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Abstract. We study automorphisms of a generic Jacobian Kummer surface. First we analyse the
action of classically known automorphisms on the Picard lattice of the surface, then proceed to
construct new automorphisms not generated by classical ones. We find 192 such automorphisms, all
conjugate by the symmetry group of the (16,6)-configuration.
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0. Introduction

Let F denoteaquartic surfacewith 16 nodesin P3 and £ itsminimal resolution. We
call F a(singular) Jacobian Kummer surface, as it is isomorphic to the Kummer
surface of the Jacobian of a curve of genus 2. R

The main purpose of this paper is to discuss automorphisms of F' (or, bira
tional automorphismsof F'). Some automorphismsof F' are geometrically evident:
namely, the sixteen translations induced by the trandations of the Jacobian by a
point of order 2, the sixteen projections of the surface upon itself from anode, and
the sixteen correlations by means of tangent planes collinear with a trope. These
automorphisms were introduced by F. Klein [KI]. Another example is the com-
posite of the dual map: FF — F™* and a projective isomorphism: F* — F. Thisis
called a switch because it switchesthe 16 nodes and the 16 tropes. A correlationis
nothing but a conjugate of aprojection by aswitch. A question arose naturally asto
whether any other automorphisms, not generated by translations, projectionsand a
switch, exit. In 1897 Kantor constructed some projective automorphisms under the
assumption that the surface F' satisfies certain conditions [Kan]; it can be shown
[Kel] that such a surface has Picard number p(F') > 18. For F' generic, the first
explicit answer to the question was given in 1900 by Hutchinson ([Hut], [S-C]).
He obtained, by referring the surface F' to different Gopel tetrads, sixty involutions
which are restrictions of cubic Cremona transformations of the space.

We assume p(F) = 17 (ageneric case) and denote by G the group of automor-
phismsof F' generated by the 16 translations, the 16 projections, the 16 correlations,
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the 60 Cremona transformation, and a switch. Since Hutchinson, no other auto-
morphisms have been provided and it haslong been conjectured that Aut(F') = G.
In section 6 some counterexamples to this conjecture will be constructed.

The strategy used in the construction is as follows.

After studying the rich structure of the Picard lattice and the transcendental
lattice of a generic Jacobian Kummer surface, we analyse the action of the clas-
sically known automorphisms on the Picard lattice and then proceed to construct
new automorphisms by working in the reverse order: we find a (—4)-reflection of
the Picard lattice and, using the Torelli theorem, show that it realizes as a new
automorphism of the surface (Theorem (6.11)). The method used in the search of
such a (—4)-reflection is explained in (6.10): noting that there are only finitely
many elliptic pencilson F up to the whole automorphism group (cf. [St]) and that
an elliptic pencil is nothing but a primitive effective isotropic vector of the Picard
lattice having a nonnegative intersection with any smooth rational curve, we focus
on the set of primitive effective isotropic vectors having a nonnegativeintersection
with nodesand tropes and having minimum degree among vectorsinits orbit under
the group G and show that this set satisfies 109 inequalities and is still infinite.
Adding moreinequalities coming from rational curvesother than nodesand tropes,
we finally reach a (—4)-root.

Furthermore we prove that the new automorphism is a conjugate of a projection
by the automorphism (which must be also new) induced by acertain linear system
((6.14) and (6.16)). There are 192 such linear systems corresponding to certain
hexads of nodes. Such hexads are mutually conjugate by the symmetry group of
the (16g)-configuration.

1. (166)-Configuration on Jacobian Kummer surfaces

(1.1). Let A betheJacobianof acurveC of genus2,andlet7: A — A,a — —a,
be the involution automorphism. Riemann’s theorem guarantees that C' can be
embedded in A as a theta-divisor ©. Moreover we may assume 7(0) = O: If
r € C is aWeierstrass point, we can take the embedding: C' — A = Pic°(C),
x — [z — r], and set

©={[z—rzeC}CA

The following propositions are classical and well-known (cf. [Hud], [Beau], [G-
H]). We state them without proof.

(1.2) PROPOSITION. (i) Thelinear system |20| on A definesa 2-to-1 morphism
of A onto a surfacein P2, which on passing to the quotient gives an isomor phismof
A/7 with a quartic surface F ¢ P® having 16 nodes (= ordinary double points).
(ii) The linear system |4c*© — £ E;| on A, where e: A — A the blow-up of
the 16 points of order 2, and E, . . ., E16 the exceptional curves, defines a 2-to-1
morphismof A into P°, which on passing to the quotient gives an isomor phism of

https://doi.org/10.1023/A:1000148907120 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000148907120

AUTOMORPHISMS OF JACOBIAN KUMMER SURFACES 271

A/ with a complete intersection of three quadrics 3= C P°. If o1 F — F isthe
resolution of the 16 double points, then the isomor phism: F—3is given by the
linear system |20*H — $%N;|, where H is the class of a hyperplane section of
F, and Ny, ..., Nig therational curveslying over the 16 double points.

