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Connectivity in Hypergraphs

Megan Dewar, David Pike, and John Proos

Abstract. In this paper we consider two natural notions of connectivity for hypergraphs: weak and
strong. We prove that the strong vertex connectivity of a connected hypergraph is bounded by its
weak edge connectivity, thereby extending a theorem of Whitney from graphs to hypergraphs. We
ûnd that, while determining a minimum weak vertex cut can be done in polynomial time and is
equivalent to ûnding a minimum vertex cut in the 2-section of the hypergraph in question, deter-
mining a minimum strong vertex cut is NP-hard for general hypergraphs. Moreover, the problem
of ûnding minimum strong vertex cuts remains NP-hard when restricted to hypergraphs with max-
imum edge size at most 3. We also discuss the relationship between strong vertex connectivity and
the minimum transversal problem for hypergraphs, showing that there are classes of hypergraphs
for which one of the problems is NP-hard, while the other can be solved in polynomial time.

1 Introduction

When extending concepts from graph theory to the realm of hypergraph theory it is
not unusual for there to be multiple natural ways in which the concepts can be gen-
eralized. _is is certainly the case when considering aspects of connectivity. For a
nontrivial graph G, its connectivity κ(G) is deûned as the least number of vertices
whose deletion from G results in a graph that is not connected. Since each edge of G
is a 2-subset of the vertex set of the graph, deleting a vertex from an edge also results
in the removal of that edge from the edge set of the graph. However, for hypergraphs
the removal of a vertex from each edge that contains it may have quite a diòerent ef-
fect from also removing these edges from the edge set. _ese distinctions give rise
to the notions of weak vertex deletion and strong vertex deletion, respectively. We
correspondingly deûne the weak vertex connectivity κW(H) (resp. the strong ver-
tex connectivity κS(H)) of a nontrivial hypergraph H to be the least number of ver-
tices whose weak (resp. strong) deletion fromH results in a disconnected hypergraph,
thereby generalizing connectivity as usually deûned for graphs (see [3] for more de-
tails about graph terminology).

Hypergraphs with weak vertex connectivity κW(H) = 1 have recently been con-
sidered by Bahmanian and Šajna [1]. In this paper we consider vertex cuts of any size,
with emphasis on strong vertex connectivity. We also introduce weak and strong edge
connectivity for hypergraphs.

In 1932,Whitney established one of the basic results on connectivity for graphs: the
connectivity κ(G) of a nontrivial graphG is bounded above by the edge-connectivity
κ′(G), which in turn is bounded above by the minimum degree δ(G) of the graph
G [14]. We extend this result to hypergraphs and, in so doing, also introduce notions

Received by the editors March 8, 2017; revised January 22, 2018.
Published electronically March 21, 2018.
AMS subject classiûcation: 05C65, 05C40, 68Q17.
Keywords: hypergraph, connectivity, computational complexity, transversal.

https://doi.org/10.4153/CMB-2018-005-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2018-005-9


Connectivity in Hypergraphs 253

of weak and strong edge deletion. Here, weak deletion of an edge emerely involves re-
moving e from the edgemultiset of the hypergraph. By deûning κ′W(H) to be the least
number of edges whose weak deletion from H results in a disconnected hypergraph,
we show that Whitney’s result can be generalized as follows.

_eorem 3.9 Let H = (V , E) be a nontrivial hypergraph with minimum degree
δ(H). _en κS(H) ⩽ κ′W(H) ⩽ δ(H).

Maximum-�ow minimum-cut algorithms that have polynomially bounded run-
ning times, such as the Edmonds–Karp algorithm [8], can be used to eõciently com-
pute the connectivity κ(G) of any given graph G, as well as to ûnd a corresponding
vertex cut of cardinality κ(G) (a polynomial time algorithm for determining the con-
nectivity of a graph G can also be found in [11, p. 42]). Hence, these problems are in
the class P of problems that can be solved in polynomial time. We show that this is
also the case for weak vertex connectivity of hypergraphs.

_eorem 3.13 Determining κW(H) for a hypergraph H and ûnding aminimumweak
vertex cut of H are in P.

However, determining the strong connectivity of a hypergraph is, in general, com-
putationally intractable, which is in stark contrast to graphs (for which “strong” con-
nectivity coincides with “weak” connectivity and hence can be determined in poly-
nomial time).

_eorem 3.16 _e problem of determining κS(H) is NP-hard for arbitrary hyper-
graphs. Furthermore, the problem remains NP-hard when H is restricted to hypergraphs
with maximum edge size at most 3.

We subsequently consider the complexity of calculating κS(H) for various classes
of hypergraphs, as well as the problem of determining the size τ(H) of a minimum
transversal of a hypergraph H (which is also NP-hard when considered over the set
of all hypergraphs, since it is equivalent to the Set Covering problem of [10]). We
show that, despite similarities between transversals and strong vertex cuts, there exist
classes of hypergraphs forwhich calculating κS(H) is NP-hardwhile calculating τ(H)

is in P, and vice-versa.

2 Background Terminology and Notation

In this section we introduce notation and several concepts that are necessary when
studying connectivity in hypergraphs. We begin with a review of basic hypergraph
terminology.

2.1 Basic Definitions

A hypergraph H, denoted H = (V , E), consists of a set V of vertices together with a
multiset E = (e i)i∈I of submultisets of V called edges; E is indexed by an index set I.
_roughout this paper we consider only ûnite hypergraphs, i.e., V and I are both
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ûnite. A hypergraph with no vertices is called a null hypergraph; a hypergraph with
only one vertex is called a trivial hypergraph, and all other hypergraphs are nontrivial.
A hypergraph with no edges is called empty. Given that E is a multiset, a hypergraph
may contain repeated edges. If e i = e j , then e i and e j are said to be parallel. _e
number of edges parallel to e i (including e i) is themultiplicity of e i .
For v ,w ∈ V , v and w are said to be adjacent if there exists an edge e i ∈ E such

that themultiset [v ,w] ⊆ e i (we use square braces when listing elements of a multiset,
and we use curly brackets for sets). We explicitly allow v = w, and use the notation
[v; t] to denote the multiset consisting of t copies of the element v. A vertex v and
an edge e i are said to be incident if v ∈ e i . Let mH

e i (v) denote the multiplicity with
which v appears in edge e i of hypergraph H. _e degree of vertex v in H is deûned
as degH(v) = ∑i∈I mH

e i (v); if the context is unambiguous, then we can simply write
deg(v). _eminimum degree of H, denoted by δ(H), is minv∈V deg(v).

We note that the deûnition of edges as submultisets of V requires terminology to
distinguish between the number of vertices in an edge (counting multiplicities) and
the number of distinct vertices in an edge. Let ∣e i ∣ denote the number of elements in
the multiset e i , which we will refer to as the size of the edge e i . Taking terminology
from multiset theory, let supp(e i), called the support of e i , denote the set of distinct
elements of the edge e i , i.e., supp(e i) = {v ∈ e i ∣ mH

e i (v) > 0}. Multiset theory
refers to ∣ supp(e i)∣ as the cardinality of the multiset (edge) e i . A hypergraph is called
k-uniform if ∣e i ∣ = k for all i ∈ I. A hypergraph that is 2-uniform is called a graph (or
multigraph), and if, in addition, there are no parallel edges or loops, then it is called a
simple graph. A hypergraph H = (V , E) is called simple if it has no parallel edges and
each edge is a set (i.e., e i = supp(e i) for each edge e i ∈ E).

In Section 3.5 we will discuss matchings. A matching in a hypergraph is a set of
pairwise disjoint nonempty edges.

