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Abstract. We study automorphisms of a generic Jacobian Kummer surface. First we analyse the
action of classically known automorphisms on the Picard lattice of the surface, then proceed to
construct new automorphisms not generated by classical ones. We find 192 such automorphisms, all
conjugate by the symmetry group of the (16,6)-configuration.
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0. Introduction

LetF denote a quartic surface with 16 nodes in P3 and bF its minimal resolution. We
call F a (singular) Jacobian Kummer surface, as it is isomorphic to the Kummer
surface of the Jacobian of a curve of genus 2.

The main purpose of this paper is to discuss automorphisms of bF (or, bira-
tional automorphisms of F ). Some automorphisms of F are geometrically evident:
namely, the sixteen translations induced by the translations of the Jacobian by a
point of order 2, the sixteen projections of the surface upon itself from a node, and
the sixteen correlations by means of tangent planes collinear with a trope. These
automorphisms were introduced by F. Klein [Kl]. Another example is the com-
posite of the dual map: F ! F � and a projective isomorphism: F � ! F: This is
called a switch because it switches the 16 nodes and the 16 tropes. A correlation is
nothing but a conjugate of a projection by a switch. A question arose naturally as to
whether any other automorphisms, not generated by translations, projections and a
switch, exit. In 1897 Kantor constructed some projective automorphisms under the
assumption that the surface F satisfies certain conditions [Kan]; it can be shown
[Ke1] that such a surface has Picard number �( bF ) > 18: For F generic, the first
explicit answer to the question was given in 1900 by Hutchinson ([Hut], [S-C]).
He obtained, by referring the surface F to different Göpel tetrads, sixty involutions
which are restrictions of cubic Cremona transformations of the space.

We assume �( bF ) = 17 (a generic case) and denote by G the group of automor-
phisms of bF generated by the 16 translations, the 16 projections, the 16 correlations,
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270 JONG HAE KEUM

the 60 Cremona transformation, and a switch. Since Hutchinson, no other auto-
morphisms have been provided and it has long been conjectured that Aut( bF ) = G:

In section 6 some counterexamples to this conjecture will be constructed.
The strategy used in the construction is as follows.
After studying the rich structure of the Picard lattice and the transcendental

lattice of a generic Jacobian Kummer surface, we analyse the action of the clas-
sically known automorphisms on the Picard lattice and then proceed to construct
new automorphisms by working in the reverse order: we find a (�4)-reflection of
the Picard lattice and, using the Torelli theorem, show that it realizes as a new
automorphism of the surface (Theorem (6.11)). The method used in the search of
such a (�4)-reflection is explained in (6.10): noting that there are only finitely
many elliptic pencils on bF up to the whole automorphism group (cf. [St]) and that
an elliptic pencil is nothing but a primitive effective isotropic vector of the Picard
lattice having a nonnegative intersection with any smooth rational curve, we focus
on the set of primitive effective isotropic vectors having a nonnegative intersection
with nodes and tropes and having minimum degree among vectors in its orbit under
the group G and show that this set satisfies 109 inequalities and is still infinite.
Adding more inequalities coming from rational curves other than nodes and tropes,
we finally reach a (�4)-root.

Furthermore we prove that the new automorphism is a conjugate of a projection
by the automorphism (which must be also new) induced by a certain linear system
((6.14) and (6.16)). There are 192 such linear systems corresponding to certain
hexads of nodes. Such hexads are mutually conjugate by the symmetry group of
the (166)-configuration.

1. (166)-Configuration on Jacobian Kummer surfaces

(1.1). LetA be the Jacobian of a curveC of genus 2, and let � :A! A; a! �a;
be the involution automorphism. Riemann’s theorem guarantees that C can be
embedded in A as a theta-divisor �: Moreover we may assume �(�) = �: If
r 2 C is a Weierstrass point, we can take the embedding: C ! A �= Pic�(C);
x! [x� r]; and set

� = f[x� r]:x 2 Cg � A:

The following propositions are classical and well-known (cf. [Hud], [Beau], [G-
H]). We state them without proof.

(1.2) PROPOSITION. (i) The linear system j2�j on A defines a 2-to-1 morphism
ofA onto a surface in P3;which on passing to the quotient gives an isomorphism of
A=� with a quartic surface F � P3 having 16 nodes (= ordinary double points).

(ii) The linear system j4"�� � �Eij on A; where ": bA ! A the blow-up of
the 16 points of order 2, and E1; : : : ; E16 the exceptional curves, defines a 2-to-1
morphism of bA into P5; which on passing to the quotient gives an isomorphism of
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AUTOMORPHISMS OF JACOBIAN KUMMER SURFACES 271

bA=� with a complete intersection of three quadrics
P � P5: If �: bF ! F is the

resolution of the 16 double points, then the isomorphism: bF ! � is given by the
linear system j2��H � 1

2�Nij; where H is the class of a hyperplane section of
F; and N1; : : : ; N16 the rational curves lying over the 16 double points.

