Glasgow Math. J. 43 (2001) 113-121. © Glasgow Mathematical Journal Trust 2001. Printed in the United Kingdom

CHAIN-FINITE OPERATORS AND LOCALLY CHAIN-FINITE
OPERATORS

TERESA BERMUDEZ* and ANTONIO MARTINON

Departamento de Andalisis Matematico, Universidad de La Laguna, 38271 La Laguna ( Tenerife), Spain
e-mail: thermude@ull.es, anmarce@ull.es

(Received 1 June, 1999)

Abstract. We give algebraic conditions characterizing chain-finite operators
and locally chain-finite operators on Banach spaces. For instance, it is shown that 7'
is a chain-finite operator if and only if some power of T is relatively regular and
commutes with some generalized inverse; that is there are a bounded linear operator
B and a positive integer k such that

T*BT* = T and T*B = BT*. (1)

Moreover, we obtain an algebraic characterization of locally chain-finite operators
similar to (1).

1991 Mathematics Subject Classification. 47A11, 47B99.

1. Introduction. The problem we are concerned with in this paper is the
algebraic characterization of chain-finite operators (global case) and of locally
chain-finite operators (local case).

In the global case, recall that a bounded linear operator 7 on a Banach space X
(T € L(X)) is a chain-finite operator, denoted by T € CF(X), if there exists a non
negative integer k such that N(T*) = N(T**') and R(T*) = R(T**"), where N(T)
and R(T) denote the kernel and the range of T, respectively. The smallest non
negative integer k& for which this occurs will be denoted by /(T). The following
characterizations of chain-finite operators are well known. Given T € L(X), T is a
chain-finite operator with /(T") = k if and only if 0 is a pole of the resolvent operator
(A — T)~" of T of order k [17, Theorems V.10.1 & V.10.2]. For convenience we shall
say that 0 is a pole of the resolvent operator of T of order 0 if 0 € po(T’). Moreover, T
is a chain-finite operator if and only if

X =NT"N @ R(TY )
for some k € N (k > I(T")) [13, Proposition 38.4]. See [13,17] for more details.

In [9], Gonzalez and Onieva prove the following algebraic property: if
T € CF(X), then there exists a positive integer k and an operator B € L(X) such that

T*BT* = T* and TB = BT. (3)

The following condition is similar and apparently weaker than (3):
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T*BT* = T* and T*B = BT*. 4)

Also Laursen and Mbekhta [14] and Harte [10,11] prove that 7 is a chain-finite
operator with /[(T) < 1 if and only if T is relatively regular and commutes with some
generalized inverse; namely there exists S € L(X) such that 7= TST and ST = TS;
the operator ST is called the Drazin inverse of T [10, Definition 3.1].

In the local case, taking into account [1, Remark 1.5], we have

o(Tx, T) Co(x,T) C o(Tx, T)U {0},

where o(x, T) denotes the local spectrum of 7 at x. We can easily derive the
following chain of inclusions for the local spectra

o(x,T)Do(Tx,T)D...>0(T*x,T)> ..., (5)

where 0 is the only point which may make these subsets different. Hence there is at
most one inclusion in (5) that is not an equality. Then it is said that T is a locally
chain-finite operator at x if the chain given in (5) breaks. Namely, given T € L(X)
and x € X, we say that T is a locally chain-finite operator at x with [(T, x) = k > 0 if
o(T*'x, T) # o(T*x, T) and with (T, x) = 0 if 0¢ o(x, T) [4, Definition 4.1]. This
notion is a localization of the concept of chain-finite operator: if T satisfies the
Single Valued Extension Property (hereafter referred to as SVEP), then T is a chain-
finite operator if and only if 7 is a locally chain-finite operator at x for every x € X
[4, Theorem 4.2]. Moreover, locally chain-finite operators have the properties that 0
is a pole of the local resolvent function and that the vector has a unique decom-
position similar to (2). Indeed, given T € L(X) and x € X, if T has the SVEP and
0 € o(x, T) then, by [3, Theorem 1], 0 is a pole of order k of the local resolvent
function if and only if

0eo(T"'x, T)\ o(T*x, T); (6)

equivalently, there exists a unique decomposition x = x;+ x; such that
X1 € N(TH\ N(T*") and o(xy, T) = o(x, T) \ {0} by [4, Theorem 3.3]. For con-
venience, we shall say that 0 is a pole of the local resolvent function of 7 at x of
order 0 if 0 € p(x, T'). Note that T is locally chain-finite at x with /(7, x) = k if and
only if 0 is a pole of the local resolvent function of 7" at x of order k.