2.2 Associated Hypergraphs and Graphs

Given a hypergraph H = (V , E), the dual hypergraph, denoted H′
= (V ′ , E′), is

the hypergraph with V ′
= I and E′ = (e′v)v∈V , where e′v is the submultiset of I with

mH′
e′v
(i) = mH

e i (v). _at is,H′ has a vertex for every edge ofH, an edge for every vertex
of H, and the multiplicity of i in the edge of H′ corresponding to the vertex v of H is
the multiplicity in H of v in e i . It is perhaps easier to visualize the dualization process
as creating the hypergraph whose incidence matrix is the transpose of the incidence
matrix of the original. _e incidence matrix of a hypergraph H is the ∣V ∣ × ∣I∣ matrix
M = (m i j), where rows are indexed by vertices, columns are indexed by edges, and
m i j = mH

e j(v i) (i.e., m i j is the multiplicity of v i in e j).
Given a hypergraph H = (V , E), the 2-section of H is the graph denoted [H]2 =

(V , E2), where [v ,w] ∈ E2 if there exists an edge e i ∈ E such that [v ,w] ⊆ e i . Note
that [H]2 can contain loops, but not parallel edges. _e incidence graph of H is the
graph denotedG(H) = (V∪E , E′), where E′ = [{v , e i};mH

e i (v) ∣ v ∈ V , i ∈ I, v ∈ e i] .
Note that G(H) is bipartite with bipartition (V , E). An important observation is that
the incidence graph retains complete information about the hypergraph, whereas the
2-section does not.
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2.3 Substructures of Hypergraphs

An extensive list of hypergraph constructions appears in Bahmanian and Šajna [1].
Some, but not all, of their terminology coincides with [7], while the terminology is
somewhat reversed in [13]. Here we introduce new terminology, whichwe thinkmore
clearly represents the substructures created, while referencing the alternate naming
conventions that have been employed in other presentations.
A hypergraph H′

= (V ′ , E′) is a weak subhypergraph of H = (V , E) if V ′
⊆ V , I′ ⊆

I, E′ = (e′i)i∈I′ , and for each i ∈ I′, e′i = [v;mH
e i (v) ∣ v ∈ e i ∩V ′

]. Equivalently, the in-
cidencematrix ofH′, a�er a suitable permutation of its rows and columns, is a subma-
trix of the incidence matrix of H. Weak subhypergraphs are called “subhypergraphs”
by Bahmanian and Šajna [1] as well as by Duchet [7]. A hypergraph H′

= (V ′ , E′)
is call an induced weak subhypergraph of the hypergraph H = (V , E) if V ′

⊆ V and
E′ = (e′i)i∈I′ , where I′ = {i ∈ I ∣ e i ∩ V ′

/= ∅} and e′i = [v;mH
e i (v) ∣ v ∈ e i ∩ V] for

each i ∈ I′.
A hypergraph H′

= (V ′ , E′) is called a strong subhypergraph of the hypergraph
H = (V , E) if V ′

⊆ V and E′ ⊆ E. _ese are termed “hypersubgraphs” by Bah-
manian and Šajna [1] and “partial (sub)hypergraphs” by Duchet [7]. A strong sub-
hypergraph H′

= (V ′ , E′) of H = (V , E), with E′ = (e i)i∈I′ , is said to be induced
by V ′ if I′ = {i ∈ I ∣ supp(e i) ⊆ V ′

}, and is said to be induced by E′ (or I′) if V ′
=

⋃i∈I′ supp(e i).
Note that by deûnition every strong subhypergraph is also a weak subhypergraph.

_is is similar to connectivity of directed graphs, where every strongly connected
directed graph is also weakly connected.
A subhypergraphH′

= (V ′ , E′) of a hypergraphH = (V , E) is said to be a spanning
subhypergraph if V ′

= V .

2.4 Paths and Walks

Given a hypergraph H = (V , E) we deûne a walk in H to be an alternating sequence
v1 , e1 , v2 , . . . , es , vs+1 of vertices and edges of H such that the following fold:
(a) v j ∈ V for j = 1, . . . , s + 1;
(b) e j ∈ E for j = 1, . . . , s;
(c) the multiset [v j , v j+1] ⊆ e j for j = 1, . . . , s.
Such a walk from v1 to vs+1 will be referred to as a (v1 , vs+1)-walk. When the edges
of a walk are either canonical or unimportant, we will sometimes denote it simply
as a sequence of vertices. As in graph theoretic terminology, a path is a walk with
the additional restrictions that the s + 1 vertices are all distinct and the s edges are all
distinct. A cycle is awalkwith s distinct edges and s distinct vertices such that v1 = vs+1.
_e length of a walk, path, or cycle is the number of edges (counting multiplicity for
walks) in the sequence; i.e., it is s in the foregoing deûnitions. See [1] for a more
rigorous treatment of walks, paths, cycles and trails in the case of hypergraphs whose
edges are sets.

Two vertices v ,w ∈ V are said to be connected in H if there exists a (v ,w)-path in
H; otherwise, v and w are separated from each other. A hypergraph H is connected
if every pair of vertices v ,w ∈ V is connected in H; otherwise H is disconnected. A
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connected component of a hypergraph H is a maximal connected weak subhypergraph
of H. Note that the maximality condition implies that connected components will, in
fact, be strong subhypergraphs. We will use c(H) to denote the number of connected
components of H.

2.5 Vertex and Edge Deletion

Given a hypergraph H = (V , E)we can form new hypergraphs by deleting vertices in
the following ways:
● strong vertex deletion of a vertex v ∈ V creates the hypergraph H′

= (V ′ , E′) where
V ′

= V ∖ {v}, E′ = (e i)i∈I′ and I′ = {i ∈ I ∣ v ∉ e i}. _at is, strong deletion of
v removes v and all edges that are incident to v from the hypergraph. We use the
notation H ∖S v to denote the hypergraph formed by strongly deleting the vertex v
from H. For any subset X of V , we use H ∖S X to denote the hypergraph formed
by strongly deleting all the vertices of X from H.

● weak vertex deletion of a vertex v ∈ V creates the hypergraph H′
= (V ′ , E′) where

V ′
= V ∖ {v} and E′ = (e′i)i∈I such that for i ∈ I we have e′i = e i ∖ [v;mH

e i (v)].
_at is, weak deletion of v removes v from the vertex set, and all occurences of v
from the edges of the hypergraph H. We use the notation H ∖W v to denote the
hypergraph formed by weakly deleting the vertex v from H. For any subset X of V ,
we useH∖W X to denote the hypergraph formed by weakly deleting all the vertices
of X from H.

Similarly, we deûne strong and weak edge deletion as follows:
● strong edge deletion of an edge e j ∈ E creates the hypergraph H′

= (V ′ , E′) where
V ′

= V ∖ supp(e j), E′ = (e′i)i∈I′ , I′ = I ∖ { j} and e′i = e i ∖ [v;mH
e i (v) ∣ v ∈ e j] for

i /= j. _at is, strong edge deletion of e j removes e j from the hypergraph andweakly
deletes all the vertices incident with e j . We use the notation H ∖S e j to denote the
hypergraph formed by strongly deleting the edge e j from H. For any submultiset F
of E, we use H ∖S F to denote the hypergraph formed by strongly deleting all the
edges of F from H.