(1.3) PROPOSITION. Let F be a quartic surface in P3 with 16 nodes. Then there
are 16 planes of P3 which touch F along a conic. Each of these conics, called a
‘trope’, passes through 6 of the 16 nodes of F; and each node lies on 6 conics. The
double cover of any of the 16 conics branched along 6 nodes is a curve C of genus
2. F can be constructed from the JacobianA = J(C) of C by the same procedure
as in (1:2)(i), that is, F is isomorphic to the Kummer surface associated to the
abelian surface A = J(C):

(1.4) DEFINITION. By a singular Jacobian Kummer surface (resp. Jacobian
Kummer surface) we mean a quartic surface F in P3 having 16 nodes (resp. its
minimal resolution bF ). The 16 nonsingular rational curves on bF lying over the 16
nodes of F and the proper transforms of the 16 tropes of F are also called nodes
and tropes (of bF ) respectively. By H we denote the class of a hyperplane section
of F or, interchangeably, its proper transform in bF : The distinction will be clear
from the context.

The configuration of 16 nodes and 16 tropes that each trope passes through 6
nodes and each node lies on 6 tropes is called the (166)- configuration.

(1.5). Let A be the Jacobian of a curve C of genus 2. Then there are 16 theta-
divisors onAwhich form, with the 16 points of order 2, a (166)-configuration. This
(166)-configuration on A induces the (166)-configuration on the singular Jacobian
Kummer surface F associated to C and vice versa.

To explain the incidence relations of this (166)-configuration, think of C as the
locus of

y2 =
5Y

i=0

(x� �i);

with pi = (�i; 0) the Weierstrass points of C: Then, the points of A

�i = [pi � p0]; i = 0; : : : ; 5;

�ij = [pi + pj � 2p0]; 1 6 i < j 6 5

are of order 2. Note that the standard theta-divisor

� = �0 = f[p� p0]: p 2 Cg � A

of course contains the six 2-torsion points f�ig; likewise its translate

�i = �+ �i
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272 JONG HAE KEUM

contains the six points �0; �i and f�ijgj 6=i and

�ij = �+ �ij

contains the six points �i; �j; �ij ; and f�`mg`;m6=i;j .
Conversely, each of the points �i; �ij lies on exactly six of the divisors �i;�ij ;

�i 2 �;�i and �ij for j 6= i

�ij 2 �i;�j ;�ij and �k` for k; ` 6= i; j:

(1.6). Throughout this paper, we identify the group A2 of 2-torsion points of A
with the set of their indices, that is,

A2 = fi; jk: 0 6 i 6 5; 1 6 j < k 6 5g:

The group law on this set is obvious:

i+ j = ij; i+ jk = mn; ij + km = n; ij + jk = ik

for i; j; k;m; n distinct.
We also regard A2

�= (Z=2)4 as a 4-dimensional affine space over F2; the field
of two elements. There are 30 hyperplanes and 140 affine 2-planes in the affine
spaceA2:

(1.7). Note that the automorphism group of the (166)-configuration is isomorphic
to (Z=2)4

oSp(4;F2); where (Z=2)4 is the group of translations of the affine space
A2 and Sp(4;F2); the group preserving the symplectic form onA2; can be identified
with the permutation group of the set of 6 Weierstrass points of the curve C (see
(1.5)) which induces the permutation group of the set of 6 theta-divisors containing
a fixed 2-torsion point.

(1.8). One can write down the tropes T�; in terms of the hyperplane section class
H and the nodesN�:

T0 = 1
2(H �N0 �N1 �N2 �N3 �N4 �N5);

T1 = 1
2(H �N0 �N1 �N12 �N13 �N14 �N15);

T2 = 1
2(H �N0 �N2 �N12 �N23 �N24 �N25);

T12 = 1
2(H �N1 �N2 �N12 �N45 �N35 �N34);

T3 = 1
2(H �N0 �N3 �N13 �N23 �N35 �N34);

T13 = 1
2(H �N1 �N3 �N13 �N45 �N24 �N25);

T23 = 1
2(H �N2 �N3 �N23 �N45 �N14 �N15);

T45 = 1
2(H �N12 �N13 �N23 �N45 �N4 �N5);

T4 = 1
2(H �N0 �N45 �N4 �N14 �N24 �N34);

T14 = 1
2(H �N1 �N23 �N4 �N14 �N35 �N25);
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T24 = 1
2(H �N2 �N13 �N4 �N24 �N35 �N15);

T35 = 1
2(H �N12 �N3 �N14 �N24 �N35 �N5);

T34 = 1
2(H �N12 �N3 �N4 �N34 �N25 �N15);

T25 = 1
2(H �N2 �N13 �N14 �N34 �N25 �N5);

T15 = 1
2(H �N1 �N23 �N24 �N34 �N15 �N5);

T5 = 1
2(H �N0 �N45 �N35 �N25 �N15 �N5):

(1.9) DEFINITION. For a trope T�; we denote by I(T�) the sixtuple of indices of
the nodes which T� passes through. e.g. I(T1) = (0; 1; 12; 13; 14; 15):

(1.10) OBSERVATIONS.