(1.3) PROPOSITION. Let F be a quartic surfacein P? with 16 nodes. Then there
are 16 planes of P2 which touch F" along a conic. Each of these conics, called a
‘trope’, passes through 6 of the 16 nodes of F, and each node lies on 6 conics. The
double cover of any of the 16 conics branched along 6 nodesis a curve C of genus
2. F' can be constructed from the Jacobian A = J(C') of C' by the same procedure
asin (1.2)(z), that is, F' is isomorphic to the Kummer surface associated to the
abelian surface A = J(C).

(1.4) DEFINITION. By a singular Jacobian Kummer surface (resp. Jacobian
Kummer surface) we mean a quartic surface F' in P3 having 16 nodes (resp. its
minimal resolution F) The 16 nonsingular rational curveson F lying over the 16
nodes of F' and the proper transforms of the 16 tropes of F' are also called nodes
and tropes (of F') respectively. By H we denote the class of a hyperplane section
of F or, interchangeably, its proper transform in F'. The distinction will be clear
from the context.

The configuration of 16 nodes and 16 tropes that each trope passes through 6
nodes and each node lies on 6 tropes s called the (16¢)- configuration.

(1.5). Let A be the Jacobian of a curve C of genus 2. Then there are 16 theta-
divisorson A which form, with the 16 points of order 2, a(16g)-configuration. This
(166)-configuration on A induces the (16¢)-configuration on the singular Jacobian
Kummer surface F* associated to C' and vice versa

To explain the incidence relations of this (16g)-configuration, think of C asthe
locus of

with p; = (), 0) the Weierstrass points of C. Then, the points of A
pi = [pi —po], ©=0,...,5
pij = [pi+pj—2po), 1<i<j<5
are of order 2. Note that the standard theta-divisor
©=00={p—poipeC}CA
of course containsthe six 2-torsion points {u; }; likewise its trandate

©; =0+ pu;
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contains the six points yo, p1; and {5 } ;2 and
Oij = O + pij
containsthe six points 1u;, 14, iz, and { peem, }om£i -
Conversely, each of the points 1.;, 11;; lies on exactly six of the divisors ©;, ©;;;
pi € ©,0;,and©;; forj #i
pij € ©4,0;,0;; and Oy, fork,l#1i,j.

(1.6). Throughout this paper, we identify the group A, of 2-torsion points of A
with the set of their indices, that is,

Ay ={i,jk:0<i<51<j <k<b5}
The group law on this set is obvious:
i+ J =1j, i+ jk =mn, ij +km =n, ij + jk =1k
for i, 4, k, m,n distinct.
We also regard A, = (Z/2)* as a4-dimensional affine space over F», thefield

of two elements. There are 30 hyperplanes and 140 affine 2-planes in the affine
space As.

(1.7). Notethat the automorphism group of the (16¢)-configurationisisomorphic
to (Z/2)* x Sp(4, F»), where (Z /2)* isthe group of translations of the affine space
Az and Sp(4, F,), thegroup preserving the symplecticformon Az, can beidentified
with the permutation group of the set of 6 Welerstrass points of the curve C' (see
(1.5)) which inducesthe permutation group of the set of 6 theta-divisors containing
afixed 2-torsion point.

(1.8). Onecanwrite down thetropesT,, interms of the hyperplane section class
H and the nodes N, :

To = 3(H — Ng— N1 — N — N3 — Ny — Ns),

Ty = 3(H — Ng— N1 — N1ip — N1z — N1y — Nis),
T, = 3(H — Ng— N2 — N1ip — Nog — Nog — Nos),
T, = 3(H — N1 — N2 — N1z — Nuas — Nas — Naa),
T3 = %(H—No—Ns—le—st—Nss— Na),
Tiz = %(H N1 — N3 — N13 — Ngs — Nog — Nos),
Toz = %(H Ny — N3 — No3 — Ngs — N14 — Nis),
Tys = 3(H — N1 — N1z — Nog — Nuas — Ny — Ns),
Ty = 3(H — No — Nas — Na — N1g — Nog — Nag),
Tis = 3(H — Ny — Npg — Ng — N1a — N3s — Nps),
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(1.9) DEFINITION. For atropeT,, we denote by I(7,) the sixtuple of indices of
the nodes which Ty, passesthrough. e.g. I(71) = (0,1, 12, 13, 14, 15).

(1.10) OBSERVATIONS.

(i) Every pair of nodesis contained in exactly two tropes.
(i) Given any pair of tropes T, T3, we have

[(Ta) N I(Tp)| = 2,
and the symmetric difference
[(T2)AI(Ty) = I(To) UI(Ty)\I(Ta) N 1(Tp)

isahyperplane of A,.

(iii) Given ahyperplane J of A, there are exactly four pairs {T,, T3} of tropes
suchthat I(7T,)AI(Tg) = J.

(iv) Given atrope T, and a hyperplane J of Ay, we have either |I(T) N J| = 2
and I(T)AJ = Ap\I(T") for sometrope 77, or |[I(T) N J| = 4and I(T)AJ =
I(T") for sometropeT".

2. Tetradsof nodes

(2.1). A Gopel tetrad of nodesis atetrahedron whose vertices are nodes, but none
of whose facesis atrope. In other words, it is a tetrad of nodes such that no trope
contains three of the 4 nodes, e.g. (0, 1,23, 45). Each Gopel tetrad is an affine
2-planein A, and there are 60 such tetrads, all forming a single orbit of the group

(Z/2)* x Sp(4, Fa).