● weak edge deletion of an edge e j ∈ E creates the hypergraph H′
= (V , E′) where

I′ = I ∖ { j} and E′ = (e i)i∈I′ . _at is, weak edge deletion of e j simply removes e j
without aòecting the rest of the hypergraph. We use the notation H∖W e j to denote
the hypergraph formed by weakly deleting the edge e j from H. For any submultiset
F of E, we use H ∖W F to denote the hypergraph formed by weakly deleting all the
edges of F from H.
Note that strong and weak edge deletion in a hypergraph H correspond to strong

and weak vertex deletion, respectively, in the dual of H.
It is also worth noting that every weak subhypergraph of a hypergraph H can be

formed by performing a sequence of weak vertex andweak edge deletions onH. Like-
wise, every strong subhypergraph of H can be formed by performing a sequence of
strong vertex and weak edge deletions on H.
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3 Connectivity

For a graph G, a cut vertex is any vertex whose deletion from G increases the num-
ber of connected components, while a vertex cut is any set of vertices whose deletion
from G results in a disconnected graph. We generalize these concepts from graphs to
hypergraphs.

Deûnition 3.1 Let H = (V , E) be a nontrivial hypergraph. A vertex v ∈ V is called
a weak cut vertex of H if H ∖W v has more connected components than H, and a set
X ⊆ V is called a weak vertex cut of H if H ∖W X is disconnected. We deûne the weak
vertex connectivity of H, denoted κW(H), as follows: if H has at least one weak vertex
cut, then κW(H) is the cardinality of a minimum weak vertex cut of H; otherwise,
κW(H) = ∣V ∣ − 1. Similar to the convention used in [3, p. 207] for connectivity of
trivial graphs, we adopt the convention that the weak vertex connectivity of a null or
trivial hypergraph is 1.

Deûnition 3.2 Let H = (V , E) be a nontrivial hypergraph. A vertex v ∈ V is called
a strong cut vertex of H if H ∖S v has more connected components than H, and a set
X ⊆ V is called a strong vertex cut ofH ifH∖S X is disconnected. We deûne the strong
vertex connectivity ofH, denoted κS(H), as follows: ifH has at least one strong vertex
cut, then κS(H) is the cardinality of a minimum strong vertex cut of H; otherwise,
κS(H) = ∣V ∣ − 1. By convention, the strong vertex connectivity of a null or trivial
hypergraph is 1.

Note that for connected hypergraphs weak (resp. strong) cut vertices correspond
to weak (resp. strong) vertex cuts of size 1. _e convention that null and trivial hyper-
graphs have weak and strong vertex connectivity 1 ensures that a hypergraph H has
κW(H) = 0 (or κS(H) = 0) if and only if H is disconnected. _is generalizes vertex
connectivity of graphs as deûned in [3].

Observe that neither weak vertex connectivity nor strong vertex connectivity is
aòected by edges with multiplicity exceeding 1, by edges of cardinality less than 2, or
by vertices havingmultiplicity (within an edge) exceeding 1. As such, unless otherwise
stated, our discussion of vertex connectivity shall assume that the hypergraphs being
considered have no repeated edges, no repeated vertices within an edge, and no edges
of size less than 2.

Lemma 3.3 Let H = (V , E) be a hypergraph. _en κS(H) ⩽ κW(H).

Proof If H is a null or trivial hypergraph, then κS(H) = κW(H) = 1. If H is discon-
nected, then κS(H) = κW(H) = 0.

Suppose now that H is nontrivial and connected. For any X ⊆ V , the hypergraph
H ∖S X is a spanning strong subhypergraph of H ∖W X. _us, any two vertices that
are adjacent in H ∖S X are also adjacent in H ∖W X.

In [1], Bahmanian and Šajna used the phrase “cut vertex” for any vertexwhoseweak
deletion increases the number of connected components of the hypergraph; hence, a
“cut vertex” in the sense of Bahmanian and Šajna corresponds to a weak cut vertex. It
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is proved in [1, _eorem 3.23] that if a hypergraph H has no edges of size less than 2,
then a vertex of H is a (weak) cut vertex of H if and only if it is a cut vertex (in the
traditional sense for graphs) of the incidence graph ofH. Since graph connectivity can
be determined in polynomial time (see [11, p. 42] for an algorithm), this provides a
polynomial time means of identifying whether a connected hypergraph has any weak
cut vertices.

We will now introduce the notions of weak and strong edge connectivity for hy-
pergraphs.

Deûnition 3.4 Let H = (V , E) be a hypergraph. A submultiset F ⊆ E is called
a weak disconnecting set of H if H ∖W F is disconnected. If H is nontrivial, then
we deûne its weak edge connectivity, denoted κ′W(H), as the minimum cardinality
of any of its weak disconnecting sets. Similar to the convention used in [3, p. 216]
for edge connectivity of trivial graphs, we adopt the convention that the weak edge
connectivity of a null or trivial hypergraph is 1.

Deûnition 3.5 Let H = (V , E) be a hypergraph. A submultiset F ⊆ E is called
a strong disconnecting set of H if H ∖S F is disconnected. If H is nontrivial and has
at least one strong disconnecting set, then we deûne its strong edge connectivity, de-
noted κ′S(H), as the minimum cardinality of any of its strong disconnecting sets. If
H is nontrivial and has no strong disconnecting set, then we deûne κ′S(H) = ∣E∣. By
convention, the strong edge connectivity of a null or trivial hypergraph is 1.

Suppose H = (V , E) is a connected hypergraph and that X ⊂ V . Deûne the weak
edge cut of H associated with X as ∂(X) = {e ∈ E ∣ e ∩ X /= ∅, e ∩ (V ∖ X) /= ∅},
that is, the submultiset of edges that are incident to at least one vertex in each of X
and V ∖ X. _e size of a weak edge cut is the number of edges that it contains. Note
that all weak edge cuts are disconnecting sets and that, as remarked by Cheng [6], all
minimal weak disconnecting sets are weak edge cuts. _us, κ′W(H) for nontrivial H
can equally well be deûned as the size of a minimum weak edge cut.

In [6] weak edge cuts are considered by Cheng who uses the phrase “k-edge-
connected” to describe any hypergraph H = (V , E) for which each weak edge cut
of H has at least k edges. Relating Cheng’s terminology to the notation of Deûni-
tion 3.4, it follows that H is weakly k-edge-connected if and only if k ⩽ κ′W(H). In [9],
using similar terminology to Cheng, Frank observes that a hypergraph is weakly k-
edge-connected if and only if there are k edge-disjoint (u, v)-paths in H for each
pair of distinct vertices u, v ∈ V . Chekuri and Xu [5] have recently demonstrated an
O(p + n2κ′W(H)) time algorithm to ûnd a minimum weak edge cut of a hypergraph
H, where p = ∑e∈E ∣e∣ and n = ∣V ∣.

Whereas κW(H) (resp. κS(H)) represents the fewest number of vertices whose
weak (resp. strong) deletion from a nontrivial hypergraph H results in the separation
of some pair of vertices, on occasion we will want to separate speciûc vertices from
each other. We therefore introduce the following deûnitions and notation.

Deûnition 3.6 Let H = (V , E) be a hypergraph and let u, v ∈ V , u /= v. A set
X ⊆ V ∖ {u, v} is called a weak (u, v)-vertex cut (resp. strong (u, v)-vertex cut) in H
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if u and v are separated in H ∖W X (resp. H ∖S X). If Au and Av are disjoint subsets
of V , then a set X ⊆ V ∖ (Au ∪ Av) is called a weak (Au ,Av)-vertex cut (resp. strong
(Au ,Av)-vertex cut) in H if, for each u ∈ Au and each v ∈ Av , u and v are separated
in H ∖W X (resp. H ∖S X). We denote the cardinality of a minimum weak (resp.
strong) (u, v)-vertex cut in H by κW(H, u, v) (resp. κS(H, u, v)); if u and v cannot
be separated by any weak (resp. strong) vertex cut, then we set κW(H, u, v) = ∣V ∣ − 1
(resp. κS(H, u, v) = ∣V ∣ − 1).

We have similar deûnitions for edge deletion.