(i) Every pair of nodes is contained in exactly two tropes.
(ii) Given any pair of tropes T�; T� ; we have

jI(T�) \ I(T�)j = 2;

and the symmetric difference

I(T�)�I(T�) = I(T�) [ I(T�)nI(T�) \ I(T�)

is a hyperplane of A2:

(iii) Given a hyperplane J ofA2; there are exactly four pairs fT�; T�g of tropes
such that I(T�)�I(T�) = J:

(iv) Given a trope T; and a hyperplane J of A2; we have either jI(T ) \ J j = 2
and I(T )�J = A2nI(T 0) for some trope T 0; or jI(T ) \ J j = 4 and I(T )�J =
I(T 0) for some trope T 0:

2. Tetrads of nodes

(2.1). A Göpel tetrad of nodes is a tetrahedron whose vertices are nodes, but none
of whose faces is a trope. In other words, it is a tetrad of nodes such that no trope
contains three of the 4 nodes, e.g. (0; 1; 23; 45): Each Göpel tetrad is an affine
2-plane in A2 and there are 60 such tetrads, all forming a single orbit of the group
(Z=2)4

o Sp(4;F2):

(2.2). A Rosenhain tetrad of nodes is a tetrahedron whose vertices are nodes
and whose faces are tropes, e.g. (0; 1; 15; 5): Each Rosenhain tetrad is an affine
2-plane in A2 and there are 80 such tetrads, all forming a single orbit of the
group (Z=2)4

o Sp(4;F2): Göpel and Rosenhain tetrads correspond to isotropic
and non-isotropic planes in A2; respectively.
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3. Picard lattice

Using standard theory of K3-lattices (see e.g. [B-P-V], [Nik 2]), one sees easily
the following:

(3.1) LEMMA. Let X be a Jacobian Kummer surface with �(X) = 17: Then

(i) Pic(X) �= D8 � D8 � h4i; TX �= h�4i � U(2) � U(2); where U is the
even unimodular lattice of signature (1; 1) andD8 the even negative definite lattice
defined by the Cartan matrix of an irreducible root system of type D8:

(ii) Pic(X) is generated, over Z; by (the classes of) the 16 nodes N�; the 16
tropes T�; and the hyperplane section H:

(iii) The discriminant form DS of S is generated by

C1 = (N2 +N12 +N3 +N13)=2;

C2 = (N1 +N12 +N4 +N24)=2;

C3 = (N2 +N12 +N4 +N14)=2;

C4 = (N1 +N12 +N3 +N23)=2;

B = H=4 + (N0 +N1 +N2 +N12)=2:

(3.2) PROPOSITION. Let X be a Jacobian Kummer surface with �(X) = 17:
Then the only roots in the lattice S = Pic(X) are (�2)- and (�4)-roots.

Proof. Clearly, S contains (�2) and (�4)-roots, e.g. nodes and tropes;

H � 2N�;H �
X
�2G

N�; G a Göpel tetrad:

Let e be a (�2d)-root of S; d > 3: Write e = v1 + v2 + mf; v1; v2�D8; f a
generator of < 4 >;m 2 Z: Then, since he; Si � dZ; we see that

hvi;D8i � dZ and djhe; fi = 4m:

We need the following:

(3.3) LEMMA. If v 2 D8; and if hv;D8i � dZ; then

v =

(
d=2w for some w 2 D8 if d is even,

dw for some w 2 D8 if d is odd.

Proof. Let e1; : : : ; e8 be the canonical basis of D8 and let v = �aiei: Then the
lemma follows from the system of linear equations (mod d) in a1; : : : ; a8 :

hv; eii = 0 (mod d); i = 1; : : : ; 8:

comp3951.tex; 5/09/1997; 9:13; v.7; p.6

https://doi.org/10.1023/A:1000148907120 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000148907120


AUTOMORPHISMS OF JACOBIAN KUMMER SURFACES 275

Now we split the proof of (3.2) into two cases:

(i) If a prime p; p > 2; divides d; then, by the above lemma, p divides vi; i = 1; 2:
Since d divides 4m; p divides m and hence p divides e; which contradicts to the
primitivity of e:

(ii) If d = 2k; k > 2; then, by (3.3), vi = 2k�1wi for some wi 2 D8: So,

�2k+1 = e2 = v2
1 + v2

2 +m2f2 = 22(k�1)(w2
1 + w2

2) + 4m2:

Since k > 2 and since 2j(w2
1 + w2

2); 23j4m2: So, 2 dividesm and hence divides
e; which again contradicts to the primitivity of e:

4. The automorphism group

(4.1) THEOREM. Let X be a Jacobian Kummer surface with �(X) = 17: Then

Aut(X) �= f� 2 O(S)+:� induces � id on DSg;

where O(S)+ is the group of isometries of S which leaves the set of effective
divisors invariant. In particular, every automorphism of X acts as either id or �id
on the transcendental lattice T:

Proof. One can deduce this from Torelli theorem for K3 surfaces [P-S], Nikulin’s
result [Nik 3] on the character map �: Aut(X) ! GL(
2(X)) �= C�; and the
existence of a fixed point free involution on algebraic Kummer surfaces [Ke 2].

(4.2) Remark. It is a highly nontrivial arithmetic problem to calculate the generators
of the group O(S)+. Recall that the only roots in the lattice S = Pic(X) are
(�2)- and (�4)-roots. Denote by � the subgroup of the orthogonal group O(S)
generated by all (�2)- and (�4)-reflections, and choose a fundamental polyhedron
P of � in the Lobachevsky space �16 := (ample cone)=R+ in such a way that
P � �; the fundamental polyhedron of the group W generated by all (�2)-
reflections. Then by a result of [Vin 2], we have O(S)+ �= �+ o O(S)+P ; where
�+ = � \ Sym(�) = � \O(S)+; O(S)+P = O(S)+ \ Sym(P ): Let S be the set
of reflections with respect to the hyperplanes bounding P; i.e., the faces of P; and
S2 (resp. S4) the set of (�2) (resp. (�4))-reflections belonging to S: Obviously,
S = S2 [ S4; and W is the minimal normal subgroup of � containing S2: Notice
that the order of any product s� � s�; s� 2 S2; s� 2 S4; is even or infinite (cf. [Vin
2]).

