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On Super Weakly Compact Convex Sets
and Representation of the Dual of the
Normed Semigroup They Generate
Lixin Cheng, Zhenghua Luo, and Yu Zhou

Abstract. In this note, we first give a characterization of super weakly compact convex sets of a Banach
space X: a closed bounded convex set K ⊂ X is super weakly compact if and only if there exists a w∗

lower semicontinuous seminorm p with p ≥ σK ≡ supx∈K〈 · , x〉 such that p2 is uniformly Fréchet
differentiable on each bounded set of X∗. Then we present a representation theorem for the dual of the
semigroup swcc(X) consisting of all the nonempty super weakly compact convex sets of the space X.

1 Introduction

Let X be a Banach space, and let swcc(X) be the normed semigroup of all nonempty
super weakly compact convex sets of X. The purpose of this paper is to establish a
representation theorem of the dual of swcc(X). This is done by giving a generalized
renorming characterization and an approximation property of super weakly compact
convex sets.

It is well known that super-reflexive or uniformly convexifiable Banach spaces play
an important role in Banach space theory, and they form an extremely useful class of
reflexive spaces. The Enflo renorming theorem [9] states that every super-reflexive
Banach space is uniformly convexifiable and vice versa (see also [13]). Recently,
Cheng, Cheng, Wang, and Zhang [6] introduced a notion of super weakly compact
set, and gave the Enflo renorming theorem a localized setting. A closed bounded con-
vex set in a Banach space is uniformly convexifiable if and only if it is super weakly
compact. Now, we recall some definitions that will be used in the sequel.

Definition 1.1 Suppose that X is a Banach space, ε > 0. For all n ∈ N, An ⊂ X are
defined by

An = {xε1 ,ε2 ,...,εn
: εi = 1, 2 and i = 1, 2, . . . , n}.

(i) The subset An is called an (n, ε)-tree for some n ∈ N if it satisfies

xε1 ,ε2 ,...,εk
= 1

2 (xε1 ,ε2 ,...,εk
,1 + xε1 ,ε2 ,...,εk

,2)
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and

‖xε1 ,ε2 ,...,εk
,1 − xε1 ,ε2 ,··· ,εk

,2‖ ≥ ε

for k = 1, 2, . . . , n− 1, εi = 1, 2 and i = 1, 2, . . . , k.
(ii) A bounded closed convex set A ⊂ X is said to be super weakly compact if for

every ε > 0, there exists n ∈ N such that A does not contain an (n, ε)-tree.

Definition 1.2 Suppose that C ⊂ X is a nonempty convex set.

(i) A real-valued convex function f defined on C is said to be uniformly convex
provided for every ε > 0 there is δ > 0 such that f (x) + f (y) − 2 f ( x+y

2 ) ≥ δ
whenever x, y ∈ C with ‖x − y‖ ≥ ε.

(ii) The set C is called uniformly convex provided for every x0 ∈ C the function
f := ‖ · − x0‖2 is uniformly convex on C.

(iii) We say the set C is uniformly convexifiable if there is an equivalent norm | · | on
X such that C is uniformly convex with respect to | · |.

Let swcc(X) = {K ⊂ X : K is nonempty super weakly compact and convex}.
Among many other things, the authors, Cheng, et al [6] showed the following prop-
erty.

Proposition 1.3 For any Banach space X, the set swcc(X) is closed under the two
operations of addition and scalar multiplication.

Definition 1.4 Let G be an Abelian semigroup and let F ∈ {R,C}.
(i) G is said to be a module if there are two operations (x, y) ∈ G×G→ x + y ∈ G,

and (α, x) ∈ (F× G)→ αx ∈ G satisfying

(λµ)g = λ(µg), ∀λ, µ ∈ F and g ∈ G;

λ(g1 + g2) = λg1 + λg2, ∀λ ∈ F and g1, g2 ∈ G;

and

1g = g and 0g = 0 ∀g ∈ G.

(ii) A module G endowed with a norm is called a normed semigroup.
(iii) A function φ on a normed semigroup G is called a linear functional if it satisfies

φ(αg1 + βg2) = αφ(g1) + βφ(g2), ∀α, β ∈ R+ and g1, g2 ∈ G.

It is said to be bounded provided ‖φ‖ = sup{|φ(g)| : g ∈ G, ‖g‖ ≤ 1} < ∞.
We denote by G∗ the Banach space of all bounded functionals on G and call it
the dual of G.