Deûnition 3.7 Let H = (V , E) be a hypergraph and let u, v ∈ V , u /= v. A set F ⊆ E
is called a weak (u, v)-disconnecting set (resp. strong (u, v)-disconnecting set) in H if
u and v are separated in H ∖W F (resp. H ∖S F). If Au and Av are disjoint subsets of
V , then a set F ⊆ E is called a weak (Au ,Av)-disconnecting set (resp. strong (Au ,Av)-
disconnecting set) in H if, for each u ∈ Au and each v ∈ Av , u and v are separated in
H ∖W F (resp. H ∖S F). We denote the cardinality of a minimum weak (resp. strong)
(u, v)-disconnecting set in H by κ′W(H, u, v) (resp. κ′S(H, u, v), with the convention
that κ′S(H, u, v) = ∣E∣ when no strong (u, v)-disconnecting set exists).

3.1 Weak Versus Strong Vertex Connectivity

In comparing weak vertex connectivity with strong vertex connectivity, an important
initial observation is that it is false that every strong vertex cut of size κS(H) is a subset
of a weak vertex cut of size κW(H). In fact, there exists a hypergraph H in which
any minimum weak vertex cut and any minimum strong vertex cut are disjoint. For
example, take two copies of the complete graph on four vertices: one on the vertex set
{x1 , x2 , x3 , x4} denoted K4x , and the other on vertex set {y1 , y2 , y3 , y4} denoted K4y .
Deûne H = (V , E) such that

V = {x1 , x2 , x3 , x4 , y1 , y2 , y3 , y4 , z},

E = E(K4x ) ∪ E(K4y) ∪ {{x1 , y1 , z}, {x2 , y2 , z}}

(see Figure 1). _en {z} is the unique minimum strong vertex cut of H, while the
minimum weak vertex cuts of H are {x1 , x2} and {y1 , y2}.

z

y1

y2

y3

y4

x1

x2

x3

x4

Figure 1: Hypergraph with disjoint minimum weak and strong vertex cuts.

Also observe that the diòerence κW(H) − κS(H) can be arbitrarily large. As an
example, let n ⩾ 2 and consider H = (V , E), where V = {x1 , . . . , xn , y1 , . . . , yn , z}
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and E consists of the edges {x1 , . . . , xn}, {y1 , . . . , yn} and {x i , y i , z} for each i =

1, 2, . . . , n (see Figure 2). Here κS(H) = 1 because {z} is a strong vertex cut, whereas
κW(H) = n+ 1 (observe that a minimumweak vertex cut is obtained by taking vertex
z together with either x i or y i , for each i, so that at least one x-vertex and at least one
y-vertex is selected). _is example illustrates that weak vertex connectivity is a poor
approximation for strong vertex connectivity.

z
x1

x2

xn

y1

y2

yn

Figure 2: Hypergraph for which the diòerence between the weak vertex connectivity and strong
vertex connectivity is n. As n increases, an inûnite family of hypergraphs for which this diòer-
ence grows linearly is obtained.

3.2 Extending a Result of Whitney

In 1932 Whitney [14] showed that for any nontrivial graph G the size of a minimum
vertex cut is at most the size of a minimum edge cut, which in turn is at most themin-
imum degree of any vertex, i.e., κ(G) ⩽ κ′(G) ⩽ δ(G). In this section we will show
that this result can be generalized to hypergraphs. Note, however, that the generaliza-
tion does not involve a comparison of κW(G)with κ′W(G), since there exists a hyper-
graph H such that κW(H) > κ′W(H) (see Figure 3), as well as a hypergraph H such
that κW(H) < κ′W(H) (for instance, ifH = (V , E)whereV = {x1 , x2 , x3 , y1 , y2 , y3 , z}
and

E = {{x i , x j , z} ∣ 1 ⩽ i < j ⩽ 3} ∪ {{y i , y j , z} ∣ 1 ⩽ i < j ⩽ 3} ,
then 1 = κW(H) < κ′W(H) = 2). Likewise, the generalization does not bound
κS(H) by κ′S(H), since there exists a hypergraph H such that κS(H) < κ′S(H) (for
instance the hypergraph in Figure 1 without the edges {x1 , x2} and {y1 , y2}), as well
as a hypergraph H such that κS(H) > κ′S(H) (for instance, if H = (V , E) with V =

{0, 1, 2, 3, 4, 5, 6, 3′ , 4′ , 5′ , 6′} and E = {{0, 1, 2}, {0, 3, 6}, {0, 4, 5}, {1, 3, 4}, {1, 5, 6},
{2, 3, 5}, {2, 4, 6}, {0, 3′ , 6′}, {0, 4′ , 5′}, {1, 3′ , 4′}, {1, 5′ , 6′}, {2, 3′ , 5′}, {2, 4′ , 6′}} ,
then κ′S(H) = 1, since {{0, 1, 2}} is a strong disconnecting set, and κS(H) = 3). _e
generalization ofWhitney’s result that we establish involves strong vertex connectivity
and weak edge connectivity.

Since both vertex degrees and weak disconnecting sets are aòected by repeated
vertices in edges, repeated edges, and edges of cardinality one, hypergraphs that have
any or all of these will be permitted in Lemma 3.8 and_eorem 3.9.
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Figure 3: Hypergraph H with 2 = κW(H) > κ′W(H) = 1.

Lemma 3.8 Let H = (V , E) be a nontrivial hypergraph with minimum degree δ(H).
_en κ′W(H) ⩽ δ(H).

Proof Let v ∈ V be a vertex of degree δ(H). _en {e ∈ E ∣ v ∈ e , ∣ supp(e)∣ ⩾ 2} is a
weak disconnecting set of size at most δ(H).

_eorem 3.9 Let H = (V , E) be a nontrivial hypergraph with minimum degree
δ(H). _en κS(H) ⩽ κ′W(H) ⩽ δ(H).

Proof Since Lemma 3.8 shows that κ′W(H) ⩽ δ(H), it only remains to prove that
κS(H) ⩽ κ′W(H). Clearly, κS(H) ⩽ κ′W(H) when κS(H) = 0, so we henceforth
assume that κS(H) ⩾ 1, which is to say that H is connected.

Let F be aminimumweak disconnecting set ofH. As κS(H) ⩽ ∣V ∣−1 by deûnition,
if ∣F∣ ⩾ ∣V ∣ − 1, the result holds. _us, we now assume that ∣F∣ < ∣V ∣ − 1, and we will
show the existence of a strong vertex cut of size at most ∣F∣.
As F is a weak disconnecting set, the hypergraph H ∖W F is disconnected.

Let H1 ,H2 , . . . ,Hk be the connected components of H ∖W F. Furthermore, for
i = 1, 2, . . . , k, let Vi be the vertex set of H i (note that ⋃k

i=1 Vi = V ) and let Wi be
the subset of Vi containing those vertices of Vi that are incident to at least one edge
in F. Observe that Wi /= ∅ for all i.
By the minimality of F we know that every edge of F intersects every Wi . _is

implies that for each i, there exists a set Z i ⊆Wi such that ∣Z i ∣ ⩽ ∣F∣ and Z i intersects
every edge of F. _e sets Z i can be found by a greedy approach: start with Z i = ∅ and
while there exists an edge f ∈ F that does not intersect Z i , select any vertex in f ∩Wi
and add it to Z i .

Suppose that k ⩾ 3. _en strongly deleting the vertices of Z3 will delete all the
edges of F and separate the vertices in V1 from those in V2. _erefore, when k ⩾ 3
there exists a strong vertex cut of size at most ∣F∣.

