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Analytical formulae for longitudinal slip
lengths over unidirectional superhydrophobic
surfaces with curved menisci
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This paper reports new analytical formulae for the longitudinal slip lengths for simple
shear over a superhydrophobic surface, or bubble mattress, comprising a periodic array
of unidirectional circular menisci, or bubbles, protruding into, or out of, the fluid. The
accuracy of the formulae is tested against results from full numerical simulations; they
are found to give small relative errors even at large no-shear fractions. In the dilute
limit the formulae reduce to an earlier result by Crowdy (Phys. Fluids, vol. 22, 2010,
121703). They also extend analytical results of Sbragaglia & Prosperetti (Phys. Fluids,
vol. 19, 2007, 043603) beyond the limit of a small protrusion angle.
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1. Introduction

Superhydrophobic surfaces are typically no-slip surfaces endowed with additional
microstructural features such as grooves, posts or holes and they can significantly
reduce fluid drag in microchannels (Rothstein 2010). In many cases, in the Cassie state
the microstructural surface features are occupied by pockets of gas rather than being
liquid-filled (as in the Wenzel state). The spanning gas–liquid interfaces, or menisci,
that can protrude into or out of the fluid are then often close to being shear-free
and allow slip. The drag reduction characteristics of such a surface have a strong
dependence on the geometrical properties of these gas–liquid interfaces (Steinberger
et al. 2007) and it is an important matter to be able to quantify them. For shear flows
with shear rate γ̇ over such a surface occupying the plane y= 0 the velocity field far
from the plane of the surface takes the form

u= γ̇ (y+ λ)x̂, (1.1)
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FIGURE 1. Longitudinal shear flow over a surface comprising a unidirectional periodic
array, with period 2l, of menisci of width 2c protruding at angle θ with intermediate no-
slip zones.

where x̂ is the flow direction. The constant λ is the effective slip length and is a
measure of the frictional properties of the surface: it is the fictional distance below
the surface at which the shear flow would extrapolate to zero.

In applications an important class of superhydrophobic surfaces comprises those
with a periodic array of grooves aligned with the principal flow direction. Figure 1
shows a schematic diagram of such a surface in the Cassie state when a periodic
array of parallel circular menisci of width 2c and period 2l, each having protrusion
angle θ , span unidirectional grooves aligned along a z-axis, say, with no-slip regions
in between. Also shown is the period window −l< x< l with the meniscus lying in
the subinterval −c< x< c. An important geometrical characteristic of such a ‘bubble
mattress’ is the no-shear fraction c/l. When no-shear conditions are imposed on the
menisci a complete analytical characterization of the effective slip properties of such
surfaces is known in the dilute limit of small no-shear fraction. Davis & Lauga (2009)
derived an explicit formula for transverse slip length over such a surface; Crowdy
(2010) derived the corresponding result for longitudinal slip length. These results are
valuable together because, for small no-shear fractions and zero capillary number,
the slip length for a linear shear in a general direction over the surface is a linear
combination of these results.

In other analytical work, Sbragaglia & Prosperetti (2007) used a boundary
perturbation analysis to investigate the effects of small interface curvature/protrusion
on the effective slip length in a pressure-driven flow in channels. Their analysis is
valid for any no-shear fraction, but it is limited to small protrusion angles of the
menisci (close to flat). Numerical calculations of the slip lengths associated with such
bubble mattresses have been performed by Teo & Khoo (2010) and Ng & Wang
(2011).

The present paper extends the author’s earlier result (Crowdy 2010) beyond
the dilute limit and produces formulae for the longitudinal slip length over these
unidirectional surfaces that are accurate over a much larger range of no-shear fractions.
Crowdy (2010) derived the longitudinal slip length λ0 in the dilute limit as

λ0

c
= cδα(θ), α(θ)= 3π2 − 4πθ + 2θ 2

6(π− θ)2 , δ ≡ π

2l
. (1.2a−c)
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Analytical formulae for longitudinal slip lengths

The first of two new results of the present paper is to derive the more accurate
formula:

λ1

c
= cδα(θ)[

1− (cδ)
2α(θ)

3

] , (1.3)

where we use λ1 to denote the improved result. We also write down the associated
flow field. For no-shear fractions as high as c/l = 0.75 (1.3) gives agreement
with maximum relative errors (across protrusion angles) of 6–7 % compared to
the numerical results of Teo & Khoo (2010). Clearly (1.3) reduces to (1.2a−c) to
leading order in cδ (or, equivalently, to leading order in the no-shear fraction c/l).
We have not presented (1.3) as an expansion in powers of c/l because the functional
form (1.3) arises naturally in our analysis and it turns out to give more accurate
results than a truncated formal expansion.