(2.2). A Rosenhain tetrad of nodes is a tetrahedron whose vertices are nodes
and whose faces are tropes, e.g. (0, 1,15, 5). Each Rosenhain tetrad is an affine
2-plane in A, and there are 80 such tetrads, all forming a single orbit of the
group (Z/2)* x Sp(4, F,). Gopel and Rosenhain tetrads correspond to isotropic
and non-isotropic planesin A», respectively.
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3. Picard lattice

Using standard theory of K3-lattices (see e.g. [B-P-V], [Nik 2]), one sees easily
the following:

(3.1) LEMMA. Let X be a Jacobian Kummer surface with p(X) = 17. Then

() Pic(X) 2 Dgd Dgd (4), Tx = (—4) @ U(2) ® U(2), where U isthe
even unimodular lattice of signature (1, 1) and Dg the even negative definite lattice
defined by the Cartan matrix of an irreducible root system of type Dsg.

(i) Pic(X) is generated, over Z, by (the classes of) the 16 nodes N,,, the 16
tropes T,,, and the hyperplane section H.

(iii) The discriminant form Dg of S is generated by

C1 = (N2 + N2+ N3+ N13)/2,
C2 = (N1+ N1z + Na+ Nag)/2,
C3 = (N2 + N1z + N4+ Nig)/2,
Cs = (N1+ Ni2+ N3+ Np3)/2,
B = H/4+ (No+ N1+ N2+ N12)/2.

(3.2) PROPOSITION. Let X be a Jacobian Kummer surface with p(X) = 17.
Then the only rootsin the lattice S = Pic(X) are (—2)- and (—4)-roots.
Proof. Clearly, S contains (—2) and (—4)-roots, e.g. nodes and tropes;

H —2Nq,H - Y N, G aGopel tetrad.
aceG

Let e be a (—2d)-root of S,d > 3. Write e = vy + v + mf,v1,v2eDg, f @
generator of < 4 >, m € Z. Then, since (e, S) C dZ, we seethat

(vi, Dg) C dZ and d|(e, f) = 4m.
We need the following:
(3.3) LEMMA. Ifv € Dg, andif (v, Dg) C dZ, then

| d/2w for somew € Dgif d iseven,
"“Ydw forsomew e Dgif disodd.

Proof. Let ey, ..., eg bethe canonical basis of Dg and let v = Xa;e;. Then the
lemmafollows from the system of linear equations(mod d) inay, . .., as :

(v,e;) =0(modd), i=1,...,8
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Now we split the proof of (3.2) into two cases:

(i) If aprimep, p > 2, dividesd, then, by theabovelemma, p dividesv;,7 = 1, 2.
Since d divides 4m, p divides m and hence p divides e, which contradicts to the
primitivity of e.

(i) If d = 28, k > 2, then, by (3.3), v; = 2~ 1w; for some w; € Dg. So,

okt — 02 — 42 1 92 4 m2f2 = 226D (2 1 wd) 4 4m?.

Sincek > 2andsince2|(w? + w3), 234m?. So, 2 dividesm and hencedivides
e, which again contradicts to the primitivity of e.

4. Theautomorphism group
(4.1) THEOREM. Let X be a Jacobian Kummer surface with p(X) = 17. Then

Aut(X) = {¢ € O(S)": ¢ induces +idon Ds},

where O(S)* is the group of isometries of S which leaves the set of effective
divisorsinvariant. In particular, every automorphismof X actsaseither id or —id
on the transcendental lattice T'.

Proof. Onecan deducethisfrom Torelli theorem for K3 surfaces[P-S], Nikulin's
result [Nik 3] on the character map x: Aut(X) — GL(Q?(X)) = C*, and the
existence of afixed point free involution on algebraic Kummer surfaces [Ke 2].

(4.2) Remark. Itisahighly nontrivial arithmetic problemto cal culatethegenerators
of the group O(S)*. Recall that the only roots in the lattice S = Pic(X) are
(—2)- and (—4)-roots. Denote by I' the subgroup of the orthogonal group O(SS)
generated by all (—2)- and (—4)-reflections, and choose afundamental polyhedron
P of T in the Lobachevsky space A'® := (ample cone)/R in such a way that
P C A, the fundamental polyhedron of the group W generated by all (—2)-
reflections. Then by aresult of [Vin 2], we have O(S)* = I't x O(S)}, where
't =I'NnSym(A) =T NO(S)*, O(S), = O(S)* NSym(P). Let S bethe set
of reflections with respect to the hyperplanes bounding P, i.e., the faces of P, and
S (resp. Su) the set of (—2) (resp. (—4))-reflections belonging to S. Obviously,
S =S US8,, and W isthe minimal normal subgroup of T" containing So. Notice
that the order of any product s, o sg, sq € S2, 55 € Sa, isevenor infinite (cf. [Vin
2).

Then it follows from aproposition in [Vin 3] that I'* is the Coxeter group with
asystem of generators S, and that the Coxeter diagram of I'* can be obtained from
the Coxeter diagram of T" by removing the vertices belonging to So.

