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GOLDIE DIMENSION AND CHAIN CONDITIONS FOR 
MODULAR LATTICES WITH FINITE GROUP ACTIONS 

BY 

PIOTR GRZESZCZUK AND EDMUND R. PUCZYEOWSKI 

ABSTRACT. A relation between Goldie dimensions of a modular lattice 
L and its sublattice La of fixed points under a finite group G of auto­
morphisms of L is obtained. The method used also gives a relation between 
ACC (DCC) for L and for L1'. The results obtained are applied to rings and 
modules. 

Introduction. In [2] Fisher initiated studies of relations between finiteness condi­
tions on a modular lattice L and its sublattice LG consisting of fixed points of an action 
of a finite group G of automorphisms of L. He proved that if LG satisfies any of a large 
class of chain conditions then L satisfies the same condition. The aim of this paper is 
to investigate relations between Goldie dimensions dL and dLG of L and LG re­
spectively. In section 3 we prove that dLG ^ dL ^ \G\ dLG. Our methods, which are 
quite different from those used by Fisher, can also be applied to some chain conditions. 
In section 2 we show how they work for ACC and DCC. The results obtained are 
applied in section 4 to rings and modules. In particular we give a new proof of 
Kharchenko's theorem ([6]) which says that if G is a finite group of automorphisms of 
a ring R then R contains no infinite direct sum of non-zero right ideals if and only if 
R contains no infinite direct sum of non-zero G-invariant right ideals. 

We are indebted to the referee for discovering an error in an earlier version of this 
paper and for making several other helpful suggestions. 

1. Preliminaries. Thoughout the paper G is a finite group of automorphisms of a 
lattice L and LG = {x E L\ xK = x for all g E G}. We always assume that L contains 
0 and 1. By the standard procedure of adjoining 0 and 1 we can omit this assumption 
in many places. We used the terminology of [1]. 

LEMMA 1. If the lattice L is complete then for every SQL and g E G, (vS)* = 

The proof is straightforward. 

The lattice L is said to be upper continuous ([1]) if L is complete and for every 
element a E L and every chain C in L, a A V C = Vr eca A x 
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LEMMA 2. IfL is upper continuous then the set P = {a E L\/\geGag — 0} is closed 
under taking joins of chains, and so in particular it contains a maximal element. 

PROOF. If x E L and C is a chain in L such that x AVC =£ 0 then, since x AVC = 
VC-EC* A c, Jt A c =£ 0 for some c E C. By induction, if Cj , . . . , C„ are chains in L 
such that V c , A . . . AVc,, =É 0 then for some c{ C Cu..., c„ E C„, c, A . . . A 
c„ ¥= 0. Now let C be a chain in P. If A,,GG(Vc)* =£ 0 then by Lemma 1 and the 
foregoing, for every g E G there exists cH E C such that AA ,ecc* ^ 0- Since C is a 
chain, there exists a E C such that ĉ  ^ « for all g E G. Thus for g E G, cjjj ̂  a8 and 
A,ecfl* * 0. 

For x ^ y in L7 let [x, y] denote {z E L|JC ^ z ^ v}. A non-empty subset / of L is 
called an ideal of L if JC, y E / implies [0, x\J y] CI. The set I(L) of all ideals of L 
is an upper continuous lattice with respect to operations: /\Sa = C\Sa and Vs a = the 
ideal generated by USa. It is clear that the map p:L -> I(L) given by p(a) = [0, a] 
is an embedding of lattices, so L may be treated as a sublattice of/(L). It is also obvious 
that the action of G can be extended to I(L). Elements of I(L)G are called G-invariant 
ideals of L. 

LEMMA 3. 1{LG) - I{L)G. 