The second result is to derive an even higher-order approximation, denoted by λ2,
reported later in (4.13). It is not as simple to write down as (1.3), but it is nonetheless
explicit and reduces the maximum relative errors in the slip length to as little as
1–2 % for no-shear fraction c/l = 0.75; even for a no-shear fraction as high as
c/l = 0.9, it is still accurate to within a maximum relative error of 8–9 % (see
figure 3). Moreover, an approximation of the higher-order formula (4.13) (which
ignores certain terms in (4.13) that are sixth order in the no-shear fraction) is the
more concise, and only slightly less accurate, expression

λ2

c
≈

cδα(θ)
[

1+ (cδ)
4β(θ)

15

]
[

1− (cδ)
2α(θ)

3
− (cδ)

4β(θ)

15

] , (1.4)

with

β(θ)= 1
360(π− θ)4 (32θ 4 − 128πθ 3 + 212π2θ 2 − 168π3θ + 45π4). (1.5)

This formula gives the required slip length with maximum relative error 2 % for no-
shear fractions in the range c/l ∈ [0, 0.75] and 12 % for c/l= 0.9.

Formulae (1.3), (4.13) and (1.4) are the main results of this paper. They are valid
without restriction on the protrusion angle θ . We show that they extend an analytical
result of Sbragaglia & Prosperetti (2007) beyond the limit of small protrusion angle.
The formulae can, in principle, be derived using the usual formalisms of matched
asymptotic expansions but we derive them using our own mathematical approach,
which is of theoretical interest in itself.

2. The dilute limit

Crowdy (2010) has previously derived the formula (1.2a−c) for the longitudinal slip
length relevant in the dilute limit c/l→ 0; it is natural to think of fixing c= 1, say,
and taking l→∞. Those prior results can be summarized as follows. With z= x+ iy
we consider a complex potential hs(z), analytic in the fluid region, such that

w(x, y)= γ̇ Im[hs(z)]. (2.1)
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The imposed far-field condition of simple shear requires that w(x, y)∼ γ̇ y, hence

hs(z)∼ z+O(1/z), as z→∞. (2.2)

To satisfy the no-slip condition on the wall we need

Im[hs(z)] = 0, on y= 0, x /∈ [−c, c], (2.3)

while the no-stress condition on the meniscus requires that

Re[hs(z)] = 0, on the meniscus, (2.4)

which follows from the condition ∂w/∂n = 0 on use of the Cauchy–Riemann
equations.

To solve this problem Crowdy (2010) employed conformal mapping techniques.
With β = π− θ the conformal mapping transplanting the upper half of the unit disc
in a parametric complex ζ -plane to the fluid region, and its inverse mapping function,
are

z(ζ )= c
[
(1− ζ )2β/π + (1+ ζ )2β/π
(1− ζ )2β/π − (1+ ζ )2β/π

]
, ζ (z)= (z/c− 1)π/2β − (z/c+ 1)π/2β

(z/c− 1)π/2β + (z/c+ 1)π/2β
. (2.5a,b)

Having derived these, Crowdy (2010) uses them to establish that

hs(z)=−2πc
β

[
((z/c)2 − 1)π/2β

(z/c− 1)π/β − (z/c+ 1)π/β

]
∼ z+ ∆1

z
+ ∆3

z3
+ · · ·, as |z|→∞,

(2.6)
where

a= π

2(π− θ) , ∆1 =−c2

3
(2a2 + 1), ∆3 =−2c4

45
(−7a4 + 5a2 + 2). (2.7a−c)

Actually, only ∆1 is needed to derive (1.2a−c) based on a simple superposition
argument.