Now assume that k = 2 and suppose that there exists a vertex v ∈ V1 ∖ Z1. _en
Z1 is a strong vertex cut that separates v from V2, and again we have a strong vertex
cut of size at most ∣F∣. Similarly, such a strong vertex cut also exists if there is a vertex
v ∈ V2 ∖ Z2.

We are now in the case where k = 2, V1 = W1 = Z1, and V2 = W2 = Z2. Suppose
that there exists a pair of vertices v1 ∈ V1 and v2 ∈ V2 such that F does not contain
an edge of cardinality two containing these two vertices. _en we can greedily ûnd
a set Z ⊆ (V1 ∖ {v1}) ∪ (V2 ∖ {v2}) = V ∖ {v1 , v2} of size at most ∣F∣ that intersects
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every edge of F. Start with Z = ∅, and while there exists an edge f ∈ F that does not
intersect Z, select any vertex in f ∩ (V ∖ {v1 , v2}) and add it to Z. Strongly deleting
the vertices of Z will delete all the edges of F and thus separate v1 and v2. _erefore,
if such vertices v1 and v2 exist, then we have a strong vertex cut of size at most ∣F∣.
Otherwise, F contains the edge {v1 , v2} for all pairs of vertices v1 ∈ V1 and v2 ∈ V2.

_us, ∣V ∣ = ∣V1∣+ ∣V2∣, and F contains at least ∣V1∣ ⋅ ∣V2∣ edges. Since ∣V1∣ and ∣V2∣ are
positive integers, ∣V ∣ − 1 = ∣V1∣ + ∣V2∣ − 1 ⩽ ∣V1∣ ⋅ ∣V2∣ ⩽ ∣F∣. However, this contradicts
the assumption that ∣F∣ < ∣V ∣ − 1, and so the result holds.

3.3 Minimum Transversals Versus Strong Vertex Connectivity

A transversal of a hypergraph H = (V , E) is a subset T ⊆ V such that T has nonempty
intersection with every nonempty edge of H. _e size of a smallest transversal of a
hypergraph H is called the transversal number of H and is denoted τ(H). For more
details on transversals, see [7].

Note that a subset T ⊆ V is a transversal of H = (V , E) if and only if strongly
deleting all vertices in T results in a (possibly null) hypergraph with no nonempty
edges. Furthermore, if W is the set of vertices that appear in edges of cardinality 1,
then W is a subset of every transversal of H, and T is a transversal of H if and only
if T ∖W is a transversal of H ∖S W . We now explore the relationship between the
transversal number of a hypergraph H and its strong vertex connectivity.
Consider a connected nontrivial hypergraph H = (V , E) with no edges of cardi-

nality 1 and letVτ andVκS be aminimum transversal and aminimum strong vertex cut
ofH, respectively. _enVτ is a smallest set of vertices whose strong deletion results in
all (possibly zero) pairs of remaining vertices being separated from each other, while
VκS is a smallest set of vertices whose strong deletion results in at least one pair of re-
maining vertices becoming separated. _us, any transversal ofH of size atmost ∣V ∣−2
is also a strong vertex cut of H. Combining this with the facts that κS(H) ⩽ ∣V ∣ − 1
(by deûnition), edges of cardinality 1 do not aòect κS(H) and cannot decrease τ(H),
and τ(H) being well deûned for anyH (because V is always a transversal), proves the
following lemma.

Lemma 3.10 If H = (V , E) is a nontrivial hypergraph, then κS(H) ⩽ τ(H).

Even though τ(H) is only an upper bound on κS(H), minimum transversals can
be used to calculate the strong vertex connectivity of a hypergraph. Given two distinct
vertices u and v in a nontrivial hypergraph H = (V , E), let H′

u ,v be the hypergraph
with V(H′

u ,v) = V ∖ {u, v} and

E(H′
u ,v) = { supp ( ⋃

e∈E(P)
e) ∖ {u, v} ∣ P is a (u, v)-path in H} ,

so the edges of H′
u ,v are the sets comprised of the vertices, other than u and v, that

are in the edges of the individual (u, v)-paths in H. By the deûnition of κS(H, u, v),
we have that κS(H) = min{κS(H, u, v) ∣, u, v ∈ V}. Note that κS(H, u, v) = ∣V ∣ − 1
when {u, v} ∈ E and that κS(H, u, v) is equal to the size of a minimum transversal in
H′

u ,v when {u, v} /∈ E. However, to rely upon this approach as a means of computing
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κS(H)would require ûnding supp(⋃e∈E(P) e) for each (u, v)-path P inH, whichmay
not be practical.

Later in this paper we will consider the complexity of calculating κS(H) for var-
ious classes of hypergraphs. As we shall see in Section 3.6, although there are simi-
larities between transversals and strong vertex cuts, there exist classes of hypergraphs
for which calculating τ(H) is NP-hard while calculating κS(H) is in P, and there ex-
ist other classes of hypergraphs for which calculating τ(H) is in P while calculating
κS(H) is NP-hard.

3.4 Complexity of Weak Vertex Connectivity

Bahmanian and Šajna showed in [1] that weak cut vertices of hypergraphs can be
found by looking for cut vertices in their associated incidence graphs, which in turn
can be found in polynomial time (see [11, p. 42]). _us, the problem of ûnding weak
cut vertices of hypergraphs is in P. We shall now show that ûnding minimum weak
vertex cuts of hypergraphs is also in P. We begin with a lemma, the proof of which is
an obvious consequence of vertices being adjacent in a hypergraph if and only if they
are also adjacent in the hypergraph’s 2-section.

Lemma 3.11 Let H = (V , E) be a hypergraph and let u, v ∈ V. _en the vertices u
and v are connected in H if and only if they are connected in the 2-section [H]2.

We now show that a hypergraph’s weak vertex connectivity is the same as the con-
nectivity of its 2-section graph.

Lemma 3.12 Let H = (V , E) be a hypergraph and X ⊆ V. _en X is a weak vertex
cut of H if and only if X is a vertex cut of [H]2. _erefore, κW(H) = κ([H]2).

Proof Take any X ⊂ V . Observe that [H∖WX]2 = [H]2∖X, and thus by Lemma 3.11,
c(H ∖W X) = c([H ∖W X]2) = c([H]2 ∖ X). Hence, X is a weak vertex cut of H if
and only if X is a vertex cut of [H]2, and κW(H) = κ([H]2).

_eorem 3.13 Determining κW(H) for a hypergraph H and ûnding aminimumweak
vertex cut of H are in P.

Proof By Lemma 3.12, weak vertex cuts in a hypergraph H correspond to vertex
cuts in [H]2, and the problem of ûnding a minimum vertex cut in a graph is in P
(see [11, p. 42] for a polynomial time algorithm).

We now demonstrate that the problem of ûnding a minimum weak vertex cut of
a hypergraph H = (V , E) can be solved, without considering the 2-section of H, by
reducing the problem to ûnding cuts of minimum capacity in (

∣V ∣
2 )weighted directed

graphs. _e latter problem, as well as the conversion, are polynomial (see [8]).
Given a subset X of vertices of a directed graph G = (VG , EG), we let ∂(X) =

{(u, v) ∈ EG ∣ u ∈ X , v ∈ VG ∖ X} denote the subset of all edges of EG having tails
in X and heads not in X. If u ∈ X and v ∈ VG ∖ X, then ∂(X) is called a (u, v)-cut.
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If each edge e ∈ EG is weighted with a capacity cap(e), then the capacity of a cut C,
denoted cap(C), is∑e∈C cap(e).