One may employ Vinberg's algorithm [Vin 2] to compute the set S of the faces
of P, or equivalently, the system of generators of I'. The algorithm stopsin afinite
number of stepsif and only if O(S)} is finite. Unfortunately, it seems that in our
case the algorithm goes forever. Indeed, Vinberg himself pointed out [Vin 1], on
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the basis of some experience, that it stops in finite steps only in exceptional cases
where the discriminant of S is small. For example, in [Vin 3] Vinberg computed,
using the algorithm, the set S and consequently the set of generators of O(S)™ for
two examples of K 3-surfaceswith disc (S) = 3, 4 resp., both remarkably smaller
than disc (S) = 64 in our case.

5. Classical automor phisms

Let F beaquartic surfacewith 16 nodesin P3 and F' its resolution of singularities.
In this section, we discuss some birational automorphismson F, known before the
century, and their actions on the Picard lattice S = Pic(F').

(5.2) (i) 16 Trandlations

Thetranslation of A = J(C') by a2-torsion point o € A descendsto give an
automorphism ¢, on F, called atrangdlation. All translations arelinear, i.e., they are
induced by projective automorphisms of PS.

(ii) 16 Projections

Projecting the surface /' C P® from one of its double points n,,, we obtain a
ramified double cover: F,, — P?, where F,, isthe blow-up of F' at the double point
ne. We call the covering involution of the double cover a projection and denote it
by pa-

(iii) Switches

It is known (cf. [G-H], [Hud]) that the dual surface F* C (P%)* = P® whose
points are tangent planes of F' is again a quartic surface with 16 nodes (= the
image of the 16 tropes of F') and is projectively isomorphic to F. The composite
of the dual map: F — F* and the projectiveisomorphism: F'* — F isabirational
involution of ', which switches the 16 nodes and the 16 tropes. We call such an
involution a switch. If p(F') = 17, then there are exactly 16 switches on F' as the
composite of any pair of switchesis projective (Remark (5.3) below) and hence, a
translation. The 16 switches are of the form o o t3, 3 € Ao, where o is a switch
sending N, to T,,, a € As.

(iv) 16 Correlations

These are the correlative transformations by means of tangent planes collinear
with atrope. In other word, they are the liftings onto ' of the 16 projections of F*
and, hence, of theform o o p,, o 0.

(v) 60 Cremona transformations referred to Gopel tetrads

The equation of F' referred to a Gopel tetrad of nodes hasthe form

A(2?t? + y?22) + B(y?1? + 2%0%) + C(2%1? + 1%y?) + Dayzt
+F(yt + zz) (2t + zy) + G(2t + zy)(at + yz)
+H (zt +yz)(yt + zz) =0 [Hut], *)
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and is unchanged by the standard Cremona transformation:
(x7 y7 Z? t) —> (y2t7 th? tx,g? xyz)7

so by using different tetrads we obtain in this way 60 (birational) involutions of
F. These involutions are denoted by c,, s .5, Where (a, 3,7, 0) isa Gopel tetrad.
Note that, for any translation ¢,

Ct(Oé,,B,’Y,(S) = t ° Cayﬂa'}/a(s © t7

and that each 4 of the 60 Cremona transformations are mutually conjugate by
translations.

(5.2). Wecomputethe action of the classical automorphismson the Picard lattice
of F'. Theresult is summarized in the following table. For simplicity, we assume

p(F) = 17.
ta Pa o C = Ca,B,~,8
NN Na+n NN! Tn H_Na_NB_Ny_N5+N~,
if Kk # « ifk=0a,8,7,9;
2H — 3N,, the remaining 12 nodes
if k =« are permuted according
to (*) below and (1.8)
Te Toayw T, N, (*) c interchanges the two
ifa€I(T) tropes containing any two
T.+ H —2H,, of the four nodes
otherwise No, N3, Ny, Ns.
H H 3H - 4H,, 3H —Xaeca,No 3H —2(No + Ng + Ny + Ns)

Note that p,, acts on the Picard lattice as the reflection with respect to a (—4)-
root H — 2N,. Noteaso that ¢, pa, o, adc, 5 inducel, =1, —1and —1on

the transcendental lattice of .

(5.3) Remark. It can be shown [Ke 1] that if p(ﬁ) = 17, then there are no other
projective automorphismson F' than the 16 trandations. If F isspecial in the sense
that the six nodeslying on atrope satisfy certain configurations, then F admits other
projective automorphisms than the 16 translations ([Kan] and [Hud; Sect. 120]).
Such special surfaces all have Picard number p(F') > 18.

(5.4) Remark. The Cremona transformations referred to Gopel tetrads were pro-

vided in 1900 by Hutchinson [Hut] as an explicit answer to the gquestion as to
whether on a generic F' any other automorphisms, not generated by trandlations,
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projections, and correlations, exist. He also pointed out, in the same paper that the
Weddle surface

1)z, z, a, 1l/a

1/y, y, b, 1/b

1/z, =z, ¢ 1/c

1/t, t, d, 1/d

o

into which the general Kummer surface F' can be transformed birationally, is
unchanged by the standard Cremonatransformation. There are fifteen equations of
thisform, referred to different tetrahedra of nodesof W (W has exactly six nodes;
# tetrahedra = 15), and he obtained in this way a group of automorphisms of F’
and claimed that this group is an infinite group. Later, Baker corrected this claim
[B] and Sharpe and Craig proved that this group coincides with the group of 16
trandations [S-C]. Another way of confirming the result of Sharpe and Craig isto
note that the projection of W onto itself from anode correspondsto a switch of F.