Since his focus was to find the slip length Crowdy (2010) did not report the
corresponding dilute-limit complex potential, but it will be useful for what follows.
It turns out to be

h0(z)= hs(z)− ∆1

z
− λ0 cot(δz), −λ0

δ
=∆1. (2.8a,b)

We now explain this result because it helps to understand our derivations of the higher-
order approximations. If h(z) denotes the exact solution to the periodic problem then
h(z) must be analytic in the period window D shown in figure 1 and satisfy the quasi-
periodicity condition

h(z+ 2l)= h(z)+ 2l (2.9)

in order that the velocity w = γ̇ Im[h(z)] is periodic; the quasi-periodicity here is
induced by the far-field z behaviour. Similarly, h0(z) is required to be analytic in D.
This is true of h0(z) given in (2.8) since hs(z) is analytic there – it is analytic, by
construction, everywhere in the upper half-plane and above the meniscus – while the
apparent singularity of h0(z) at z= 0, which is inside the period window if θ < 0, is
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Analytical formulae for longitudinal slip lengths

in any case removable by the choice of λ0. Moreover, the cotangent function has a
periodic array of singularities along the real axis but the two closest to the one at
z= 0 are in the two period windows neighbouring D and not inside D itself.

The first term added to hs(z) in (2.8) serves the purpose of removing the O(1/z)
behaviour of hs(z) as z→∞ so that, as z→∞,

h0(z)∼ z+ iλ0 +O(1/z3), (2.10)

where we have used the fact that cot(δz)→−i as y→+∞ and the known far-field
asymptotics (2.6) of hs(z). This means that, on the edges of the period window where
|z|> l, the function h0(z) satisfies

h0(z+ 2l)= h0(z)+ 2l+O(δ3), (2.11)

which is a good approximation to the quasi-periodicity condition (2.9) if δ is small. It
is easily checked that h0(z) is real when z is real since this is true of hs(z), implying
that h0(z) satisfies the no-slip condition on the wall. Also, provided δ is small, then
on the meniscus

Re[h0(z)] = Re
[

hs(z)− ∆1

z
− λ0 cot(δz)

]
∼ Re

[
−∆1

z
− λ0

{
1
δz
− δz

3
+ · · ·

}]
=Re

[
λ0δz

3
+ · · ·

]
= O(λ0cδ)=O(c2δ2). (2.12)

Thus h0(z) also satisfies the meniscus boundary condition correct to O(c2δ2). In this
way we have verified that h0(z) is the approximation to the required complex potential
provided that δ is small.

3. An improved slip length formula

To produce an improved formula for the slip length, accurate at even larger no-
shear fractions, it is natural to seek a higher-order approximation in δc. Consider the
modified complex potential

h1(z)= hs(z)+ λ1

δ

1
z
− λ1 cot(δz)+ λ1δ

3
[hs(z)− z], (3.1)

with λ1 now chosen to satisfy

∆1 + λ1

δ
+ λ1δ∆1

3
= 0. (3.2)

With this choice the 1/z term in the far-field expansion of the three non-cot terms

hs(z), +λ1

δ

1
z
, +λ1δ

3
[hs(z)− z] (3.3a−c)

of h1(z) vanishes. This ensures that, as z→∞,

h1(z)∼ z+ iλ1 +O(1/z3), (3.4)
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where we have again used the fact that cot(δz)→ −i as y→ +∞ and the known
far-field asymptotics (2.6) of hs(z). Hence h1(z) has the correct far-field behaviour with
slip length λ1. On the edges of the period window where |z|> l, we still have

h1(z+ 2l)= h1(z)+ 2l+O(δ3), (3.5)

which is a good approximation to the required quasi-periodicity (2.9) if δ is small. The
apparent singularity of the function (3.1) at z= 0 is again removable while the nearest
other singularities of the cotangent function are in the neighbouring period windows
as before. It is therefore confirmed that h1(z) is analytic in D. When z is real, which
is true on the no-slip wall, so is h1(z), confirming that the no-slip condition is satisfied
there. Finally, on expansion of the cotangent for small δ, notice that on the meniscus,

Re[h1(z)] = Re
[

hs(z)+ λ1

δ

1
z
− λ1 cot(δz)+ λ1δ

3
[hs(z)− z]

]
∼ Re

[
+λ1

δ

1
z
− λ1

{
1
δz
− δz

3
+O(c3δ3)

}
− λ1δz

3

]
= O(λ1c3δ3)=O(c4δ4), (3.6)

where we have used (2.4) twice as well as the Laurent expansion of cot(δz) about
z = 0. Hence, (3.1) satisfies the boundary conditions on the meniscus, the no-slip
wall and the edges of the period window correct to O(c3δ3). The quantity λ1 as
given by (3.2) is now the required slip length at this order of approximation and
produces the result (1.3). Teo & Khoo (2010) report the slip lengths λTK , say, with
the renormalizations

λTK = λ1

2/l
= λ1

4δ/π
, (3.7)

where we have taken c = 1. Figure 2 shows λTK , as a function of protrusion angle
θ , for c/l= 0.1, 0.25, 0.5, 0.75 and 0.9 together with corresponding data points from
Teo & Khoo (2010), which serve as our benchmark solution. The maximum relative
error of this approximation for c/l= 0.75 is between 6 and 7 % and for c/l= 0.9 is
around 25 %.