Suppose now that we have a nontrivial hypergraph H = (V , E) such that V =

{v1 , v2 , . . . , vn} and E = [e1 , e2 , . . . , em]. _en

κW(H) = min{κW(H, v i , v j) ∣ i , j ∈ {1, 2, . . . , n}, i /= j} ,

and thus calculating κW(H) can be reduced to determining κW(H, v i , v j) for all (∣V ∣2 )

pairs, {v i , v j}, of distinct vertices. Without loss of generality, we consider i = 1 and
j = n > 2 (if n = 2, then there are no weak (v1 , v2)-vertex cuts).
Begin by forming the directed graph G = (VG , EG) with

VG = {v1,out , v2,in , v2,out , v3,in , v3,out , . . . , vn−1,in , vn−1,out , vn ,in} ∪ E ,

EG = {(v i ,out , e) ∣ e ∈ E , v i ∈ e , i /= n} ∪ {(e , v i ,in) ∣ e ∈ E , v i ∈ e , i /= 1}∪

{(v i ,in , v i ,out) ∣ i ∈ {2, 3, . . . , n − 1}} .

_e formation ofG from H can be thought of as follows: for each vertex v ofH, create
two vertices vin and vout, and a directed edge from vin to vout; for each edge e in H
create a vertex e in G; for each edge {v , e} in the incidence graph of H create the two
directed edges (e , vin) and (vout , e); and lastly remove v1,in and vn ,out.

Put a capacity of 1 on all edges of the form (v i ,in , v i ,out) and an inûnite capac-
ity on all other edges of G. Standard maximum-�ow minimum-cut algorithms such
as the Edmonds–Karp algorithm [8] can then be used to ûnd a minimum capac-
ity (v1,out , vn ,in)-cut in G in polynomial time. _e following lemma implies that
such a (v1,out , vn ,in)-cut of minimum capacity inG either produces a minimumweak
(v1 , vn)-vertex cut in H or else there are no weak (v1 , vn)-vertex cuts in H.

Lemma 3.14 Let CG ⊆ V(G) be such that ∂(CG) is a (v1,out , vn ,in)-cut of minimum
capacity of G. If cap(∂(CG)) is inûnite, then κW(H, v1 , vn) = ∣V ∣ − 1. Otherwise,
cap(∂(CG)) = κW(H, v1 , vn) ⩽ ∣V ∣ − 2 and the set CH = {v i ∣ v i ,in ∈ CG , v i ,out /∈ CG}

is a minimum weak (v1 , vn)-vertex cut in H.

Proof Suppose that the capacity of ∂(CG) is inûnite; then there exists an edge in H
that contains both v1 and vn . Such an edge must exist, otherwise

∂({v1,out} ∪ {v i ,in ∣ 2 ⩽ i ⩽ n − 1} ∪ {e ∈ E ∣ v1 ∈ e})

is a (v1,out , vn ,in)-cut of (ûnite) capacity n−2. Since v1 and vn are adjacent in H, there
is no weak vertex cut for which the deletion of the cut results in v1 and vn becoming
separated, and so κW(H, v1 , vn) = ∣V ∣ − 1.

Now suppose that the capacity of ∂(CG) is ûnite. By the construction of G, there
must be exactly cap(∂(CG)) indices i ∈ {2, . . . , n− 1} such that v i ,in ∈ CG and v i ,out /∈

CG (with each such i yielding a single edge of capacity 1 in ∂(CG)). Let IH be this set
of cap(∂(CG)) indices and let CH = {v i ∣ i ∈ IH}.

We now show that CH is a weak (v1 , vn)-vertex cut in H. Suppose that

PH = v1 , ep1 , vp1 , ep2 , vp2 , . . . , epb , vpb
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is a (v1 , vn)-path in H ∖W CH (so necessarily vpb = vn). _e existence of PH implies
the existence of the path

PG = v1,out , ep1 , vp1 ,in , vp1 ,out , ep2 , vp2 ,in , vp2 ,out , . . . , epb , vpb ,in

in G (observe that the ep j are edges in PH but vertices in PG). Since ∂(CG) is a
(v1,out , vn ,in)-cut in G, the path PG must contain at least one edge of ∂(CG). Let f
be such an edge of E(PG) ∩ ∂(CG). Since cap(∂(CG)) is ûnite, f = (vp j ,in , vp j ,out)

for some p j ∈ IH . However, this contradicts the fact that PH is a path in H ∖W CH .
_erefore, CH is a weak (v1 , vn)-vertex cut in H, and thus κW(H, v1 , vn) ⩽ ∣IH ∣ =

cap(∂(CG)).
We now turn our attention to showing that cap(∂(CG)) ⩽ κW(H, v1 , vn). Suppose

CM ⊂ V is a minimum weak (v1 , vn)-vertex cut in H. Let F = {(v i ,in , v i ,out) ∣ v i ∈

CM} ⊂ EG , observe that ∣F∣ ⩽ ∣V ∣ − 2, and consider G ∖ F. Any (v1,out , vn ,in)-path in
G ∖ F must be of the form

QG = v1,out , eq1 , vq1 ,in , vq1 ,out , eq2 , vq2 ,in , vq2 ,out , . . . , eqℓ , vqℓ ,in

for which there is a corresponding (v1 , vn)-path

QH = v1 , eq1 , vq1 , eq2 , vq2 , . . . , eqℓ , vpℓ

in H ∖W CM . As there are no (v1 , vn)-paths in H ∖W CM , there can be no such
(v1,out , vn ,in)-path QG in G ∖F. Hence, v1,out and vn ,in are separated in G ∖F. Deûne

CF = {v ∈ V(G) ∣ ∃ a (v1,out , v)-path in G ∖ F} .

Since v1,out ∈ CF and vn ,in /∈ CF , it follows that ∂(CF) is a (v1,out , vn ,in)-cut in G and
thus cap(∂(CG)) ⩽ cap(∂(CF)). By construction, ∂(CF) ⊆ F and so cap(∂(CG)) ⩽

cap(∂(CF)) ⩽ ∣F∣ = κW(H, v1 , v2).
It now follows that when cap(∂(CG)) is ûnite, it must be that cap(∂(CG)) =

κW(H, v1 , v2) ⩽ ∣V ∣ − 2 and, moreover, that CH is a minimum weak (v1 , vn)-vertex
cut in H.

When creating G from H, the vertices v2 , . . . , vn−1 of H were split into in and out
vertices. Suppose that instead of splitting the vertices of H we split the edges of H
into in and out vertices in G and again put capacities of 1 on all (in, out) edges of
G. Now the minimum capacity (v1 , vn)-cuts of G will correspond to minimum weak
(v1 , vn)-disconnecting sets of H. _us the same technique can be used to ûnd mini-
mum weak disconnecting sets of H.

3.5 Complexity of Strong Vertex Connectivity

In this section we will show that determining the strong vertex connectivity of an
arbitrary hypergraph is NP-hard. We then consider the complexity of determining
the strong vertex connectivity for particular classes of hypergraphs. However, ûrst we
present a class of hypergraphs for which the problem is in P.

Lemma 3.15 For a hypergraph H with maximum edge size at most 2, the problems
of determining κS(H) and ûnding a minimum strong vertex cut are in P.
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Proof For hypergraphs ofmaximumedge size atmost 2, the only diòerence between
weakly and strongly deleting a set of vertices is the potential creation of edges of size
less than 2. However, edges of size less than 2 have no eòect on the vertex connectivity
(weak or strong) of a hypergraph. _us, for hypergraphs of this type, the strong vertex
cuts are exactly the weak vertex cuts and the result follows from _eorem 3.13.

_eorem 3.16 _e problem of determining κS(H) is NP-hard for arbitrary hyper-
graphs. Furthermore, the problem remains NP-hard when H is restricted to hypergraphs
with maximum edge size at most 3.