Then it follows from a proposition in [Vin 3] that �+ is the Coxeter group with
a system of generators S4 and that the Coxeter diagram of �+ can be obtained from
the Coxeter diagram of � by removing the vertices belonging to S2:

One may employ Vinberg’s algorithm [Vin 2] to compute the set S of the faces
of P; or equivalently, the system of generators of �: The algorithm stops in a finite
number of steps if and only if O(S)+P is finite. Unfortunately, it seems that in our
case the algorithm goes forever. Indeed, Vinberg himself pointed out [Vin 1], on
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the basis of some experience, that it stops in finite steps only in exceptional cases
where the discriminant of S is small. For example, in [Vin 3] Vinberg computed,
using the algorithm, the set S and consequently the set of generators of O(S)+ for
two examples of K3-surfaces with disc (S) = 3; 4 resp., both remarkably smaller
than disc (S) = 64 in our case.

5. Classical automorphisms

Let F be a quartic surface with 16 nodes in P3 and bF its resolution of singularities.
In this section, we discuss some birational automorphisms on F; known before the
century, and their actions on the Picard lattice S = Pic( bF ):
(5.1) (i) 16 Translations

The translation of A = J(C) by a 2-torsion point � 2 A2 descends to give an
automorphism t� on F; called a translation. All translations are linear, i.e., they are
induced by projective automorphisms of P3:

(ii) 16 Projections
Projecting the surface F � P3 from one of its double points n�; we obtain a

ramified double cover: F� ! P2; where F� is the blow-up of F at the double point
n�: We call the covering involution of the double cover a projection and denote it
by p�:

(iii) Switches
It is known (cf. [G-H], [Hud]) that the dual surface F � � (P3)� �= P3 whose

points are tangent planes of F is again a quartic surface with 16 nodes (= the
image of the 16 tropes of F ) and is projectively isomorphic to F: The composite
of the dual map: F ! F � and the projective isomorphism: F � ! F is a birational
involution of F; which switches the 16 nodes and the 16 tropes. We call such an
involution a switch. If �( bF ) = 17; then there are exactly 16 switches on F as the
composite of any pair of switches is projective (Remark (5.3) below) and hence, a
translation. The 16 switches are of the form � � t�; � 2 A2; where � is a switch
sending N� to T�; � 2 A2:

(iv) 16 Correlations
These are the correlative transformations by means of tangent planes collinear

with a trope. In other word, they are the liftings onto F of the 16 projections of F �

and, hence, of the form � � p� � �:
(v) 60 Cremona transformations referred to Göpel tetrads
The equation of F referred to a Göpel tetrad of nodes has the form

A(x2t2 + y2z2) +B(y2t2 + z2x2) + C(z2t2 + x2y2) +Dxyzt

+F (yt+ zx)(zt+ xy) +G(zt+ xy)(xt+ yz)

+H(xt+ yz)(yt+ zx) = 0 [Hut]; (*)
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and is unchanged by the standard Cremona transformation:

(x; y; z; t)! (yzt; ztx; txy; xyz);

so by using different tetrads we obtain in this way 60 (birational) involutions of
F: These involutions are denoted by c�;�;
;�; where (�; �; 
; �) is a Göpel tetrad.
Note that, for any translation t;

ct(�;�;
;�) = t � c�;�;
;� � t;

and that each 4 of the 60 Cremona transformations are mutually conjugate by
translations.

(5.2). We compute the action of the classical automorphisms on the Picard lattice
of bF . The result is summarized in the following table. For simplicity, we assume
�( bF ) = 17.

t� p� � c = c�;�;
;�

N� N�+� N�, T� H �N� �N� �N
 �N� +N�;

if � 6= � if � = �; �; 
; �;
2H � 3N�, the remaining 12 nodes

if � = � are permuted according
to (*) below and (1.8)

T� T�+� T�, N� (*) c interchanges the two
if � 2 I(T�) tropes containing any two

T� +H � 2H�, of the four nodes
otherwise N�; N� ; N
 ; N� :

H H 3H � 4H� 3H � ��2A2N� 3H � 2(N� +N� +N
 +N�)

Note that p� acts on the Picard lattice as the reflection with respect to a (�4)-
root H � 2N�. Note also that t�; p�; �; and c�;�;
;� induce 1;�1;�1 and �1 on
the transcendental lattice of bF .

(5.3) Remark. It can be shown [Ke 1] that if �( bF ) = 17, then there are no other
projective automorphisms on F than the 16 translations. If F is special in the sense
that the six nodes lying on a trope satisfy certain configurations, thenF admits other
projective automorphisms than the 16 translations ([Kan] and [Hud; Sect. 120]).
Such special surfaces all have Picard number �( bF ) > 18.