In this paper, we give some algebraic characterizations of chain-finite operators
and of locally chain-finite operators. In Theorem 1, we prove that (3) and (4) are
algebraic characterizations of chain-finite operators. By using a local result we give
one more characterization (Corollary 2). Under certain conditions, we prove that T
is a locally chain-finite operator with /(7, x) < k if and only if there exists B € L(X)
such that, for every n > 1 we have

T*B"T*x = B" ' Tx. (7)

Moreover, Corollary 3 proves that condition (7) implies the existence of S € L(X)
such that

TEST*x = T*x and TSx = STx, ®)
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and by Example 2 we have that (7) and (8) are not equivalent. Indeed, we prove that
(8) is a necessary condition (Proposition 3), (7) is a sufficient condition (Theorem 2)
and under certain additional conditions is a characterization (Proposition 2,
Remark 3) of locally chain-finite operators.

2. Preliminaries. Given 7 € L(X), a complex number A belongs to the resolvent
set p(T) of T'if there exists (A — T) "' =: R(A, T') € L(X). We denote o(T) = C \ p(T)
the spectrum of 7. The resolvent map R(., T) : p(T)—> L(X) is analytic; hence the
following equation has an analytic solution on p(7")

(= T)w(p) = x, )

given by w(u) = R(u, T)x for every u € p(T) and x € X. This function may admit
an analytic extension for some x € X. We say that a complex number A belongs to
the local resolvent set of T at x, denoted by p(x, T), if there exists an analytic func-
tion w: U— X, defined on a neighborhood U of A, that satisfies (9), for every
wu € U. The local spectrum of T at x is the complement o(x, T) := C\ p(x, T).

Since w is not necessarily unique, a complementary property is needed to prevent
ambiguity. An operator T € L(X) satisfies the SVEP if 2 = 0 is the unique analytic
solution of (A — T)A(1) = 0 on any open subset of the plane with values in X.

If T satisfies the SVEP, then for every x € X there exists a unique analytic
function X7 defined on p(x, T) satisfying (9) that is called the local resolvent function
of T at x.

In general, the local spectrum o(x, 7') may be empty even for x # 0, but Finch
[8] proved that T € L(X) satisfies the SVEP if and only if o(x, T) # @ for every
x € X'\ {0}. See [6,7,15] for further details.

Next, we recall some results that will be useful henceforth.

LEMMA 1. Let T € L(X) and let x € X'\ {0}.
1. [7, Theorem 2.2]. 0 € p(x, T) if and only if there are numbers M > 0, R > 0
and a sequence {x,} C X with the following properties:

(@) Txo = x,
(b) Tx, = xp—1,
(©) llxall < MR".

2. [16, Theorem 2.3] & [4, Corollary 2.2] (Local Riesz Decomposition.) If T
has the SVEP and o(x, T) = o1 U 0y, where o, and o, are disjoint closed sets, then
there exists a unique decomposition x = x1 + x, where o(x;, T) = 0; (j =1, 2).

3. [4, Theorem 3.3] If T has the SVEP, then 0 is a pole of Xt of order k > 0 if
and only if there exists a unique decomposition x = xi + x> such that T*x; =0,
T"x; # 0 and o(x2, T) = o(x, T) \ {0}.

4. [3, Theorem 1] & [4, Proposition 3.1] If T has the SVEP, then 0 is a pole of
Xr of order less than or equal to k>0 if and only if o(T*x,T)+# o(x,T) or
0€p(x, T).

5. [4, Theorem 4.2, Corollary 4.3] If T has the SVEP, then T is a chain-finite
operator with (T) = k if and only if T is locally chain-finite at x with (T, x) < k, for
every x € X.

The condition 0 € p(x, T') given in part (1) of Lemma 1 is described as follows: x
is in the holomorphic range of T [12].
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3. Chain-finite operators. The following result proves that conditions (3) and (4)
are algebraic characterizations of a chain-finite operator.

THEOREM 1. Let T € L(X) and let k be a positive integer. The following assertions
are equivalent.

(a) There exists B € L(X) such that T*BT* = T* and BT = TB.

(b) There exists B € L(X) such that T*BT* = T* and BT* = T*B.

(¢) Te CAX)and [(T) < k.

Proof. (a)=(b) is obvious.