Proof _e problem of ûnding the size of a minimum vertex cover in a simple graph
is known to be NP-hard [10]. We will reduce this NP-hard problem to the problem of
ûnding κS(H) for a hypergraph H with maximum edge size of 3.

Let G = (VG , EG) be a simple graph with VG = {x1 , x2 , . . . , xn} and at least one
edge. _e set VG ∖ {x1} intersects every edge in EG and is thus a vertex cover of G.
_erefore, the size of a minimum vertex cover of G is at most n − 1. Let

Au = {u1 , . . . , un}, Av = {v1 , . . . , vn}, V = VG ∪ Au ∪ Av

such that Au , Av and VG are pairwise disjoint, and let

E = {{u i , x j} ∣ 1 ⩽ i , j ⩽ n} ∪ { e ∪ {v i} ∣ e ∈ EG , 1 ⩽ i ⩽ n} .

Consider the hypergraph H = (V , E). Given an edge e in G, we shall denote the
corresponding edge e ∪ {v i} in H by ev i . Note that it follows from ∣EG ∣ ⩾ 1 that H is
connected.

We nowmake the following four claims regarding vertex covers ofG, strong vertex
cuts in H, and the relationship between them.

Claim 1 _e vertex covers of G are exactly the strong (Au ,Av)-vertex cuts in H.

Claim 2 If C is a minimum strong vertex cut of H, then C ∩ Av = ∅.

Claim 3 If C is a minimum strong vertex cut of H, then C ∩ Au = ∅.

Claim 4 If C is a minimum strong vertex cut of H, then C separates Au and Av
(i.e., C is a minimum strong (Au ,Av)-vertex cut in H).

Claims 2 and 3 will be used in the proof of Claim 4, while the reduction of vertex
covers in simple graphs to strong vertex cuts in hypergraphs of maximum edge size
at most 3 will follow directly from the construction of H from G and Claims 1 and 4.
_erefore, _eorem 3.16 holds subject to validating these four claims.

Proof of Claim 1 Suppose that C is a strong (Au ,Av)-vertex cut ofH. _en C ⊆ VG
and there exist no (u i , v j)-paths in H ∖S C. If e = (xk , xℓ) is an edge of G, then
u i , {u i , xk}, xk , ev j , v j is a (u i , v j)-path in H for each 1 ⩽ i , j ⩽ n. Since C is a strong
(Au ,Av)-vertex cut of H, this path does not exist in H ∖S C. As u i , v j /∈ C, the only
way for this path not to exist in H ∖S C is if {xk , xℓ} ∩C /= ∅. _erefore, C is a vertex
cover of G.
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Conversely, suppose that C ⊆ VG is a vertex cover ofG. _en C intersects all edges
of G which implies that degH∖SC(v j) = 0 for each j ∈ {1, 2, . . . , n}. _erefore C is a
strong (Au ,Av)-vertex cut in H and Claim 1 holds.

Proof of Claim 2 Let C be a minimum strong vertex cut of H and suppose that C ∩
Av /= ∅. Without loss of generality we can assume that v1 ∈ C.
By theminimality of C we know that C′ = C∖v1 is not a strong vertex cut ofH and

that v1 is a strong cut vertex ofH′
= H∖S C′. _is implies that there exist two distinct

verticesw , z inH that are adjacent to v1 inH′ but separated from each other inH∖SC.
Namely, consider a path in H′ between vertices that are separated in H∖S C = H′

∖v1.
Either v1 is an internal vertex of the path or v1 is not on the path but is contained in
an edge of the path. Both of these cases lead to the desired w , z pair.

Suppose that {v1 ,w , z} is an edge of H′. _en {v j ,w , z} is an edge of H ∖S C for
each v j ∈ Av ∖ C. _is would contradict w and z being separated in H ∖S C unless
v j ∈ C for each j ∈ {1, 2, . . . , n}. However, v j ∈ C for each j ∈ {1, 2, . . . , n} contradicts
the fact that C is a minimum strong vertex cut of H, because VG ∖ {x1} is a strong
vertex cut of H of size n − 1.

Since there is no edge {v1 ,w , z} in H′, the construction of H implies that there
exist two edges {v1 ,w , yw} and {v1 , z, yz} in H′. But then

P = w , {v j ,w , yw}, v j , {v j , z, yz}, z

would be a (w , z)-path in H ∖S C for any v j ∈ Av ∖ C. _is would again imply that
Av ⊆ C, which would contradict the fact that C is a minimum strong vertex cut of H.
We thus conclude that C ∩ Av = ∅ and Claim 2 holds.

Proof of Claim 3 Let C be a minimum strong vertex cut of H and suppose that C ∩
Au /= ∅. Without loss of generality, we may assume that u1 ∈ C.
By theminimality of C we know that C′ = C∖u1 is not a strong vertex cut ofH and

that u1 is a strong cut vertex ofH′
= H∖S C′. _is implies that there exist two vertices

w , z in H that are adjacent to u1 in H′ but separated from each other in H ∖S C. As u1
is adjacent only to vertices of VG , clearly w , z ∈ VG . Since {u i , x j} is an edge of H for
each 1 ⩽ i , j ⩽ n, the only way for two vertices of VG ∖ C to be separated in H ∖S C is
if Au ⊆ C, which would contradict the fact that C is a minimum strong vertex cut of
H. _erefore, C ∩ Au = ∅ and Claim 3 holds.

Proof of Claim 4 Let C be a minimum strong vertex cut ofH. Claims 2 and 3 imply
that C ⊆ VG , and thus it only remains to show that for all i , j there is no (u i , v j)-path
in H ∖S C.

Since C is a minimum strong vertex cut in H, ∣C∣ ⩽ n − 1, and so there exists an
i ∈ {1, 2, . . . , n} such that x i ∈ VG ∖ C. Each vertex of Au is adjacent in H to each
vertex of VG , and thus the vertices of Au ∪ (VG ∖ C) are all in the same connected
component of H ∖S C.

Suppose that for some j ∈ {1, 2, . . . , n} the vertex v j is in the same connected com-
ponent of H ∖S C as the vertices of Au ∪ (VG ∖ C). _en there exists a (u1 , v j)-path
in H ∖S C. Let ev j be the last edge in such a path and let z ∈ ev j ∖ {v j}.

Since ev j is an edge of H ∖S C and C ∩ Av = ∅, we have that evk is in H ∖S C for
all 1 ⩽ k ⩽ n. But then v j , ev j , z, evk , vk is a (v j , vk)-path in H ∖S C for all k /= j. _is

https://doi.org/10.4153/CMB-2018-005-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2018-005-9


268 M. Dewar, D. Pike, and J. Proos

implies that each vertex of Av is in the same connected component of H ∖S C as v j ,
which contradicts the fact that H ∖S C is disconnected. _erefore, no vertex of Av is
in the same connected component of H ∖S C as the vertices of Au ∪ (VG ∖ C), and
Claim 4 holds.

_e construction of H from G, together with Claims 1 and 4, shows a polynomial
reduction of the problem of ûnding minimum vertex covers in simple graphs to the
problem of ûnding minimum strong vertex cuts in hypergraphs with maximum edge
size at most 3. _eorem 3.16 is therefore proved.

Next we consider the following particular classes of hypergraphs.
● A hypergraph H is bicolourable if each vertex of V can be labelled with one of two
colours so that each edge of cardinality at least two is not monochromatic.

● A hypergraph H = (V , E) is said to have the Helly property if, for every multiset
F ⊆ E of pairwise intersecting edges, there is a vertex uF ∈ V that is incident with
each edge of F.

● Any hypergraph H for which τ(H) equals the size of a maximum matching is said
to have the König property.