(5.4) Remark. The Cremona transformations referred to Göpel tetrads were pro-
vided in 1900 by Hutchinson [Hut] as an explicit answer to the question as to
whether on a generic F any other automorphisms, not generated by translations,
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projections, and correlations, exist. He also pointed out, in the same paper that the
Weddle surface

W :

����������

1=x; x; a; 1=a

1=y; y; b; 1=b

1=z; z; c; 1=c

1=t; t; d; 1=d

����������
= 0;

into which the general Kummer surface F can be transformed birationally, is
unchanged by the standard Cremona transformation. There are fifteen equations of
this form, referred to different tetrahedra of nodes of W (W has exactly six nodes;
] tetrahedra = 15); and he obtained in this way a group of automorphisms of F
and claimed that this group is an infinite group. Later, Baker corrected this claim
[B] and Sharpe and Craig proved that this group coincides with the group of 16
translations [S-C]. Another way of confirming the result of Sharpe and Craig is to
note that the projection of W onto itself from a node corresponds to a switch of F:

6. Some new automorphisms

Throughout this section, we assume �( bF ) = 17 and denote by G the group of
automorphisms of bF generated by the 16 translations t�; the 16 projections p�;
the switch �; the 16 correlations � � p� � �; and the 60 Cremona transformations
c�;�;
;�:

Since Hutchinson no other automorphisms have been provided and it has long
been conjectured that Aut( bF ) = G: In this section we give some counterexamples
to this conjecture.

(6.1) PROPOSITION. Let G1 be the subgroup of G generated by p�; � � p� � �;
c�;�;
;�’s. Then G1 is a normal subgroup of G and

G �= G1o < �; t� : � 2 A2 >�= G1 o (Z=2Z)5:

Proof. Translations commute with �; i.e., t� � � = � � t�; so that the second
isomorphism follows.

Since p� is the (�4)-reflection w.r.t.H�2N�; t� �p� �t� is the (�4)-reflection
w.r.t. t�(H � 2N�) = H � 2N�+�; i.e.,

t� � p� � t� = p�+�

and consequently

t� � (� � p� � �) � t� = � � p�+� � �:

These two equalities together with

t� � c�;�;
;� � t� = c�+�;�+�;
+�;�+�
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imply that all translations t� normalize G1:

It is straightforward to check that

� � c�;�;
;� � � = c�;�;�;� ;

where �; �; �; � are the indices of the 4 tropes not passing through any of the nodes
n�; n�; n
 ; n�: It follows that � also normalizes G1:

(6.2). By (4.1), we may regard Aut( bF ) and G as subgroups of O(S): Let
(�; �; 
; �) be a Göpel tetrad. We denote by r�;�;
;� the reflection of S w.r.t. a
(�4)-rootH�N��N��N
�N�; and by t�;�;
;� the composite c�;�;
;� �r�;�;
;�:
Then

c�;�;
;� = t�;�;
;� � r�;�;
;� = r�;�;
;� � t�;�;
;�;

and t�;�;
;� fixesH;N�; N� ; N
 ; N� ; and permutes the remaining 12 nodes just in
the same way that c�;�;
;� does.

Warning: Neither r�;�;
;� nor t�;�;
;� can realize as an automorphism of bF :
(6.3) LEMMA. Every element f�G1 can be written in the form

f = �2 � �1;

where �1 is a product of p�’s, � � p� � �’s, r�;�;
;�’s, �2 is a product of t�;�;
;�’s.

(6.4) LEMMA. H �N��N� �N
 �N�; �; �; 
; � all distinct, is a (�4)-root of
S if and only if (�; �; 
; �) is a Göpel tetrad.

Proof. Straightforward.

Proof of (6.3). Since t�;�;
;� permutes nodes and tropes respectively (cf. (6.2)),
and since p� and r�;�;�;� are reflections, we have

t�;�;
;� � p� � t�;�;
;� = p�0 ;

t�;�;
;� � (� � p� � �) � t�;�;
;� = � � p�0 � �;
t�;�;
;� � r�;�;�;� � t�;�;
;� = r�0;�0;�0;�0

From these, by induction, we are done

: : : p� � t�;�;
;� : : : = : : : t�;�;
;� � p�0 ; : : : ;
: : : (� � P� � �) � t�;�;
;� : : : = : : : t�;�;
;� � (� � P�0 � �) : : : ;
: : : c�;�;�;� � t�;�;
;� : : :
= t�;�;�;� � t�;�;
;� � r�0;�0;�0;�0 : : : :
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(6.5) LEMMA. Every element g 2 G can be written in the form

g = t� � �2 � �1; or t� � �2 � � � �1;

where �1 and �2 the same as in (6.3).
Proof. Since � � t�;�;
;� � � = t�;�;�;� , this follows from (6.1) and (6.3).

(6.6). Let E be a divisor of bF :
An isometry � of S is said to increase (resp. decrease) E if h�(E);Hi >

hE;H > (resp. < �(E);Hi 6 hE;Hi):
E can be written in the form

E = aH �
X

b�N�; a; b� 2 1
2 Z (cf. (3.1))

Then we see that

p� increases E () hE;H � 2N�i > 0 , a > b�;

c�;�;
;� increases E () r�;�;
;� increases E , 2a > b� + b� + b
 + b�;

� increases E () 4a >
X

b�:

Let us denote by (��) the system of 77 inequalities

(��)

8>>>><
>>>>:

a > b�; � 2 A2 (16 of them)

2a > b� + b� + b
 + b�; (�; �; 
; �)a Göpel tetrad (60 of them)

4a >
X
�2A2

b�

(6.7) PROPOSITION. Let E = aH � �b�N�; a; b� 2 1
2 Z; a > 0; b� > 0; be a

divisor of bF : Then E satisfies (��) if and only if every element of G increasesE:
Proof. (() Obvious. ()) Suppose E satisfies (��): Then p�; c�;�;
;� and �

increase E:
Since ht�(E);Hi = hE;Hi; t� increasesE in a trivial sense. A correlation��p���
is the (�4)-reflection w.r.t. �(H � 2N�); so that it increases E if and only if

hE; �(H � 2N�)i = 2

0
@4a�

X
�=2I(T�)

b�

1
A > 0:

But this inequality follows from the last inequality of (��):
Now let g be an arbitrary element of G: Then, by (6.5), g can be written in the

form

g = t� � �2 � �1; or t� � �2 � � � �1;
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where �1; �2 are the same as in (6.5).