(b)=>(c). Note that N(T*) ¢ N(T") c N(T?*) and R(T*) > R(T") > R(T*) for
every h =k, ..., 2k. Consequently, it is sufficient to prove that N(T¥) > N(T?) and
R(T*) ¢ R(T?*). We have that

x € N(T*)= Tkx = T*BT*x = BT*x =0 = x e N(T").
Moreover, if x € R(T), then there exists y € X such that
x=T*y = T*BT*y = T*By € R(T%).

Thus T € CF(X) and (T) < k.

(¢)=(a). This implication was proved by Gonzalez and Onieva [9]. For the sake
of completeness we give the proof here.

For x € X, taking into account equation (2), we write x = Ty + z, where
y € R(T*) and z € N(T*) are determined uniquely since T* is an isomorphism of
R(T*) onto R(T?*). Note that T*x = T?y. We define

Bx = B(T*y +z):= y.

Then
T*BT*x = T"BT*y = 7%y = T*x.
Moreover
TBx = Ty = BT**'y = BTx.
Hence T*BT* = T and TB = BT. 0

In a wide context, it is said that 7' € L(X) is polar if condition (b) of the above
theorem holds for some k and simply polar if it is polar with k = 1. See [10,11].

REMARK 1. By Theorem 1, it is clear that T € CF(X) with [(T) < k if and only if
T* e CR(X) with [(T*) < 1. Since T € CF(X) with (T) = k if and only if 0 is a pole
of the resolvent operator of T of order k, we have that 0 is a pole of the resolvent
operator of T of order less than or equal to & if and only if 0 is a pole of the resol-
vent operator of T* of order less than or equal to 1.

As an immediate consequence of Theorem 1 we get the following result of

Laursen and Mbekhta [14, Theorem 3] and Harte [10, Theorem 3.3] & [11, Theorem
7.3.6].
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COROLLARY 1. Let T € L(X). The following assertions are equivalent.
1. There exists B € L(X) such that TBT = T and BT = TB.
2. X=NT)® R(T).

Note that Corollary 1 establishes that 7' is simply polar if and only if 7 is a
chain finite operator with /(7)) < 1.

Recall that T € L(X) is relatively regular if there exists an operator B € L(X),
called a generalized inverse of T, such that TBT = T. Thus the chain-finite operators
are characterized by the following condition: some power of 7 is relatively regular
and commutes with some generalized inverse.

Next, we consider some classes of operators in L(X): CF(X) (chain-finite opera-
tors), RR(X) (relatively regular operators) and PRR(X) (power relatively regular
operators). The three classes are related in the following way:

CF(X) C PRR(X) > RR(X).

The following examples show that the inclusions are strict.

ExamPLEs. (1) We consider T}, B € L(¢?) defined by
Ti(61. 6, ..) = (5,8, ...),
B(§1,6,...):=(0,&,6,...).

Then T'BT, = T; and so T} € RR(¢?) C PRR(£?). Moreover, foreveryk =1,2, ...,
we have that R(T%) = €2, but N(T¥) # {0}; hence T} ¢ CF(¢?).
(2) The operator T, € L(£?), defined by

Ts(&, &, ...) = (27%6,0,27%4,0,...),

is a compact operator [13, Example 13.2] and R(73) is infinite dimensional, hence
R(T») is not closed [17, Theorem V.7.4]. Thus 7->¢ RR(¢?). Furthermore, it is
obvious that 73 = 0, hence T, € CF(¢*) C PRR(£?).

(3) Define T € L(¢? x £?) by

T((xn), ) == (T1(xn), T2(¥n))
where T} and T, are as defined in the examples above. Therefore T'¢ CF(£> x £2),
since R(T*) = €% x R(T) and N(T*) # {0} x N(T%). Also T¢ RR(£*> x £%) because
R(T) is not closed and T € PRR(¢> x £?), since
S((xn), () := (B(x), 0)
satisfies T2ST? = T2, where B is as defined in the first example. ]
4. Locally chain-finite operators. In this section, we give analogues of Theorem 1

for locally chain-finite operators.
The following proposition will be useful in the rest of the paper.
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PROPOSITION 1. Assume that T € L(X) has the SVEP. Let k be a positive integer
and let x € X'\ {0}. Then T is a locally chain-finite operator with (T, x) < k if and only
if T* is locally chain-finite at x with (T*, x) < 1.