6. Some new automor phisms

~

Throughout this section, we assume p(F') = 17 and denote by G the group of
automorphisms of F' generated by the 16 trandlations ¢, the 16 projections p,,,
the switch o, the 16 correlations o o p,, o o, and the 60 Cremona transformations

C()ﬁ,ﬂ,’}’,&‘
Since Hutchinson no other automorphisms have been provided and it has long

been conjectured that Aut(ﬁ’) = @. In this section we give some counterexamples
to this conjecture.

(6.1) PROPOSITION. Let GG1 be the subgroup of G' generated by p,, 0 o p, © o,
Ca,3,y,6 S Then G'1 isanormal subgroup of G and

G=Gix <oty a€ Ay >= Gy x (Z2/22)°.

Proof. Trandations commute with o, i.e,, t, 0 0 = o o t,, S0 that the second
isomorphism follows.

Sincep, isthe (—4)-reflectionw.r.t. H —2N,, t, 0p, ot, isthe (—4)-reflection
w.rt. ¢, (H —2Ny) = H —2Nqqy, i€,

ty O Pa Oty = Patp
and consequently
tyo(ocopaoo)ot, =00pat,oo0.
These two equalities together with

b © CaBy,6 © b = Cop,B+p,y+id+u
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imply that all translationst,, normalize G';.
It is straightforward to check that

oo Cayﬂa'Ya(s °co0 = cK/a)‘yﬁLJ/’

wherek, A, i1, v aretheindices of the 4 tropes not passing through any of the nodes
Na, NG, Ny, ng. It followsthat o also normalizes G ;.

(6.2). By (4.1), we may regard Aut(F) and G as subgroups of O(S). Let
(o, B,7,0) be a Gopel tetrad. We denote by r, 3,5 the reflection of S w.rt. a
(—4)-root H— N, —Ng—N,—N;,andby t, g 5 thecompositec, 5.,5°7a,3,7,5-
Then

Ca,8,7,6 = ta,8,7,6 © Ta,8,7,6 = Ta,B,7,0 © ta,8,7,65

andt, g fixesH, Ny, N3, N, N5, and permutes the remaining 12 nodesjust in
the same way that c,, 3,5 does.
Warning: Neither r, 5 .5 NOr t, 3,5 Can realize as an automorphism of F'.

(6.3) LEMMA. Every element feGG1 can be written in the form

f=d20¢1,
where ¢ isa product of p,’s, o 0 pq 0 0'S, 74 5.4,6’S, P2 iSaproduct of ¢, g - 5'S.

(6.4) LEMMA. H — N, — Ng — Ny — Ns, , 3,7, 6 al distinct, isa (—4)-root of
Sifandonlyif («, 3,7, d) isa GOpel tetrad.
Proof. Straightforward.

Proof of (6.3). Sincet,, 3,5 Permutes nodes and tropes respectively (cf. (6.2)),
andsincep, and ry  ,, . arereflections, we have

tazﬁa7a6 ° pﬂ o ta,ﬁ,’y,(s = p[lz’?
ta7ﬂ’7’6 © (U opV ° U) © tOé;/Bf)/y(s =0 opll’ o 07

taHB)’Y)a o lr‘KﬂA))u’)V o ta)ﬂ7’y76 = lr‘K‘,7A’))u” 7V’
From these, by induction, we are done

cPuotafyg = ta By 0Dy s
..(coP,00)otapys.--=..-tagys0(00Pyroo)...,
o c“a)‘yuvll °© tayﬂa’Ya(s Tt

= tﬁa)\:H:V °© ta:Ba’Y’(s © TK,7>\IaI~LI7V’ Tt
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(6.5) LEMMA. Every element g € G can be written in the form

g=1lqo 201, Oty 0¢dpo0o0 ¢,

where ¢, and ¢, the same asin (6.3).
Proof. Sinceo oty 5,5 © 0 =ty \ 0, thisfollows from (6.1) and (6.3).

(6.6). Let E be a divisor of F'.

An isometry ¢ of S is said to increase (resp. decrease) E if (¢(E),H) >
(E,H > (resp. < ¢(E), H) < (E, H)).

E can be written in the form

E=aH - byNo, a,by€3Z (cf.(31)
Then we see that
po iNCreases E <= (E,H — 2N,) > 0 a > by,
Ca,8,y,6 INCIEASES I/ <= 1 5 .5 INCIEASES E < 2a > by + bg + b, + by,
oincreasesE <= 4a > > b,.
Let us denote by (+x) the system of 77 inequalities

a = by, € A» (16 of them)
2a > by + bg + by + bs, (o, B,y,6)a Gopel tetrad (60 of them)
4a > Y ba

aEAy

(%)

(6.7) PROPOSITION. Let E = aH — £b,Ng,a,by € 3Z,a > 0,b, > 0, bea

divisor of F. Then E satisfies (+x) if and only if every element of G increases .
Proof. (<) Obvious. (=) Suppose £ satisfies (xx). Then p,,cqp,,6 @d o

increase £.