4. Higher-order analysis

The analysis of the previous section is readily extended to even higher order. We
introduce h̃s(z) as the complex potential for a single protruding bubble with all
the same boundary conditions as for hs(z) but now satisfying the modified far-field
condition

h̃s(z)∼ z3 +O(1/z), as z→∞. (4.1)

This far-field flow is no longer a simple shear. By the same conformal mapping
arguments (Crowdy 2010) used to find hs(z) it can be shown that

h̃s(z)=−a3c3

[
1
ζ 3
− ζ 3

]
+ c2(1− a2)

[
1
ζ
− ζ
]
∼ z3 + ∆̃1

z
+ ∆̃3

z3
+ · · ·, as |z|→∞,

(4.2)
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FIGURE 2. Normalized slip length (3.7) as a function of protrusion angle θ for c/l= 0.1
(a), 0.25 (b), 0.5 (c), 0.75 (d) and 0.9 (e). Crosses show numerical data from Teo & Khoo
(2010).

where we have used (2.5) and

∆̃1 =−2c4

15
(−7a4 + 5a2 + 2),

∆̃3 =− c6

3780
(4855a6 + 945a5 − 5817a4 + 6615a3 − 6090a2 + 3780a− 508).

 (4.3)

Now consider the new complex potential, constructed using hs(z) and h̃s(z), given by

h2(z) = hs(z)+ λ2

δ

1
z
+ µ2

δ3

1
z3
− λ2 cot(δz)−µ2 cot(δz)cosec2(δz)

+
[

1
3
λ2δ + 1

15
µ2δ

]
(hs(z)− z)+

[
1
45
λ2δ

3 + 20
945

µ2δ
3

]
(h̃s(z)− z3), (4.4)

where the real parameters λ2 and µ2 are chosen to satisfy

∆1 + λ2

δ
+
[

1
3
λ2δ + 1

15
µ2δ

]
∆1 +

[
1
45
λ2δ

3 + 20
945

µ2δ
3

]
∆̃1 = 0,

∆3 + µ2

δ3
+
[

1
3
λ2δ + 1

15
µ2δ

]
∆3 +

[
1
45
λ2δ

3 + 20
945

µ2δ
3

]
∆̃3 = 0.

 (4.5)

We claim that h2(z) is the required higher-order solution. To see this, the expansions

cot z= 1
z
− z

3
− z3

45
− 2

945
z5 + · · ·, cot(z)cosec2(z)= 1

z3
− z

15
− 20

945
z3 + · · · ,

(4.6a,b)
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reveal that the third-order singularity of h2(z) at z= 0 is removable. Furthermore,

h2(z)→ z+ iλ2 +O(1/z5), (4.7)

where we have used the facts that cot(δz) → −i and cot(δz)cosec2(δz) decays
exponentially as y → +∞, as well as the far-field forms (2.6) and (4.2) of hs(z)
and h̃s(z). Then on the edges of the period window where |z|> l,

h2(z+ 2l)= h2(z)+ 2l+O(δ5) (4.8)

so that h2(z) satisfies the required quasi-periodicity condition there (now to higher
order than before). λ2 is the required slip length. For z on the no-slip wall h2(z) is real,
implying that the no-slip condition is satisfied there. On expanding (4.4) for small δ,
and on use of (4.5),

Re[h2(z)] = Re
[
λ2

δ

1
z
+ µ2

δ3

1
z3
− λ2

[
1
δz
− δz

3
− δ

3z3

45
+O(δ5c5)

]
−µ2

[
1
δ3z3
− δz

15
− 20

945
δ3z3 +O(δ5c5)

]
−
[

1
3
λ2δ + 1

15
µ2δ

]
z

−
[

1
45
λ2δ

3 + 20
945

µ2δ
3

]
z3

]
=O(λ1c5δ5), (4.9)

where we have used the Laurent expansions (4.6) and the fact that

Re[hs(z)] =Re[h̃s(z)] = 0, on the meniscus. (4.10)