Proof. By definition, if T is a locally chain-finite operator at x with (7, x) <k
we have that 0 € p(x, T) or 0 € o(x, T) \ o(T*x, T). Similarly, T* is a locally chain-
finite operator at x with ATK x)<1 if and only if 0e p(x,T%) or
0 € o(x, T\ o(T*x, T*). Taking into account the local spectral mapping theorem
for the functional calculus [2, Theorem 1.2] and [6, Theorem 1.5] (i.e
o(», AT)) = flo(y, T)) for admissible functions /) with f(z) = z¥, we obtain that the
above conditions are equivalent. O

Henceforth, by the result above we have that 0 is a pole of the local resolvent
function of T at x of order less than or equal to k if and only if 0 is a pole of the
local resolvent function of T at x of order less than or equal to 1.

Next, we prove a sufficient condition for an operator to be locally chain-finite.

THEOREM 2. Assume that T € L(X) has the SVEP, let k be a positive integer and
let x € X\ {0}. If there exists B € L(X) such that T*B"T*x = B"'T*x for alln e N,
then T is locally chain-finite at x with (T, x) < k.

Proof. First, let us prove the result for k = 1. Construct a sequence of vectors in
the following way: x,, := B""' Tx for all n € N and x, := BTx. Then

Tx,=TB""'Tx = B'"Tx = x,_,

and

Ix,ll = 1B Tx|| < R"M,

where R := ||B|| and M := ||xo||. By part (1) of Lemma 1 we have that 0 € p(Tx, T).
Then T is a locally chain-finite operator at x with (7T, x) < 1.

Let k > 1. If there exists B € L(X) such that T*B"T*x = B" ' T*x for all n ¢ N
then, by the first part of this proof, we have that T is a locally chain-finite operator
at x with [(T*, x) < 1. Hence it is enough to apply Proposition 1 to complete the
proof. O

Using the local result above we give a new global characterization of chain-
finiteness for operators with the SVEP.

COROLLARY 2. Assume that T € L(X) has the SVEP and let k be a positive inte-
ger. Then T is a chain-finite operator with (T) < k if and only if there exists B € L(X)
such that T*B"T* = B™'T* for all n € N.

Proof. If T is a chain-finite operator with /(7") < k then, by Theorem 1, there
exists B € L(X) such that T*BT* = T* and BT = TB. Hence T*B"T* = B"~' T* for
all n € N. Suppose that there exists B € L(X) such that T*B"T*x = B! T*x for all
x € X and n € N. By Theorem 2, we have that T is a locally chain-finite operator
with (T, x) < k for all x € X. Taking into account part (5) of Lemma 1, we have
that T is a chain-finite operator with (T, x) < k. O
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REMARK 2. In the proof of Corollary 2, we do not need the hypothesis of the
SVEP to show the necessity of the condition that characterizes chain-finite opera-
tors. On the contrary, this hypothesis cannot be neglected to establish that the con-
dition is sufficient.

ExaMmPLE 1. Let T be the left shift operator on £,(N), i.e. T(x, x3,...):=
(x2, x3,...). Let B be the right shift operator; i.e. B(xy, x2,...) := (0, x1, x2,...). Itis
clear that T is surjective but not injective. Hence by [7, Corollary 2.4] T does not
have the SVEP. Moreover, o(T) = D(0, 1); (thus 0 is not a pole of the resolvent
operator and hence T is not a chain-finite operator). Also TB"T = B! T, for all
n € N. Notice that TB # BT. O

With some additional hypotheses we have the converse of Theorem 2 as shown
in the following result.

PRrOPOSITION 2. Let T € L(X) with the SVEP such that 0 is an isolated point of
o(T), let k be a positive integer and let x € X\ {0}. Then T is a locally chain-finite
operator at x with (T,x) <k if and only if there exists B e L(X) such that
TkB'T*x = B"'T*x, for all n € N.

Proof. Since 0 is an isolated point of o(7T'), we have that X = X & X,, where X;
are invariant under 7 for i = 1,2, o(7T]X;) = {0} and o(T|X3) = o(T) \ {0} by [17,
Theorem V.9.1]. Define B|X; := 0 and B|X, := (T*|X,)™". If T is a locally chain-
finite operator at x with I[(T, x) < k, then 0 is a pole of X7 of order less than or equal
to k. By part (3) of Lemma 1, x = x| + x5, where TXx; =0 and o(xs, T) =
o(x, T)\ {0}. Let x, = y; + y», where y; € X; for i =1,2. By [6, Proposition 1.3],
o(x2, T) =00, T X1)Uo(yy, T1X3). If y; #0, then o(xy, T)=o(x,T)\ {0} =
{0} U o(y,, T|X3). Hence y; = 0 and so x, € X,. Thus

TanT/cx _ TanT/(x2 — Tan—lBTkx2 — T/cBn—lx2 — Bn—lTkx2 _ Bn_lTkX.
]

REMARK 3. Let T € L(X) have the SVEP and let x € X'\ {0}. Suppose that
0 € p(x, T). In order to get a result as in Proposition 2, we need to define B € L(X)
such that TB"Tx = B" ! Tx, for all n € N. The idea is that Bx must have a definition
as the local resolvent function of T at x. Define

d*xr
dr?