Since(t.(F),H) = (E, H),t, increases Einatrivial sense. A correlationcop,oo

isthe (—4)-reflectionw.r.t. o(H — 2N,,), sothat it increases E if and only if

(E,o0(H — 2N,)) = 2 (4a - > bﬂ) > 0.
BEI(Ta)

But thisineguality follows from the last inequality of (xx).
Now let g be an arbitrary element of G. Then, by (6.5), g can be written in the
form

g=taoga0o¢1, OF tgodro00dy,
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where ¢1, ¢, arethe sameasin (6.5).
Casel. g=tyo0¢pr0d¢s.

Since ¢; isaproduct of reflections, we see that ¢1(E), by induction, is of the
form

$1(E) = E+ Y ko(H —2Ng) + Y _mqo(H — 2N,)

+Z”a,ﬂ,%6(H — No — Ng — N, — Ny)

with all ko, mq, na,g,4,6 NON-Negative. This provesthat ¢; increases E. But then,
since(g(E),H) = (¢1(F), H), g increases E.

Case2. g=taoppooods.
Using the formulafor ¢1(£) as shownin Case 1, we see that

(g(E),H) = (00 ¢1(E), H)
= (o(E),H) + 4 (22 ko + Y ma + Zna,mg)
> (E,H),

and that ¢ increases E.
The following lemma follows easily from the Riemann—Roch theorem.

(6.8) LEMMA. Let E = aH — by Ny, a, b, € 1Z,a # 0, beadivisor of F' with
E? > —2. Then E iseffective if and only if & > 0.

(6.9). Define
P ={E € S: E primitive, (E, H) > 0},
and
T = {E € S: E primitive, effective, E> = 0}.

Then, by (6.8),Z C P.
There is a one-to-one correspondence: P — Q% c R,

E=aH - byNy € P = (ba/a)aca, € Q™.
(6]

The image of Z under this correspondenceis the set of rational points on the 15-
dimensional sphere Si° of radius = v/2. It is easy to see that the set of rational
points on this sphere is dense in the sphere.
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(6.10). Let & bethe set of elliptic pencilson F. Then

& = {F e€Z:(E,R) > 0foral non-singular rational curve R}
= {E € Z:(E, R) > Ofor al effectivedivisor R with R? = —2}.

Consider a subset Enin of €1 Emin = {E£ € &: E can not be decreased by any
automorphism of F, i.e., E has minimum degree (= (£, H)) among elementsin
its orbit Aut(F) E'}. Then Emin can beidentified, by the correspondence P — Q6
with the set of rational points on S}° N P,.,, where P, C R is the polyhedron
defined by infinitely many hyperplanes (or linear inequalities)

(B,H) < (9(B), H),g € AUt(F),

(E,R) > 0,R anon-singular rational curve.
Since £ /Aut(F) isfinite (cf. [St]), we see that Enin isfinite. Thisfact together with
the denseness of rational points of SI° impliesthat P, isinscribed in S°, i.e., all

points of P, havelength? < 2.
Let P bethe polyhedron C R® defined by the following 109 equalities:

(1> x4, € Ap (16 of them),
2> xq + 28+ 2y +a5, (0,5,7,0) aGOpel tetrad (60 of them),
425 4 %a,
To >0, «a€ Ay (16 of them)
2> xq +xgt+ oy tas+a,+an, (o,070,K N
atrope (16 of them).

Then, by (6.7), rational points on Si° N P correspond to elements of the set
{E € I: E cannot bedecreased by any element of G, and (E, N,) > O, (E,T,) >
0, foral a € As}.

The above discussion suggests that, as long as a vertex of P has length? > 2,
one should be able to find either an automorphism or a rational curve whose
corresponding hyperplane cuts off the vertex.

Let {a,3,7,0,k,A\} C A be a sixtuple such that no four of «,...,\ are
contained in a Gopel tetrad or in a trope, e.g., {0, 14, 15, 23,25, 34}. Then the
point (z,)yea, € R¥®,z, = 2, if v = a,..., \; 2, = O otherwise, isavertex of P.
[Such a vertex was found by ‘random walk’ from avertex (1,1,0,...,0).] It has
length? = % > 2 and is cut off by each of the six linear inequalities

4> 2z, +xp+ -+ 1),
4> x4+ 225+ -+ xy,

4> 30 +ag+ -+ 22y
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corresponding to (—2)-curves

2H — 2N, — Nj — -+ — Ny,

2H — Ny — 2Ng — -+ — Ny,

2H — N, — N —--- — 2Ny,
Thesenew inequalitiesresultin new vertices. Among them arethepoints(z,),c4, €
R 2, =4,ifv =a,...,\ 3,ifv = 1;0, otherwise, where z isan element of A,
different froma, . . ., \. Theseverticeshavelength? = % and their corresponding
divisors.

TH — &Ny + Ny + Ny + N5 + Ny + Ny) — 2N,
are (—4)-roots of S = Pic(F).