Case 1. g = t� � �2 � �1.
Since �1 is a product of reflections, we see that �1(E); by induction, is of the

form

�1(E) = E +
X

k�(H � 2N�) +
X

m��(H � 2N�)

+
X

n�;�;
;�(H �N� �N� �N
 �N�)

with all k�;m�; n�;�;
;� non-negative. This proves that �1 increases E: But then,
since hg(E);Hi = h�1(E);Hi; g increases E:

Case 2. g = t� � �2 � � � �1.
Using the formula for �1(E) as shown in Case 1, we see that

hg(E);Hi = h� � �1(E);Hi

= h�(E);Hi + 4
�

2
X

k� +
X

m� +
X

n�;�;
;�

�
> hE;Hi;

and that g increases E:
The following lemma follows easily from the Riemann–Roch theorem.

(6.8) LEMMA. Let E = aH � �b�N�; a; b� 2 1
2Z; a 6= 0; be a divisor of bF with

E2 > �2: Then E is effective if and only if a > 0:

(6.9). Define

P = fE 2 S:E primitive, hE;Hi > 0g;

and

I = fE 2 S:E primitive, effective, E2 = 0g:

Then, by (6.8), I � P:
There is a one-to-one correspondence: P ! Q16 � R16;

E = aH �
X
�

b�N� 2 P ! (b�=a)�2A2 2 Q16:

The image of I under this correspondence is the set of rational points on the 15-
dimensional sphere S15

2 of radius =
p

2: It is easy to see that the set of rational
points on this sphere is dense in the sphere.
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(6.10). Let E be the set of elliptic pencils on bF : Then

E = fE 2 I: hE;Ri > 0 for all non-singular rational curve Rg

= fE 2 I: hE;Ri > 0 for all effective divisor R with R2 = �2g:
Consider a subset Emin of E : Emin = fE 2 E :E can not be decreased by any
automorphism of bF ; i.e., E has minimum degree (= hE;Hi) among elements in
its orbit Aut( bF )Eg. Then Emin can be identified, by the correspondenceP ! Q16;

with the set of rational points on S15
2 \ P1; where P1 � R16 is the polyhedron

defined by infinitely many hyperplanes (or linear inequalities)(
hE;Hi 6 hg(E);Hi; g 2 Aut( bF );
hE;Ri > 0; R a non-singular rational curve.

Since E=Aut( bF ) is finite (cf. [St]), we see that Emin is finite. This fact together with
the denseness of rational points of S15

2 implies that P1 is inscribed in S15
2 ; i.e., all

points of P1 have length2 6 2:
Let P be the polyhedron � R16 defined by the following 109 equalities:8>>>>>>>>>><
>>>>>>>>>>:

1 > x�; � 2 A2 (16 of them),

2 > x� + x� + x
 + x�; (�; �; 
; �) a Göpel tetrad (60 of them),

4 >
P

� x�;

x� > 0; � 2 A2 (16 of them)

2 > x� + x� + x
 + x� + x� + x�; (�; �; 
; �; �; �)

a trope (16 of them).

Then, by (6.7), rational points on S15
2 \ P correspond to elements of the set

fE 2 I:E can not be decreased by any element ofG; and hE;N�i > 0; hE; T�i >
0; for all � 2 A2g:

The above discussion suggests that, as long as a vertex of P has length2 > 2;
one should be able to find either an automorphism or a rational curve whose
corresponding hyperplane cuts off the vertex.

Let f�; �; 
; �; �; �g � A2 be a sixtuple such that no four of �; : : : ; � are
contained in a Göpel tetrad or in a trope, e.g., f0; 14; 15; 23; 25; 34g: Then the
point (x�)��A2 2 R16; x� =

2
3 ; if � = �; : : : ; �;x� = 0 otherwise, is a vertex of P:

[Such a vertex was found by ‘random walk’ from a vertex (1; 1; 0; : : : ; 0):] It has
length2 = 8

3 > 2 and is cut off by each of the six linear inequalities

4 > 2x� + x� + � � �+ x�;

4 > x� + 2x� + � � �+ x�;

...

4 > x� + x� + � � �+ 2x�
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corresponding to (�2)-curves

2H � 2N� �N� � � � � �N�;

2H �N� � 2N� � � � � �N�;

...

2H �N� �N� � � � � � 2N�:

These new inequalities result in new vertices. Among them are the points (x�)�2A2 2
R16; x� =

4
7 ; if � = �; : : : ; �; 2

7 ; if � = �; 0; otherwise, where� is an element ofA2

different from �; : : : ; �: These vertices have length2 = 100
49 and their corresponding

divisors.