R dax
M = ({Tx, x, %1(0), %(0), 0), ...,

and By := —p7(0) for all y € M. If B is defined on M as above and could be exten-
ded as a bounded and linear operator on the whole of X, then there exists B € L(X)
such that TB"Tx = B"" ' Tx, for all n € N. Indeed, TBy = BTy for all y € M. Notice
that 0 € p(x, T) N p(Tx, T). Moreover, by [7, Proposition 2.6], o(x, T) = o(X7(}), T),
for all A € p(x, T). Hence 0 € p(x7(0), T). By [5, Remark 3.3]

dx —
ZL0) = —F1(0)(0),
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and hence we have

~ — dx
0 € p(x, T) = p(x7(0), T) = p(x7(0)7(0). T) = ,0(;; (), T)-

By an induction argument we obtain that

d"Xr
dan

0€px,T)= ,0( (0), T).

Suppose that 0 is a pole of X7 of order less than or equal to k > 0. By part (3) of
Lemma 1, x = x; + x5 such that T%x; = 0 and o(x», T) = o(x, T) \ {0}. Define

o d,
My =: ({Txy, x2, er(o),d—i(o),

4*5,
a2

©0),...h,

and By = —p7(0), for all y € M,. Now, the argument is the same as above.

Proposition 2 and Remark 3 prove that with some additional conditions Theo-
rem 2 is a characterization of locally chain-finite operators. However, we do not
know if Theorem 2 is a characterization, in general.

In the next proposition, we give a necessary condition for an operator to be
locally chain-finite similar to the necessary condition for chain-finiteness of opera-
tors given in Theorem 1.

ProposITION 3. Let T € L(X) have the SVEP, let k be a positive integer and let
x € X\ {0}. If T is a locally chain-finite operator at x with (T, x) <k, then there
exists B € L(X) such that T*BT*x = T*x and TBx = BTx.

Proof. First, let us prove the result for £ = 1. Suppose that 0 € p(x, T). Define
M := ({x, Tx}). Hence X=M@ N for some N C X. Define B(ax+ BTx):=
—ax7(0) + Bx, for all «,€C and By:=0, for all ye N. Then B e L(X),
TBTx = Tx, and TBx = BTx. Suppose that T is a locally chain-finite operator with
(T, x) =1, namely 0 € o(x, T) \ o(Tx, T). By part (3) of Lemma 1 there exists a
unique decomposition x = x| + x, such that 7x; =0 and o(x,, T) = o(x, T) \ {0}.
Define M; := ({x3, Tx»}) and repeat the process as above. Hence
TBTx = TBTxy = Tx, = Tx and BTx = TBx.

Let k£ > 1 and T locally chain-finite operator at x with (7, x) < k. By the proof
above there exists B € L(X) such that T*BT*x = T*¥x and T*Bx = BT*x. In fact,
TBx = TBx, = x; = BTx; = BTx. Thus, by Proposition 1, the result is proven. []

COROLLARY 3. Assume that T € L(X) has the SVEP, let k be a positive integer
and let x € X\ {0}. If there exists B € L(X) such that T*B"T*x = B""'T*x for all
n e N, then there exists S € L(X) with T*ST*x = T*x and TSx = STx.

Proof. Apply Theorem 2 and Proposition 3. O

The necessary condition given in Proposition 3 is not a sufficient condition. In

fact, it is not equivalent to the sufficient condition given in Theorem 2, as shown in
the following example.
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ExAMPLE 2. Let T be the right shift operator on £,(N), B the left shift operator
and x:=(0,1,0,...). It is easy to prove that T has the SVEP, o(x, T) = D(0, 1)
(hence 0 is not a pole of the local resolvent function so that 7 is not a locally chain-
finite operator at x), TBTx = Tx and TBx = BTx. Notice that TB*Tx # B*Tx.
Moreover, Example 1 proves that there may exist B € L(X) such that TBTx = Tx
and TBx = BTx, but this need not imply that there exists S € L(X) such that
TS"Tx = S" ' Tx, for all n € N.
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