(6.11) THEOREM. Let o, 3,7, 6, x and A be six elements of A, such that no four
of themare contained in a Gopel tetrad or in a trope and let 1. be another element
of Ap. Then thereflection ¢ of S = Pic(F') with respect to the (—4)-root

V =7H — 4Ny + Ng+ N, + N; + N, + Ny) — 2N,

realizes as an automorphism of F' not belonging to G.

Proof. R
Step 1. Thepair (¢, —idy) extendsto an Hodge-isometry of Hy(F,Z). (See(4.1).)
It is easy to check that ¢ induces-1 on the discriminant | attice of F.

Sep 2. ¢ is effective. This part is postponed until (6.16). Now, by the Torelli
theorem, ¢ realizes as an automorphism of F'.

Sep 3. ¢ ¢ G. This follows from the construction. Indeed, ¢ increases E =
aH — Yb, N, if and only if

(E,V)=4{Ta — 2(by + bg + b, + b + be +by) —b,} > 0.
Thisisanew inequality becausethedivisor 3H —2(Ny+Ng+ N, +Ns+ N+ N,)
or the divisor V satisfies the 77 inequalities (xx) of (6.6), but not this one. So, by
67).0¢G.

(6.12) DEFINITION. A hexad («, 3,7, 0, k, ) of elements of A5 is called good
if no four of the six elements are contained in a trope or in a Gopel tetrad. There
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are 192 such good hexads, each 16 of them mutually conjugate by translations. We
givealist of 12 representatives:

0,1,2,13,24,34
0,1,2,14,23 34
0,1,2,15,24,45
0,1,3,14,23, 24
0,1,3,15,23,25
0,1,4,15,24,25

0,1,2,13, 25,35),
0,1,2,14, 25, 45),
0,1,2,15, 23, 35),
)
)

?
?

0,1,3, 14,35, 45),
0,1,3, 15, 34, 45),
0,1,4, 15, 34, 35).

?

?

A~ N N N~/
~ ~— — — ~— —
A~ N N N N/~

?

All good hexads form a single orbit under the automorphism group of (16g)-
configuration.

(6.13) LEMMA. Let M = aH — $b,N,,a,b, € 3Z,a > 0,b, > 0, be a divisor
of F' with self- intersection A2 > 0. Then M is ampleif and only if gM7 D) >0
for any irreducible (—2)-curve D = yH — Xz, N, with y? < 2a?/M? — %.

Proof. This follows from Nakai-Moishezon criterion (cf [Har]) and Schwarz
inequality.

(6.14) PROPOSITION. The automor phism ¢ constructed in (6.11) is a conjugate

of a projection, i.e. ¢ = ¢~1p.1) for somee € Ay, somep € Aut(F).
Proof. The main part of the proof will be the following:

(6.15) LEMMA. Let V bethedivisor asin (6.11). Then the linear system || of
W=V 4+ N, =7TH — 4Ny + Ng+ N, + N5 + N, + N)) — Ny,

defines a double covering: F— P2, which is branched along the sum of six lines.
In particular, the covering involution is a conjugate of a projection.

Proof. Notefirst that (W, W) = 2.

Wewill provethat (D, W) > Ofor each effective (—2)-curve D. Thisisobvious
if D= N,.WriteD = yH — Xz,,N,,.

Ify > 7,theny? > 49 > 2. 72/W?2 — 1, s0, by the Schwarz inequality (cf.
(6.13)), (D, W) > 0.

If 0 < y < 7, then for each integer or half-integer value of y, one can compute
using the following Key facts the minimum value of (D, V') and show that it is
nonnegative. Then (D, W) = (D, V) + 2z, > 0.

KEY FACTS: (i) For each y fixed, one sees, inspired by Lagrange multiplier
computation, that < D,V > (= {7y — 2(zq + --- + z)) — z,}) takes on its
minimum valuewhen Xz, N, is‘amost proportional’ to 4(Ny +- - - + Ny) +2N,,,
e, To RT3 =,...,RT\R 2%y, T, R0, v#a,... 1.

https://doi.org/10.1023/A:1000148907120 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000148907120

AUTOMORPHISMS OF JACOBIAN KUMMER SURFACES 285

(i) If y is an integer, then {v € Ay z, isahaf-integer} = A, or a hyper-
plane J of Ay, and if y is a half-integer, then {v € Aj:z, isahaf-integer} =
I(T;) or Ao\I(T¢) for sometrope T¢ (cf. (1.10) and (3.1)).

(iii) Let H be agood hexad, then

|HNJ)=2o0r4, Jahyperplane,
|[HNI(T)|=1or3, T atrope.

Now it can be shown that (D, W) = 0if and only if D isone of the following
fifteen (—2)-curves:

NV7V E Az\{a7lg77757ﬁ;7>\7u}7
2H — (No + N3 + Ny + N5+ N+ Ny) — N,,v € {e, 5,7, 0, k, A}.

Notethat these 15 curvesareall irreducible (hence smooth) and mutually disjoint
(Theirreducibility of each of thelast six curvesfollowsfromitsindecomposability).

Now, by aresult of Saint—Donat [SD], the linear system || defines a double
covering: F — P2 which contracts exactly above 15 rational curves. Then it
follows that the branch locusis a sextic with 15 nodes, and hence a sum of six lines
in general position.