● Ahypergraph is normal if each of its strong subhypergraphs has the König property.
● A hypergraph H is arboreal if there exists a (not necessarily unique) tree T on the

same vertex set as H such that each edge of H induces a connected subgraph (i.e.,
subtree) of T . Such a tree T is called a representative tree of H.

● A hypergraph is totally balanced if, for every cycle C of length at least 3, there is an
edge of C that contains at least three vertices of C.

● A hypergraph is an interval hypergraph if there exists a total ordering of the vertices
such that all edges are intervals of the ordering.
In [7] Duchet discusses these and other classes of hypergraphs. Furthermore, a

hierarchy is presented, showing that interval hypergraphs are totally balanced, that
totally balanced hypergraphs are arboreal, that arboreal hypergraphs are normal, and
that normal hypergraphs not only have the Helly and König properties but are also
bicolourable. _ese classes of hypergraphs are also discussed in [4].

Recall the hypergraph H that is constructed from the graph G in the proof of_e-
orem 3.16. Every edge of H has one vertex in Au ∪ Av and at least one vertex in VG .
Partitioning the vertices of H in this way induces a 2-colouring of H that establishes
that H is bicolourable. Moreover, every edge of H intersects VG and so the size of a
minimum transversal of H is at most ∣VG ∣ = n. Now, consider the fact that if M is
any matching and T is any transversal in a hypergraph, then ∣M∣ ⩽ ∣T ∣, because T
contains at least one vertex from each edge in M. Since {(u i , x i) ∣ 1 ⩽ i ⩽ n} is a
matching of size n in H, and H has a transversal of size n, we have that the size of a
maximum matching equals the size of a minimum transversal for H (i.e., H has the
König property). _us, we have the following two corollaries.

Corollary 3.17 _e problem of determining κS(H) is NP-hard for bicolourable hy-
pergraphs.
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Corollary 3.18 _e problem of determining κS(H) is NP-hard for hypergraphs with
the König property.

We have shown that determining κS(H) for general hypergraphs, hypergraphs
with maximum edge size at most 3, bicolourable hypergraphs, and hypergraphs with
the König property is NP-hard. However, Lemma 3.15 establishes that there are classes
of hypergraphs (such as those having maximum edge size 2) for which the problem is
in P. Below we give other classes of hypergraphs for which the problem is in P.

Lemma 3.19 Suppose H is an arboreal hypergraph. If H is connected, then κS(H) = 1;
otherwise, κS(H) = 0. Furthermore, the problems of determining κS(H) and ûnding a
minimum strong vertex cut when one exists are in P.

Proof Let H = (V , E) be an arboreal hypergraph and let T = (V , F) be a rep-
resentative tree of H. As noted in [2], representative trees of arboreal hypergraphs
can be found in polynomial time by adapting an inductive proof of Slater [12] (also
see [11, p. 64]). Determining if H is connected is also in P (as this can be determined
by a breadth ûrst search).

If H is null or trivial, then κS(H) = 1. If H is disconnected, then κS(H) = 0. If
∣V ∣ = 2 and H is connected, then H has no strong (or weak) vertex cuts and κS(H) =

∣V ∣ − 1 = 1. _us, henceforth we assume that H is connected and ∣V ∣ ⩾ 3.
As ∣V ∣ ⩾ 3, T has a vertex that is not a leaf. Let u ∈ V be such a vertex, i.e.,

degT(u) > 1. Clearly, u can be found in polynomial time, and since u is not a leaf,
T ∖u is disconnected. Let v1 and v2 be vertices in diòerent connected components of
T∖u. Suppose that there exists a path P from v1 to v2 inH∖S u. _en P would contain
an edge e in H ∖S u that contains vertices from two diòerent connected components
of T ∖S u. However, since u /∈ e this would mean that e does not induce a connected
subgraph of T and hence contradicts the fact that H is arboreal. _erefore, u is a
strong cut vertex of H and κS(H) = 1.

Corollary 3.20 Let H be a hypergraph that is either
(i) totally balanced,
(ii) without cycles of length at least 3, or
(iii) an interval hypergraph.
If H is connected, then κS(H) = 1; otherwise, κS(H) = 0. Furthermore, for such hy-
pergraphs the problems of determining κS(H) and ûnding a minimum strong vertex cut
when one exists are in P.

Proof Interval hypergraphs and hypergraphs without cycles of length at least 3 are
totally balanced, and totally balanced hypergraphs are arboreal (see [7, p. 395]).

We have seen that ûnding minimum strong vertex cuts for arboreal hypergraphs
is in P, yet the problem is NP-hard for bicolourable hypergraphs and for hypergraphs
with the König property. An interesting question, for which we do not yet have an
answer, is what is the complexity of this problem for normal hypergraphs (which
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contain arboreal hypergraphs as a subclass, and are contained as a subclass of both
bicolourable hypergraphs and hypergraphs with the König property)?

3.6 Complexity of Finding Strong Vertex Cuts Versus Transversals

Similarities between transversals and strong vertex cuts were discussed in Section 3.3
where it was shown that κS(H) ⩽ τ(H) for any nontrivial hypergraph H. We now
consider the relative complexities of ûnding minimum transversals and minimum
strong vertex cuts in hypergraphs.
Finding aminimum transversal of an arbitrary hypergraph is an NP-hard problem

(it is equivalent to the Set Covering problem of [10]). _eorem 3.16 showed that ûnd-
ing a minimum strong vertex cut in an arbitrary hypergraph is also NP-hard. Given
the similarity of the two problems and their complexity over the set of all hypergraphs,
it is natural to compare their computational complexities over various classes of hy-
pergraphs. For example, over which classes of hypergraphs do the two problems have
the same complexity, over which classes do they diòer and when they diòer is one
problem consistently harder than the other?
Consider the class of hypergraphs with the König property. Corollary 3.18 states

that ûnding minimum strong vertex cuts is NP-hard for hypergraphs with the König
property. _e maximum fractional matching problem and the minimum fractional
transversal problem are dual linear programs (see [7, Chapter 7, Section 3.2] for more
details). Denote the optimal values to these problems by α∗(H) and τ∗(H), respec-
tively. As they are dual linear programs, these problems can be solved in polynomial
time and additionally α(H) ⩽ α∗(H) = τ∗(H) ⩽ τ(H), where α(H) is themaximum
size of a matching in H. As α(H) = τ(H) for hypergraphs with the König property, it
follows that calculating τ(H) for hypergraphs with the König property is in P. Here we
have a class of hypergraphs for which calculating τ(H) is in P, but calculating κS(H)

is NP-hard.
As arboreal hypergraphs have the König property, calculating τ(H) for arboreal

hypergraphs is in P. Lemma 3.19 indicates that determining κS(H) is in P for arboreal
hypergraphs; thus, we have that for this class of hypergraphs the calculations of τ(H)

and κS(H) are both in P.
Let H = (V , E) be a hypergraph and deûne Ḧ to be the hypergraph with vertex set

V ∪{u1 , u2} and edge set E ∪{{u1 , u2}, {u1 , u2}∪V} , where u1 /= u2 and u1 , u2 /∈ V .
LetH = {Ḧ ∣ H is a hypergraph}. For any hypergraph H with at least one vertex, {u1}

is a minimum strong vertex cut of Ḧ and τ(Ḧ) = τ(H)+1 (theminimum transversals
of Ḧ are exactly the minimum transversals ofH with u1 or u2 added). _erefore, over
H the problem of ûnding a minimum strong vertex cut is in P, while the problem of
ûnding a minimum transversal is NP-hard.

4 Concluding Remark

Having established with _eorem 3.16 that the problem of determining strong vertex
connectivity is NP-hard for arbitrary hypergraphs, it is natural to ask what the best
running time is for solving this problem. We leave this as an open question.
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