We endow the Hausdorff metric dH on swcc(X), i.e.,

dH(K1,K2) = max
{

sup
x∈K1

d(x,K2), sup
y∈K2

d(K1, y)
}
, for K1,K2 ∈ swcc(X),
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where d(K, x) = d(x,K) = infk∈K ‖k−x‖. This metric induces further a norm ‖ · ‖H

for K ∈ swcc(X)
‖K‖H = dH(0,K) = sup{‖k‖ : k ∈ K}.

Therefore, combining this with Proposition 1.3, we obtain the following proposition.

Proposition 1.5 swcc(X) is, endowed with the norm, a normed semigroup.

In this paper, the letter X will always be a real Banach space and X∗ its dual. BX

(BX∗ , resp.) stands for the closed ball of X (X∗, resp.); if there is no possible confu-
sion, we simply write by B (B∗, resp.) for BX (BX∗ , resp.). SX (SX∗ , resp.) represents
the unit sphere of X (X∗, resp.). We denote by Ω a compact Hausdorff space, and
by C(Ω) the Banach space of all real-valued continuous functions defined on Ω en-
dowed with the sup-norm. For a subset A ⊂ X, σA stands for the support function
of A, i.e., σA(x∗) = supx∈A〈x∗, x〉, and A0 for the polar of A, i.e.,

A0 = {x∗ ∈ X∗ : 〈x∗, x〉 ≤ 1 for all x ∈ A}.

We say that a function f defined on a subset A of a Banach space X is a ∆-support
function if there are two closed convex sets C,D ⊂ X∗ such that f = σC − σD on A.

This paper is organized as follows. In the next section, we show that a sufficient
and necessary condition for a nonempty closed convex set K ⊂ X to be super weakly
compact is that there exists a w∗ lower semicontinuous seminorm p on X∗ with p ≥
σK such that p2 is uniformly Fréchet differentiable on B∗. In Section 3 we establish
the representation theorem of the dual swcc(X)∗ of the normed semigroup swcc(X),
and this is done by showing that a nonempty closed convex set K ⊂ X containing
the origin is super weakly compact if and only if there exists a sequence {qn} of w∗

lower semicontinuous Minkowski functionals whose squares are uniformly Fréchet
differentiable on B∗, such that qn → σK uniformly on B∗.

2 A Characterization of Super Weakly Compact Sets

In this section, we show that a sufficient and necessary condition for a nonempty
closed convex set K ⊂ X to be super weakly compact is that there exists a w∗ lower
semicontinuous seminorm p on X∗ with p ≥ σK such that p2 is uniformly Fréchet
differentiable on B∗. To begin, we recall some more notions.

Given ε ≥ 0, for a convex function f defined on a Banach space X, its ε- subdif-
ferential mapping ∂ε f : X → 2X∗

is defined by

∂ε f (x) = {x∗ ∈ X∗ : f (x + y)− f (x) + ε ≥ 〈x∗, y〉, ∀y ∈ X}.

If ε = 0, then ∂ε f is called the subdifferential mapping of f , and in this case, we
denote it by ∂ f instead of ∂0 f . The conjugate function of f , denoted f ∗, is defined
by

f ∗(x∗) = sup{〈x∗, x〉 − f (x), x ∈ X}, x∗ ∈ X∗.

Definition 2.1 Suppose that f is a convex function defined on a Banach space X.
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(i) We say that f is Gâteaux differentiable at x if there is x∗ ∈ X∗ such that

lim
t→0+

f (x + t y)− f (x)

t
− 〈x∗, y〉 = 0, ∀ y ∈ X.

(ii) f is said to be Fréchet differentiable at x ∈ X provided

lim
t→0+

sup
y∈BX

[ f (x + t y)− f (x)

t
− 〈x∗, y〉

]
= 0.

In this case, we denote by x∗ = d f (x) the Fréchet derivative of f at x.
(iii) f is called uniformly Fréchet differentiable on a subset A ⊂ X if

lim
t→0+

sup
y∈BX ,x∈A

[ f (x + t y)− f (x)

t
− 〈d f (x), y〉

]
= 0.

The following is the Brøndsted–Rockafellar theorem [3](see, also [2, 12]).