Let's complete the proof of (6.14).

Since (V,W) = 0,4(W) = W, so ¢ acts on P? Also the action of ¢ on P?
leaves invariant the sum of six lines (= branch locus), ¢ must be the identity of
P2 and hence, the covering involution of the double cover. Now the result follows
from (6.15).

(6.16) PROPOSITION. The automorphism+ asin (6.14) can be chosen to be the
oneinduced by the linear system

|7TH — 4(N, + Ng + N, + N5 + Ny + N,)|.

Proof. Let f =«~1. Clearly f mapsa collection of 15 nodes to the collection
# of the 15 (—2)-curves (see the proof of (6.15)). Since t,p.t, = pet,, We may
assumethat ¢ = p and the collection of 15 nodesis {N,:v € Az\n}. We need to
determine f(H) and f(N,).

Since fp,f tisthereflection w.rt. f(H — 2N,), f(H — 2N,) = V or —V.
But thisis not enough to determine f(H) and f(N,), i.e. there areinfinitely many
choicesfor the pair. Among them we set

f(H)=7TH —4(No + Ng+ Ny + Ns+ N, + Ny) and f(N,) = N,.

Thisis aminimum possible choice in the sense that the leading coefficients of
these two vectors are the smallest possible.
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We will prove that this choice actually works, i.e. by assigning in a suitable way
each of the 15 remaining nodes to a curvein the collection # we can make such an
f anisometry which realizes as an automorphism.

For such an f to be an isometry it is necessary and sufficient that

(i) f(T,) € S for eachtrope T, (see (3.1)).
By (4.1), itis necessary for f to realize as an automorphism that
(i) f must act asid or —id on the discriminant group of S.

These two conditions determine f uniquely:

Let (o, B,7,0, K, A\, u) = (0,14,15,23,25,34,12) for convenience.

Fromtheequality f(C1) = C1(modS), whereC; = (N2+ N12+ N3+ Ni3)/2,
we get, using the key factsin the proof of (6.15),

f{N27N127N37N13} = {N27N127N37N13}-
Similar arguments for C», C3, C4 and B give us

f{1,12,4,24} = {1,12,4, 24},
£{2,4,12,14} = {2H — (Ng + - - - + N34) — Nus,3,24,12},
£{1,3,12,23} = {12,4,13,2H — (Ng + ... + Nas) — Nis},

{12,3,4,5}(if f = idon Dg),
f{0,1,2,12} =< {2H — (No+ - -- + Nas) — Nu, 13,24,12}
(if f = —idon Dg).

If f = —idon Dg, then thereis no compatibility, and if f/ =id on Dg, then

)

f(N12) = Nip,

f(N2) = Na,

J(Na) = Nog,

f(N1a) =2H — (No + -+ + N3) — Nos,
f(N3) = Nig,

f(N13) = Nz,

f(N1) = Na,

f(N2s) = N,

f(Ny3) =2H — (No+ -+ + N3s) — Nis,
f(No) = Ns
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and then the condition (i) implies

f(Ns) =2H — (No+ -+ + Nas) — Naa,

f(N1s) = Nss,
f(N25) = Ns,
f(Nz4) =2H — (No + - -+ + Na4) — No,
f(N3s) =2H — (No+ -+ + N3za) — Nog,
f(Ngs) =2H — (No+ -+ + Na) — Nu.

Conversely, it is easy to check that the above assignment satisfies conditions (i)
and (ii).

For the effectiveness of f, which proves step 2 of (6.11), we need to show that
theimage M of the ample divisor 2H — XN, /2 isample, i.e.,

M =8H —9/2(N, + Ng + Ny + N5 + Ny, + Ny) — % > (remaining 10 nodes),

is ample. From (6.13), we seethat M isampleif (D, M) > 0O for any irreducible
(=2)-curve D = yH — Xz, N, with 0 < y < 4. This can be done by the same
method used for the inequality (D, V) > 0 asin (6.15). (In this case, Key fact
(i) should read *- - - (D, M) takes on its minimum value when Xz, N, is amost
proportional t09/2(Ny + Ng+ N, + Ns+ N, + Ny) + %E remaining 10 nodes.’)

Now, by (4.1), f realizes as an automorphism.

It remains to show that 1) = £~ isinduced by the linear system | f(H)|. Since
H hasthe property that there is no primitive element E such that (E, ) = 0 and
(E,H) =2,s0does f(H). Thisimplies, by the result of [SD], that | f (H)| defines
a birational map of F onto a quartic surface in P3. Note that this map contracts
sixteen mutually disoint (—2)-curves, namely, N,, and the collection §. Finaly,
note that this quartic surface, by Torelli theorem, is projectively isomorphic to our
original quartic surface F.

(6.17) REMARK. The following can be seen easily.
(i) Themap ¢ asin (6.16) has an infinite order,
(if) The inverse of 4 is aso such a map, but corresponds to a different hexad,
e.g. if 4 correspondsto (0, 14, 15, 23, 25, 34), then )~ to (5, 14, 23, 34, 35, 45).

~

(6.18) QUESTION. IsAut(F’) generated by those classi cal automorphismstogether
with these 192 new ones corresponding to good hexads?
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