7H � 4(N� +N� +N
 +N� +N� +N�)� 2N�

are (�4)-roots of S = Pic( bF ):
(6.11) THEOREM. Let �; �; 
; �; � and � be six elements of A2 such that no four
of them are contained in a Göpel tetrad or in a trope and let � be another element
of A2: Then the reflection � of S = Pic( bF ) with respect to the (�4)-root

V = 7H � 4(N� +N� +N
 +N� +N� +N�)� 2N�;

realizes as an automorphism of bF not belonging to G:
Proof.

Step 1. The pair (�;�idT ) extends to an Hodge-isometry ofH2( bF ;Z): (See (4.1).)
It is easy to check that � induces -1 on the discriminant lattice of bF .

Step 2. � is effective. This part is postponed until (6.16). Now, by the Torelli
theorem, � realizes as an automorphism of bF :
Step 3. � =2 G. This follows from the construction. Indeed, � increases E =
aH � �b�N� if and only if

hE; V i = 4f7a� 2(b� + b� + b
 + b� + b� + b�)� b�g > 0:

This is a new inequality because the divisor 3H�2(N�+N�+N
+N�+N�+N�)
or the divisor V satisfies the 77 inequalities (��) of (6.6), but not this one. So, by
(6.7), � =2 G:

(6.12) DEFINITION. A hexad (�; �; 
; �; �; �) of elements of A2 is called good
if no four of the six elements are contained in a trope or in a Göpel tetrad. There
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are 192 such good hexads, each 16 of them mutually conjugate by translations. We
give a list of 12 representatives:

(0; 1; 2; 13; 24; 34); (0; 1; 2; 13; 25; 35);

(0; 1; 2; 14; 23; 34); (0; 1; 2; 14; 25; 45);

(0; 1; 2; 15; 24; 45); (0; 1; 2; 15; 23; 35);

(0; 1; 3; 14; 23; 24); (0; 1; 3; 14; 35; 45);

(0; 1; 3; 15; 23; 25); (0; 1; 3; 15; 34; 45);

(0; 1; 4; 15; 24; 25); (0; 1; 4; 15; 34; 35):

All good hexads form a single orbit under the automorphism group of (166)-
configuration.

(6.13) LEMMA. Let M = aH � �b�N� ; a; b� 2 1
2Z; a > 0; b� > 0; be a divisor

of bF with self- intersection M2 > 0: Then M is ample if and only if hM;Di > 0
for any irreducible (�2)-curve D = yH � �x�N� with y2

6 2a2=M2 � 1
2 :

Proof. This follows from Nakai-Moishezon criterion (cf [Har]) and Schwarz
inequality.

(6.14) PROPOSITION. The automorphism � constructed in (6:11) is a conjugate
of a projection, i.e. � =  �1p" for some " 2 A2; some  2 Aut( bF ):

Proof. The main part of the proof will be the following:

(6.15) LEMMA. Let V be the divisor as in (6:11). Then the linear system jW j of

W = V +N� = 7H � 4(N� +N� +N
 +N� +N� +N�)�N�;

defines a double covering: bF ! P2; which is branched along the sum of six lines.
In particular, the covering involution is a conjugate of a projection.

Proof. Note first that hW;W i = 2:
We will prove that hD;W i > 0 for each effective (�2)-curveD: This is obvious

if D = N�. Write D = yH � �x�N� :

If y > 7; then y2 > 49 > 2 � 72=W 2 � 1
2 ; so, by the Schwarz inequality (cf.

(6.13)), hD;W i > 0:
If 0 < y < 7; then for each integer or half-integer value of y, one can compute

using the following Key facts the minimum value of hD;V i and show that it is
nonnegative. Then hD;W i = hD;V i+ 2x� > 0:

KEY FACTS: (i) For each y fixed, one sees, inspired by Lagrange multiplier
computation, that < D;V > (= 4f7y � 2(x� + � � � + x�) � x�g) takes on its
minimum value when�x�N� is ‘almost proportional’ to 4(N�+ � � �+N�)+2N�;

i.e., x� � x� �; : : : ;� x� � 2x�; x� � 0; � 6= �; : : : ; �:
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(ii) If y is an integer, then f� 2 A2:x� is a half-integerg = A2 or a hyper-
plane J of A2; and if y is a half-integer, then f� 2 A2:x� is a half-integerg =
I(T�) or A2nI(T�) for some trope T� (cf. (1.10) and (3.1)).

(iii) Let H be a good hexad, then

jH \ J j = 2 or 4; J a hyperplane,

jH \ I(T )j = 1 or 3; T a trope:

Now it can be shown that hD;W i = 0 if and only if D is one of the following
fifteen (�2)-curves:

]

(
N� ; � 2 A2nf�; �; 
; �; �; �; �g;
2H � (N� +N� +N
 +N� +N� +N�)�N� ; � 2 f�; �; 
; �; �; �g:

Note that these 15 curves are all irreducible (hence smooth) and mutually disjoint
(The irreducibility of each of the last six curves follows from its indecomposability).

Now, by a result of Saint–Donat [SD], the linear system jW j defines a double
covering: bF ! P2; which contracts exactly above 15 rational curves. Then it
follows that the branch locus is a sextic with 15 nodes, and hence a sum of six lines
in general position.