Hence the meniscus boundary condition is satisfied correct to O(c6δ6). The solution
of the 2× 2 system (4.5) gives the required slip length λ2. In matrix form it is(

a11 a12
a21 a22

)(
λ2
µ2

)
=
(−∆1δ

−∆3δ
3

)
, (4.11)

where

a11 = 1+ ∆1δ
2

3
+ ∆̃1δ

4

45
, a12 = ∆1δ

2

15
+ 20∆̃1δ

4

945
,

a21 = ∆3δ
4

3
+ ∆̃3δ

6

45
, a22 = 1+ ∆3δ

4

15
+ 20∆̃3δ

6

945
.

 (4.12)

In view of (2.7) and (4.3) all matrix elements are known as explicit functions of a
and c, consequently an explicit formula for the slip length λ2 is

λ2 = ∆3δ
3a12 −∆1δa22

a11a22 − a12a21
. (4.13)

The normalized slip length (3.7) – but now with λ1 replaced by λ2 as given by (4.13)
– is plotted in figure 3, as a function of θ for c/l = 0.1, 0.25, 0.5, 0.75 and 0.9. It
gives markedly better agreement with the numerical solution at c/l = 0.9 than that
shown in figure 2. The maximum relative error of this approximation for c/l= 0.75
is between 1 and 2 %, and for c/l= 0.9 it is between 8 and 9 %.
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FIGURE 3. Normalized slip length, now based on the approximation λ2 in (4.13), as a
function of θ for c/l = 0.1 (a), 0.25 (b), 0.5 (c), 0.75 (d) and 0.9 (e). Crosses show
numerical data from Teo & Khoo (2010).

Our analysis leads naturally to formula (4.13) but if we use the second equation in
(4.5) to approximate

µ2 ≈−∆3δ
3 (4.14)

then, on substitution of this into the first equation in (4.5), we find the approximation

λ2 ≈−
δ∆1

(
1− δ

4∆3

15

)
1+ ∆1δ

2

3
+ δ

4∆3

15

. (4.15)

On eliminating a in favour of θ , it can be shown that

∆1 =− c2

6(π− θ)2 (2θ
2 − 4πθ + 3π2),

∆3 =− c4

360(π− θ)4 (32θ 4 − 128πθ 3 + 212π2θ 2 − 168π3θ + 45π4).

 (4.16)

Equation (4.15) is now equivalent to (1.4) reported earlier. The maximum relative error
of this approximation is not quite as good as for formula (4.13), but is still impressive:
at c/l= 0.75 the maximum relative error is around 2 % (about the same as for (4.13))
and for c/l= 0.9 it is around 12 % (slightly worse). The surprisingly wide range of
no-shear fractions for which these formulae give good accuracy arguably obviates the
need for higher-order approximations, but these are easily derivable in principle.

5. Verification against previous results

When formally expanded in powers of the no-shear fraction our formulae cross-
check with other known results. First, Philip (1972) has shown that for a flat meniscus
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with θ = 0, c= 1 and at any no-shear fraction,

λ= 2l
π

log sec
[π

2l

]
=−1

δ
log cos δ ≈ δ

[
1
2
+ δ2

12
+ δ4

45
+ · · ·

]
, δ ≡ π

2l
. (5.1)

But for θ = 0 we find α(0) = 1/2 and β(0) = 1/8 and it can be verified that (1.4)
agrees with (5.1) to this order of expansion in δ.

By taking their microchannel width to infinity, Sbragaglia & Prosperetti (2007)
performed an analytical study for small protrusion angles θ in a semi-infinite domain.
The expansion of (4.15) for small δ is

λ2

c
= δcα(θ)

[
1+ c2δ2α(θ)

3
+ δ4c4

(
2β(θ)

15
+ α(θ)

2

9

)
+ · · ·

]
. (5.2)

A Taylor expansion of α(θ) and β(θ) to linear order in the protrusion angle θ gives

α(θ)= 1
2
+ θ

3π
+ · · ·, β(θ)= 1

8
+ θ

30π
+ · · ·. (5.3a,b)

On substitution of (5.3) into (5.2), we find

λ2

c
= δc

[
1
2
+ δ

2c2

12
+ δ

4c4

45
+ · · ·

]
+ δc

(
θ

π

)[
1
3
+ c2δ2

9
+ 24

675
c4δ4 + · · ·

]
+ · · ·. (5.4)