Theorem 2.2 (Brøndsted–Rockafellar) Suppose that f 6= −∞ is an extended real-
valued lower semicontinuous convex function defined on a Banach space X and x0 ∈
dom( f ) ≡ {x ∈ X : f (x) < ∞}. Suppose that x∗0 ∈ ∂ε f (x0). Then there exist
xε ∈ dom f , x∗ε ∈ X∗ such that

(i) x∗ε ∈ ∂ f (xε), (ii) ‖x0 − xε‖ ≤
√
ε, and (iii) ‖x∗0 − x∗ε‖ ≤

√
ε.

The following properties are either classical or easily obtained (see, for instance,
[8, 10, 12] for the non-uniform case).

Proposition 2.3 Suppose that p is an extended real-valued lower semicontinuous
Minkowski functional defined on a Banach space X, i.e., there exists a closed convex
set C ⊂ X with 0 ∈ C such that p(x) = inf{α > 0 : x ∈ λC} for all x ∈ X. Let
C∗ = {x∗ ∈ X∗ : 〈x∗, x〉 ≤ p(x),∀x ∈ X}. Then

(i) C∗ = ∂p(0) = ∂p(X) = C0, the polar of C ;
(ii) x∗ ∈ ∂p(x) if and only if x∗ ∈ C∗ with 〈x∗, x〉 = p(x).

Proposition 2.4 Suppose that f is a continuous convex function defined on a Banach
space X. Then

(i) the subdifferential mapping ∂ f : X → 2X∗
is always nonempty w∗ compact convex

valued and norm-to-w∗ upper semicontinuous at each point of X;
(ii) f is Gâteaux differentiable at x ∈ X if and only if ∂ f (x) is a singleton;
(iii) f is Fréchet differentiable at x ∈ X if and only if ∂ f is single-valued and norm-to-

norm upper semicontinuous at x;
(iv) f is uniformly Fréchet differentiable on a subset A ⊂ X if and only if ∂ f is single-

valued and uniformly norm-to-norm continuous on A.

Proposition 2.5 Let p be a continuous seminorm on a Banach space X, Sp = {x ∈
X : p(x) ≤ 1} and let C∗ = {x∗ ∈ X∗ : 〈x∗, x〉 ≤ p(x), ∀x ∈ X}. Then p is
uniformly Fréchet differentiable on Sp if and only if for every sequence {xn} ⊂ X with
p(xn) = 1 and all sequences {x∗n}, {y∗n} ⊂ C∗ with x∗n ∈ ∂‖xn‖ for all n ∈ N, we have
‖x∗n − y∗n‖ → 0 whenever 〈y∗n , xn〉 → 1.
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Proof Sufficiency. We want to show that ∂p is norm-to-norm uniformly continuous
on Sp. Let {xn}, {yn} ⊂ Sp be two sequences with ‖xn − yn‖ → 0. Since p is contin-
uous, C∗ is bounded. For any selection φ of the subdifferential mapping ∂‖ · ‖ of the
norm ‖ · ‖, {φ(xn)} and {φ(yn)} are bounded, and they satisfy that 〈φ(xn), yn〉 → 1
and 〈φ(yn), xn〉 → 1. Therefore, ‖φ(xn)− φ(yn)‖ → 0.

Necessity. Since p is a continuous seminorm and uniformly Fréchet differentiable
on Sp, ∂p is single-valued and uniformly norm-to-norm continuous on Sp. Let
{xn} ⊂ X with p(xn) = 1, and let {x∗n}, {y∗n} ⊂ C∗ ≡ ∂p(0) with x∗n ∈ ∂p(xn)
for all n ∈ N, and with 〈y∗n , xn〉 → 1. Therefore, y∗n ∈ ∂ε(xn) for all sufficiently large
n ∈ N. By the Brøndsted-Rockafellar theorem, for every ε > 0 we obtain that two
sequences {xε,n} ⊂ X, {x∗ε,n} ⊂ X∗ such that

(i) x∗ε,n ∈ p(xε,n), (ii) ‖yn − xε,n‖ ≤
√
ε and (iii) ‖y∗n − x∗ε,n‖ ≤

√
ε

for all sufficiently large n ∈ N. Note that the continuity of p, ‖xn − xε,n‖ ≤
√
ε, and

p(xn) = 1 imply that there exists a constant a > 0 such that ‖xn − yε,n‖ ≤ a
√
ε,

where yε,n ≡ xε,n/p(xε,n) ∈ Sp. The arbitrariness of ε, the homogeneity of p, and
the uniform continuity of ∂p on Sp entail that x∗ε,n ∈ ∂p(yε,n) and

‖x∗n − y∗n‖ ≤ ‖x∗n − x∗ε,n‖ + ‖x∗ε,n − y∗n‖ → 0.

