesses when you are trying to follow Guess Conditionalization. Rather, all we have to
assume is that it is not always true that if you tried to follow Guess Conditionalization, then you would.
For example, here is one way to say that this conditional is not always true without assuming that the
agent always uses her second-order guesses when she tries to follow Guess Conditionalization. We could
say that in some worlds where the agent’s first-order guesses and second-order guesses come apart, she
will try to follow Guess Conditionalization by using her first-order guesses, and in other worlds where her
first-order guesses and her second-order guesses come apart, she will try to follow Guess
Conditionalization by using her second-order guesses. Thanks to an anonymous referee.
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sensitive to the facts about what I have guessed, and, importantly, no amount of
careful attention to my guesses will insure me against error. Even ideally rational,
maximally attentive agents are not always certain of the true answer to the question
of what their guess is. That is just to say that even ideally rational, maximally
attentive agents are not always such that, if they adopted Guess Conditionalization,
they would follow Guess Conditionalization. In short, (34) is often false for agents like
us—agents with fallible information-gathering mechanisms. But without (34), we
can'’t use the Greaves and Wallace-style argument that Gallow is alluding to in order
to show that adopting Guess Conditionalization has lower expected actual inaccuracy
than adopting any other rule.

6 Conclusion

It’s been said that accuracy-first epistemology poses a special threat to externalism.
Schoenfield (2017) shows that the rule that maximizes expected accuracy is
Metaconditionalization. But if externalism is true, Metaconditionalization is not
Bayesian Conditionalization. Thus, externalists seem to face a dilemma, which I have
called the Bayesian Dilemma: Either deny that Bayesian Conditionalization is required
or else deny that the rational update rule is the rule that maximizes expected
accuracy. I am not convinced by this argument. Schoenfield’s result shows that
following Metaconditionalization has greater expected accuracy than following
Bayesian Conditionalization. It doesn’t follow that adopting Metaconditionalization
has greater expected accuracy than adopting Bayesian Conditionalization. That would
follow only if we also said that if you adopted Metaconditionalization, you would
follow Metaconditionalization. But the externalist has every reason to deny that this
is always so. I have argued that the Bayesian Dilemma is nevertheless a genuine
dilemma. I presented a new argument that does not make any assumptions that the
externalist must reject. This argument shows that, for a wide class of fallible subjects,
if the subject is sufficiently confident that she will correctly identify her evidence,
then adopting Accurate Metaconditionalization will have greater expected accuracy
for her than adopting Bayesian Conditionalization.
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Appendix A

In this appendix, we prove Lemma 1.
Proof of Lemma 1. We start by showing that (i) is continuous. Observe that (i) is a sum of terms of the form

)L(X)(W) . I[gmeta(}‘(l)v GE(W))vw]‘ (37)
Notice that A(x)(w) = Pr(w) - x + Py (w)(1 —x) is a polynomial and so is continuous everywhere.

Moreover, I[guen(2(1), GE(w)), w] is a constant. Therefore, (i) is a linear combination of continuous
functions and therefore is itself continuous.
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Next we will show that (ii) is continuous at 1. To begin, observe that (ii) is a sum of terms of the form

A (W) - I[geona (+(0), GE (W), w]. (38)

Thus, to show that (ii) is continuous at 1, it suffices to show that (38) is a continuous function at 1 for all
w € Q. We have seen that A(x)(w) is a polynomial and so is continuous everywhere. Thus, to show that
(38) is continuous at 1 it suffices to show that

I[gcond ()" (X)7 GE (W)) ) W] (39)
is continuous at 1. By our assumption that I satisfies Additivity, we have that I[geena(A(x), GE(W)), w] is
equal to

D il geona (200, GEW))]. (40)
HeP Q
Fix an arbitrary H € P(2). To show that (39) is continuous at 1 it suffices to show that
f(X) = ig[gccmd()‘(xL GE(W))] (41)
is continuous at 1. Define h(x) as follows:
h(X) = Geona (M), GE(W)) (H) = A() (H|GE (w)). (42)

Then f(x) = it o h(x). By our assumption of Continuity for the local inaccuracy measure ifl, we know that
it is a continuous function of h(x). Thus, to show that f(x) is continuous at 1, it suffices to show that h is
continuous at 1. By the definition of A(x)(H|GE(w)), we have

A (H A GEw)  Pr(H A GE(W))x 4 Py (H A GE(W)) (1 —x)
A0(GEw)) — Pr(GEW))x + Py (GEw)) (1 —x)
It follows from our assumption that A(1)(E(w)) > 0 for all w € Q that A(1)(GE(w)) > 0 for all w € Q.

Since the numerator and denominator are both continuous at 1 and the denominator is greater than zero
when x = 1, it follows that h(x) is continuous at 1. This completes the proof of Lemma 1.

h(x) = 2(0)(H|GE(w)) = (43)
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