Let’s complete the proof of (6.14).
Since hV;W i = 0; �(W ) = W; so � acts on P2 Also the action of � on P2

leaves invariant the sum of six lines (= branch locus), � must be the identity of
P2 and hence, the covering involution of the double cover. Now the result follows
from (6.15).

(6.16) PROPOSITION. The automorphism  as in (6:14) can be chosen to be the
one induced by the linear system

j7H � 4(N� +N� +N
 +N� +N� +N�)j:

Proof. Let f =  �1: Clearly f maps a collection of 15 nodes to the collection
] of the 15 (�2)-curves (see the proof of (6.15)). Since t�p"t� = p"+�; we may
assume that " = � and the collection of 15 nodes is fN� : � 2 A2n�g: We need to
determine f(H) and f(N�):

Since fp�f�1 is the reflection w.r.t. f(H � 2N�); f(H � 2N�) = V or �V:
But this is not enough to determine f(H) and f(N�); i.e. there are infinitely many
choices for the pair. Among them we set

f(H) = 7H � 4(N� +N� +N
 +N� +N� +N�) and f(N�) = N�:

This is a minimum possible choice in the sense that the leading coefficients of
these two vectors are the smallest possible.

comp3951.tex; 5/09/1997; 9:13; v.7; p.17

https://doi.org/10.1023/A:1000148907120 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000148907120


286 JONG HAE KEUM

We will prove that this choice actually works, i.e. by assigning in a suitable way
each of the 15 remaining nodes to a curve in the collection ] we can make such an
f an isometry which realizes as an automorphism.
For such an f to be an isometry it is necessary and sufficient that

(i) f(T�) 2 S for each trope T� (see (3.1)).
By (4.1), it is necessary for f to realize as an automorphism that

(ii) f must act as id or �id on the discriminant group of S:

These two conditions determine f uniquely:
Let (�; �; 
; �; �; �; �) = (0; 14; 15; 23; 25; 34; 12) for convenience.
From the equality f(C1) � C1(modS);whereC1 = (N2+N12+N3+N13)=2;

we get, using the key facts in the proof of (6.15),

ffN2; N12; N3; N13g = fN2; N12; N3; N13g:

Similar arguments for C2; C3; C4 and B give us

ff1; 12; 4; 24g = f1; 12; 4; 24g;
ff2; 4; 12; 14g = f2H � (N0 + � � � +N34)�N25; 3; 24; 12g;
ff1; 3; 12; 23g = f12; 4; 13; 2H � (N0 + : : :+N34)�N15g;

ff0; 1; 2; 12g =

8>><
>>:
f12; 3; 4; 5g( if f = id on DS);

f2H � (N0 + � � � +N34)�N34; 13; 24; 12g
(if f = �id on DS):

If f = �id on DS ; then there is no compatibility, and if f =id on DS ; then

f(H) = 7H � 4(N0 +N14 +N15 +N23 +N25 +N34);

f(N12) = N12;

f(N2) = N3;

f(N4) = N24;

f(N14) = 2H � (N0 + � � � +N34)�N25;

f(N3) = N13;

f(N13) = N2;

f(N1) = N4;

f(N24) = N1;

f(N23) = 2H � (N0 + � � � +N34)�N15;

f(N0) = N5
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and then the condition (i) implies

f(N5) = 2H � (N0 + � � � +N34)�N34;

f(N15) = N35;

f(N25) = N45;

f(N34) = 2H � (N0 + � � � +N34)�N0;

f(N35) = 2H � (N0 + � � � +N34)�N23;

f(N45) = 2H � (N0 + � � � +N34)�N14:

Conversely, it is easy to check that the above assignment satisfies conditions (i)
and (ii).

For the effectiveness of f; which proves step 2 of (6.11), we need to show that
the image M of the ample divisor 2H � �N�=2 is ample, i.e.,

M = 8H � 9=2(N� +N� +N
 +N� +N� +N�)�
1
2

X
(remaining 10 nodes),

is ample. From (6.13), we see that M is ample if hD;Mi > 0 for any irreducible
(�2)-curve D = yH � �x�N� with 0 6 y < 4. This can be done by the same
method used for the inequality hD;V i > 0 as in (6.15). (In this case, Key fact
(i) should read ‘� � � hD;Mi takes on its minimum value when �x�N� is almost
proportional to 9=2(N�+N�+N
+N�+N�+N�)+

1
2� remaining 10 nodes.’)

Now, by (4.1), f realizes as an automorphism.
It remains to show that  = f�1 is induced by the linear system jf(H)j: Since

H has the property that there is no primitive element E such that hE;Ei = 0 and
hE;Hi = 2; so does f(H): This implies, by the result of [SD], that jf(H)j defines
a birational map of bF onto a quartic surface in P3: Note that this map contracts
sixteen mutually disjoint (�2)-curves, namely, N� and the collection ]. Finally,
note that this quartic surface, by Torelli theorem, is projectively isomorphic to our
original quartic surface F:

(6.17) REMARK. The following can be seen easily.
(i) The map  as in (6.16) has an infinite order,

(ii) The inverse of  is also such a map, but corresponds to a different hexad,
e.g. if  corresponds to (0; 14; 15; 23; 25; 34); then  �1 to (5; 14; 23; 34; 35; 45):

(6.18) QUESTION. Is Aut( bF ) generated by those classical automorphisms together
with these 192 new ones corresponding to good hexads?
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