We also need the following notion.

Definition 2.6 Suppose that X is a linear space and that | · | and ‖ · ‖ are two norms
on X.

(i) We say that the normed space (X, | · |) is relatively uniformly convex with re-
spect to ‖ · ‖ provided that for any two sequences {xn}, {yn} ⊂ (X, | · |), we
have ‖xn − yn‖ → 0 whenever 2(|xn|2 + |yn|2) − |xn + yn|2 → 0; equivalently,
for every ε > 0, there exists δ > 0 such that |x|2 + |y|2− 1

2 |x + y|2 > δ whenever
‖x − y‖ ≥ ε.

(ii) The normed space (X, | · |) is called uniformly convex if it is relatively uniformly
convex with respect to | · |.

The following lemma is due to Cheng et al. [6, Theorem 4.8 and Corollary 3.11].

Lemma 2.7 Suppose that K is a super weakly compact convex set of a Banach space
(X, ‖ · ‖). Then there exists a reflexive Banach space (E, | · |) such that

(i) K ⊂ BE ⊂ X;
(ii) ‖ · ‖ ≤ λ| · | on E for some λ > 0;
(iii) | · |2 is uniformly convex and ‖ · ‖-uniformly continuous on K;
(iv) (E, | · |) is relatively uniformly convex with respect to ‖ · ‖.

Lemma 2.8 Suppose that K is a bounded closed convex set of a Banach space (X, ‖ · ‖).
Suppose that there is a Banach space (E, | · |) satisfying

(i) K ⊂ λBE ⊂ X for some λ > 0;
(ii) | · | is relatively uniformly convex with respect to ‖ · ‖ on K.
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Then K is super weakly compact in X.

Proof Assume that K is not super weakly compact. Then there exists ε > 0 such
that, for each n ∈ N, there is an (n, ε)-tree An ⊂ K,

An = {xn
ε1 ,ε2 ,...,εk

: k = 1, 2, . . . , n, εi = 1, 2 and i = 1, 2, . . . , k},

where

xn
ε1 ,ε2 ,...,εk

=
1

2
(xn
ε1 ,ε2 ,...,εk

,1 + xn
ε1 ,ε2 ,...,εk

,2)

and

‖xn
ε1 ,ε2 ,...,εk

,1 − xn
ε1 ,ε2 ,...,εk

,2‖ ≥ ε

for k = 1, 2, . . . , n − 1, εi = 1, 2, and i = 1, 2, . . . , k. Let f = | · |2. Note that f is
bounded by λ2 on K. By Definition 2.6, there exists δ > 0 such that

0 ≤ inf
x∈K

f (x) ≤ f (xn
ε1

) <
1

2

(
f (xn

ε1,1) + f (xn
ε1,2)
)
− 1

2
δ

<
1

22

(
f (xn

ε1,1,1) + f (xn
ε1,1,2) + f (xn

ε1,2,1) + f (xn
ε1,2,2)

)
− δ

<
1

2n

(
f (xn

ε1,1,...,1) + f (xn
ε1,1,...,2) + · · · + f (xn

ε1,2,...,1) + f (xn
ε1,2,··· ,2)

)
− 2n−1δ

≤ λ2 − 2n−1δ −→ −∞, as n→∞.

This is a contradiction.

Now, we are ready to prove the main result of this section. We restate it as follows.

Theorem 2.9 Suppose that K is a closed bounded convex set of a Banach space
(X, ‖ · ‖). Then K is super weakly compact if and only if there exists a w∗ lower semicon-
tinuous seminorm p on X∗ with p ≥ σK such that p2 is uniformly Fréchet differentiable
on BX∗ .