The first term agrees with (5.1), valid for θ = 0, once we set c = 1. On setting
δ=πξ/2c the normalized leading-order correction due to the meniscus curvature is

cθξ
2

[
1
3
+ ξ

2π2

36
+ ξ

4π4

450

]
=− c2

2R

[
ξ

3
+ ξ

3π2

36
+ ξ

4π4c4

450

]
, (5.5)

where, for small meniscus deflection downwards into the grooves, θ ≈ sin θ =−c/R.
We thus retrieve the result in (45)–(47) of Sbragaglia & Prosperetti (2007), who
derived it using quite different techniques. In summary, various series expansions of
our formulae (1.3) and (4.13), or (1.4), give results that are consistent with other
studies. Note, however, that we continue to present (1.3) and (1.4) in the unexpanded
form arising naturally from our analysis.

6. A reciprocity result

In view of their convenient explicit forms we expect that the slip length formulae
(1.3) and (1.4), and the associated complex potentials (3.1) and (4.4), will be useful
in a variety of studies of superhydrophobic surfaces where, for example, additional
physical effects are included (such as heat transfer, Marangoni or thermocapillary
effects, or the influence of an enclosed gas phase). We end by showing how to
combine the new formulae with a useful reciprocity result based on one of Green’s
identities.

Let w2(z)= Im[γ̇ h2(z)], with associated slip length λ2. Suppose ŵ is the solution of
the same problem of shear flow over the bubble mattress with all the same boundary
conditions imposed on w2(z) except on the meniscus, where we now require

∂ŵ
∂n
=A (z, z), (6.1)
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where A (z, z) is some specified function (derived, say, from inclusion of additional
physical effects). Let the slip length for this modified problem be λ̂. By Green’s
identity, the harmonicity of w2 and ŵ, and the divergence theorem, we deduce that

0=
∫

D
[w2∇2ŵ− ŵ∇2w2] dA=

∮
∂D

w2
∂ŵ
∂n

ds−
∮
∂D

ŵ
∂w2

∂n
ds, (6.2)

where ∂D is the boundary of D. On the edges of the period window for which |z|> l,

w2 = γ̇ (y+ λ2)+O(δ5),
∂w2

∂n
ds=±∂w2

∂x
dy, (6.3a,b)

where we have used (4.7). Hence the contributions to the right-hand side of (6.2) from
the side edges are small (for small δ) while the no-slip portions of the surface do not
contribute at all. We then arrive at the approximation

λ̂≈ λ2 − 1
2l

∫
meniscus

A (z, z) Im[h2(z)] ds, (6.4)

where we have integrated around ∂D in an anticlockwise direction and used the far-
field conditions. By virtue of the results of this paper the right-hand side of (6.4) is
an integral expression for the required slip length λ̂ accurate to the same order in the
no-shear fraction as the solution h2(z) and λ2 used to obtain it.

7. Discussion

An asymptotic analysis similar to that presented here is, in principle, possible to
generalize the dilute approximation to the transverse slip length over this class of
surfaces found by Davis & Lauga (2009); the biharmonic nature of the field equations
there render the technical details more challenging. But complementary results in this
direction would provide a fuller analytical description of the so-called slip tensor
(Bazant & Vinogradova 2008; Asmolov & Vinogradova 2012) for these surfaces,
thereby generalizing the fairly complete analytical description in the dilute limit
already available on combining the analytical formulae of Davis & Lauga (2009) and
Crowdy (2010).

The study here has imposed idealized shear-free boundary conditions at the
liquid–gas interfaces and ignores additional dissipation associated with an enclosed
gas. Incorporating dissipation in the gas subphase is a topic of much recent research:
Schönecker & Hardt (2013) and Schönecker, Baier & Hardt (2014) have proposed
a semianalytical method that approximates the liquid–gas interface as a constant
shear-stress boundary (leading to a non-uniform local slip length); Nizkaya, Asmolov
& Vinogradova (2014) have put forward a general ‘gas cushion model’ based on an
operator method. Those authors have executed detailed studies of their models in
the case of unidirectional (one-dimensional) surfaces with flat interfaces. Our results
here – especially coupled with the reciprocity result of § 6 – might well be useful in
extending those investigations to the important case of curved menisci.
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