Proof Sufficiency. Since p is a w∗ lower semicontinuous seminorm on X∗, it is nec-
essarily continuous. Let C∗ = {x∗ ∈ X∗ : p(x∗) ≤ 1}, and let C ⊂ X be a closed
convex set such that C0 = C∗. Then C∗ is nonempty, convex, and w∗ compact. Since
p ≥ σK entails that K ⊂ C , it suffices to show that C is super weakly compact. Put
Sp = {x∗ ∈ X∗ : p(x∗) = 1}. The uniform Fréchet differentiability of p2 is equiv-
alent to that p is uniformly Fréchet differentiable on Sp. By [5], C is weakly com-
pact. Since p is w∗ lower semicontinuous on X∗, the Fréchet derivative dp(x∗) ∈ C
for every x∗ ∈ Sp[5]. Let q be the Minkowski functional generated by C , and let
Xq = ∪∞n=1nC . Then q is lower semicontinous on X, and (Xq, q) is a Banach space
(see, for instance, the proof of in [15]).

By Lemma 2.8, we need only show that (Xq, q) is relatively uniformly convex with
respect to ‖ · ‖. Note that C is just the closed unit ball of (Xq, q). We are done if we
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can prove that for any two sequences {xn}, {yn} ⊂ C with q(xn) = q(yn) = 1 such
that q(xn + yn)→ 2, we have ‖xn − yn‖ → 0.

Let x∗n , y∗n and z∗n ∈ Sp such that

p(x∗n ) = 〈x∗n , xn〉 = q(xn) = 1, p(y∗n ) = 〈y∗n , yn〉 = q(yn) = 1

and p(z∗n ) = 〈z∗n , zn〉 = 1 for all n ∈ N, where zn = (xn + yn)/q(xn + yn). By Propo-
sition 2.3,

dp(x∗n ) = xn, dp(y∗n ) = yn, and dp(z∗n ) = zn.

We have that q(xn + yn)→ 2 implies that

〈z∗n , xn〉 → 1 = 〈x∗n , xn〉 and 〈z∗n , yn〉 → 1 = 〈y∗n , yn〉.

Uniform Fréchet differentiability of p on Sp and Proposition 2.4 entail that

‖zn − xn‖ = ‖dp(z∗n )− xn‖ → 0 and ‖zn − yn‖ = ‖dp(z∗n )− yn‖ → 0,

and which further imply that ‖xn − yn‖ → 0.
Necessity. Let XK be the closure of spanK in X. Since K is also super weakly

compact in XK , by Lemma 2.7, there is a reflexive Banach space (E, | · |) such that
K ⊂ BE ⊂ λBXK for some λ > 0, and (E, | · |) is relatively uniformly convex with
respect to ‖ · ‖. Next, we extend | · | from E to X by |x|X = |x| if x ∈ E and |x|x =
+∞ otherwise. Then | · |X is extended real-valued and lower semicontinuous on X,
since BE is closed in X. Let

p ≡ σBE = | · |∗X =
√

2( 1
2 | · |

2
X)∗, Sp = {x∗ ∈ X∗ : p(x∗) = 1},

and note that co{(Sp ∪ ker p} ⊃ λ−1BX∗ . We need only show that p is uniformly
Fréchet differentiable on Sp. Let {x∗n}, {y∗n} ⊂ Sp satisfy p(x∗n − y∗n ) → 0. Since BE

is (super) weakly compact in X, there exist {xn}, {yn} ⊂ SE such that 〈x∗n , xn〉 = 1
and 〈y∗n , yn〉 = 1. Therefore, 〈x∗n , yn〉 = 〈y∗n , yn〉− 〈x∗n − y∗n , yn〉 → 1 and 〈y∗n , xn〉 =
〈x∗n , xn〉−〈y∗n−x∗n , xn〉 → 1. These entail |xn + yn| → 2. The relative uniform convex-
ity of | · | implies that ‖xn− yn‖ → 0. Therefore, p is uniformly Fréchet differentiable
on Sp.

3 Representation of swcc(X)∗

In this section, we shall give the dual of swcc(X). To begin with, we present some
notions. The concept of ∆-convex function is used in Cepedello–Boiso [4] (see, also
[1, p. 94]). Analogously, we call that a function f defined on a convex subset A of
a Banach space X ∆-support function if there are two nonempty (bounded convex)
subsets C,D ⊂ X∗ such that f = σC − σD on A. In particular, if 0 ∈ C ∩ D, we say
that the function f a ∆-Minkowski functional.

We would like to mention two remarkable results concerning embedding of cc(X)
(the normed semigroup of all compact convex sets of a Banach space X and rep-
resentation of cc(Rn)∗. Radstrom [14] showed that cc(X) is (additivity and non-
negative scalar multiplication preserved) isometric to cone of a real Banach space.
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Keimel and Roth [11] proved that cc(Rn∗)∗ ' C(SX∗)∗, where SX∗ denotes the
unit sphere of (Rn)∗, and C(SX∗) stands for the space of all continuous functions
on SX∗ equipped with the sup-norm. In Cheng and Zhou [7], it is shown that
cc(X)∗ = CPH(BX∗)∗, where CPH(BX∗) denotes the Banach space of all w∗ contin-
uous positively homogenous functions on X∗ restricted to BX∗ , while the dual of
wcc(X) (the normed semigroup of all nonempty weakly compact convex sets of X)
is just the dual of C∆SSFD(BX∗). (The normed space of all w∗ lower semicontinuous
positively homogenous functions on X∗ restricted to BX∗ satisfying that for each el-
ement f of the space there exist two weakly compact convex sets C and D ⊂ X such
that f = σC − σD and such that σ2

C and σ2
D are Fréchet differentiable on BX∗ .)

Inspired by the preceding results, in this section we show that swcc(X)∗ =
C∆MSU FD(BX∗)∗, where C∆MSU FD(BX∗) denotes the normed space of all w∗ lower
semicontinuous ∆-Minkowski functionals defined on X∗ restricted to BX∗ satisfy-
ing that for each element f of the space there exist two closed bounded convex sets
C and D ⊂ X with 0 ∈ C ∩ D such that f = σC − σD and such that σ2

C and σ2
D are

uniformly Fréchet differentiable on BX∗ .
For a real Banach space X, let

Pswcc(X) = {σK : K ∈ swcc(X)};

Mswcc(X) = {σK1 − σK2 : K1,K2 ∈ swcc(X)};

swcc0(X) = {K ∈ swcc(X) with 0 ∈ K};

Pswcc0(X) = {σK : K ∈ swcc0(X)};

Mswcc0(X) = {σK1 − σK2 : K1,K2 ∈ swcc0(X)}.

Proposition 3.1 Suppose that X is a Banach space. Then Mswcc(X) = Mswcc0(X).

Proof The one side inclusion Mswcc(X) ⊃ Mswcc0(X) is trivial. To show Mswcc(X) ⊂
Mswcc0(X), let f = σK1 − σK2 for some K1,K2 ∈ swcc(X). Choose any xi ∈ Ki for
i = 1, 2, and let K = co{±x1,±x2}. Then K is convex compact (hence, super weakly
compact). By Proposition 1.3, C ≡ K1 +K and D ≡ K2 +K are super weakly compact
and convex. Therefore, C,D ∈ Pswcc0 (X) and

f = σK1 − σK2 = (σK1 + σK )− (σK2 + σK )

= σK1+K − σK2+K = σC − σD ∈ Mswcc0 (X).

Lemma 3.2 Suppose that X is a Banach space. Then swcc0(X) is order isometric to
Pswcc0(X);

Proof For all λ ≥ 0 and for all K,K1,K2 ∈ swcc0(X), we have σK1+K2 = σK1 + σK2 ,
σλK = λσK . Since dH(K1,K2) = ‖σK1 − σK2‖, swcc(X) is order isometric to Pswcc0(X),
and the lemma follows.

Recall that an extended real-valued Minkowski functional p on a Banach space X
is a nonnegative-valued sublinear function, i.e., p(x) ∈ R+ ∪ {+∞} with p(λx) =
λp(x) for all x ∈ X, λ ≥ 0 and with p(x + y) ≤ p(x) + p(y) for all x, y ∈ X.
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Lemma 3.3 Suppose that X is a Banach space and p : X → R+∪{+∞} is an extended
real-valued lower semicontinuous Minkowski functional with p ≥ ‖ · ‖ on X. Let q2

n =
p2 + cn‖ · ‖2 for all n ∈ N, where 0 < cn → 0. Then (q2

n)∗ → (p2)∗ uniformly on B∗.

Proof By definition of conjugate function, it suffices to note that for all x∗ ∈ X∗,

1√
1 + cn

(p2)∗(x∗) = {(1 + cn)p2}∗ ≤ (q2
n)
∗
(x∗)

= sup{〈x∗, x〉 − (p2(x) + cn‖x‖2) : x ∈ domp}

≤ (p2)∗(x∗) ≤ (‖ · ‖2)∗(x∗).

Theorem 3.4 Pswcc0(X) = U , the closure of

U ≡ {σK : K ∈ swcc0(X), σK
2 is uniformly Frechet differentiable on BX∗}.

Proof We show first that U ⊂ Pswcc0(X). Suppose that K ⊂ X is a closed convex
set with σK ∈ U , then K also contains the origin. We claim that K is super weakly
compact. Let σn ≡ σKn ∈ U such that σn → σK in C(BX∗). Then, by Theorem
2.9, Kn are super weakly compact for all n ∈ N. This entails that for every ε > 0
there exists n ∈ N such that K ⊂ Kn + εBX. According to [6, Lemma 4.5], K is super
weakly compact. Conversely, let K ∈ swcc0(X), qK be the (extended real-valued and
lower semicontinuous) Minkowski functional generated by K, i.e., qK (x) = inf{α >
0 : x ∈ α−1K}. Next, let p = σK , and let XK be the closure of spanK in X. Then
we obtain that p =

√
2(q2

K/2)∗. Since K is also super weakly compact in XK , by
Lemma 2.7, there is a reflexive space (E, | · |) such that K ⊂ BE ⊂ λBXK for some
λ > 0, and (E, | · |) is relatively uniformly convex with respect to ‖ · ‖. Therefore,
the Minkowski functional qK satisfies qK ≥ | · | on (E, | · |), and for all a, b > 0,
f ≡ aq2

K + b| · |2 is relatively uniformly convex with respect to ‖ · ‖, i.e., for any
two bounded sequences {xn}, {yn} ⊂ (E, | · |), we have ‖xn − yn‖ → 0 whenever
f (xn) + f (yn) − 2 f ((xn + yn)/2) → 0. Let fm = 1

2 q2
K + 2−m| · |2 for all m ∈ N.

According to Lemma 3.2, f ∗m → ( 1
2 q2

K )∗ = 1
2 p2 uniformly on each bounded subset of

(E, | · |)∗. Applying relative uniform convexity of fm and a similar discussion of the
proof of the necessity part of Theorem 2.9, we can see that f ∗m is uniformly Fréchet
differentiable on each bounded subset of (E, | · |)∗. Note that | · | is stronger than ‖ · ‖
on E and that E is, with respect to the original norm ‖ · ‖, a dense subspace of XK .
Within the natural norm-preserved restriction to E, we obtain X∗K ⊂ E∗ and BX∗

K
⊂

λ−1BE∗ . These further imply that f ∗n are w∗-lower semicontinuous and uniformly
Fréchet differentiable on each bounded subset of X∗K = X∗/X0

K . Now, we define
Minkowski functionals {pn}n∈N for x∗ ∈ X∗ by pn(x∗) =

√
2 f ∗n (Q(x∗)), where

Q : X∗ → X∗/X0
K denotes the quotient mapping. Then it is easy to see that pn → p

and p2
n are uniformly Fréchet differentiable on each bounded subset of X∗.

Corollary 3.5 Mswcc(X) is a dense subspace of C∆MSUFD(B∗).

Proof By Proposition 3.1 and Theorem 3.4,

Mswcc(X) = Mswcc0(X) = Pswcc0(X) − Pswcc0(X) = U −U ⊂ C∆MSUFD(B∗).
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According to definition of C∆MSUFD(B∗), for every ε > 0 and for every f ∈
C∆MSUFD(B∗), there exists fε = σK1 − σK2 for some closed bounded convex sets
K1,K2 ∈ X with 0 ∈ K1 ∩ K2 such that both σ2

K1
and σ2

K2
are uniformly Fréchet

differentiable on BX∗ satisfying

| f (x∗)− fε(x∗)| < ε uniformly for x∗ ∈ BX∗ .

By Theorem 3.4 again, we get K1,K2 ∈ swcc0 and fε ∈ Mswcc(X).

The following result is the main theorem of this section.

Theorem 3.6 Suppose that X is a Banach space. Then

swcc(X)∗ = C∆MSUFD(B∗)∗.

Proof Since Mswcc(X) is a dense subspace of C∆MSUFD(B∗)(Corollary 3.5), we have
M∗swcc(X) = C∆MSUFD(B∗)∗. Since swcc(X) is (ordered isometric to) a reproducing
cone of Mswcc(X) with nonempty interior, by definition of the dual of a normed semi-
group it is easy to show that swcc(X)∗ = M∗swcc(X).
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