PROOF. Define for / E l(LG) and J E I(L)G,f(I) = the ideal of L generated by / and 
g(J) - J H LG. It is easy to check that/:/(LG) -> /(L) c and g:I(L)G -* I(LG) are 
lattice homomorphisms satisfying/o g = idI(Lf, g of = idi(Lo)m 

For the remainder of this paper the lattice L will be modular. This assumption implies 
that 

A. The lattice L° dual to L is modular; 
B. The lattice I(L) is modular; 
C. The following Isomorphism Theorem holds: If a, b E L then the mapping//,: [a, 

a\/ b]—> [a A b, b] defined by/*,(*) = x A /?, is a lattice isomorphism with inverse 

given by ga(y) = y V a. 

2. Chain conditions. Let us recall that L is said to satisfy ACC (DCC) if for every 
chain a, ^ a2 ̂  . . . (a{ ^ a2 ^ . . .) of elements of L there exists n such that a„ = an+ i 
= . . . . It is clear that L satisfies ACC if and only if the lattice L° dual to L satisfies 
DCC. 

As a consequence of the Isomorphism Theorem one obtains the following well 

known 

LEMMA 4. If ax,. . . , a„ E L then the lattices [a\, 1],. . . , [a,n 1] satisfy ACC (DCC) 

if and only if the lattice [a\ A . . . A an, 1] satisfies ACC (DCC). 

Now we prove 

LEMMA 5. L satisfies ACC if and only ifl(L) satisfies ACC. 

PROOF. L is a sublattice of I(L), so if I(L) satisfies ACC then the same is true 
forL. 

https://doi.org/10.4153/CMB-1986-042-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1986-042-9


276 P. GRZESZCZUK AND R. PUCZYLOWSKI September 

Now let /] < 72 < . . . be a strictly ascending chain of ideals of L. Let us take for 
every /, a, E /,- f , \ /, and put b, = \/'k_ }ak. Obviously /?, ^ b2 ^ . . . and b-x E /,-1 ,. 
Since a-x ^ bh a, tfi 1, and /, is an ideal, we have b, tfi /,. Thus b\ < b2 < . • • . In 
consequence if L satisfies ACC then the same is true for I(L). 

Now we present a new proof of the following 

THEOREM 1 (Fisher [2]). L satisfies ACC (DCC) if and only if LG satisfies ACC 
(DCC). 

PROOF. It is clear that if L satisfies ACC then the same is true for L(j. Conversely, 
let us assume that LG satisfies ACC. By Lemmas 3 and 5 we can assume (passing if 
necessary to I(L)) that L is upper continuous. If L does not satisfy ACC then there exists 
a E LG maximal with respect to the property that the lattice \a, 1 ] = {x E L\a ^ x} 
does not satisfy ACC. Obviously the lattice [a, 1] is upper continuous and G acts on 
it. Hence by Lemma 2, the set P = {x E \a, l]|/\,ec-r1'' ~ a) contains a maximal 
element m. Now Lemma 4 implies that for some g E G the lattice \m\ 1] does not 
satisfy ACC. But for each g E G the lattices [m\ 1] and [m, 1J are isomorphic, so the 
lattice [m, 1] does not satisfy ACC. Thus we can find in L a strictly ascending chain 
m< m] < m2< . . . . By choice of m, a < /\,E<:;Wi- Hence by choice of a, [ A ^ G ^ Î , 

11 has ACC. But A„ (EGm\ < ni\ < m2 < . . . , giving a contradiction. 

Applying the foregoing to the lattice L° dual to L we obtain the result for DCC. 

3. Goldie dimension. A subset {x\,. . . ,x„} of L is said to be join-independent if for 
each 1 ^ / ^ n, x-, A (*, V . . . V JC,-_ , V x,, , V . . . V x„) = 0. 

The Goldie dimension of L is defined as dL = sup {k\L contains a join-independent 
subset of k elements}. The Goldie dimension of the lattice L° dual to L is called the 
hollow dimension and denoted by hL. 

An element a E L is said to be essential in L if for every 0 ^ i G L, A A i ^ 0. 
We say that a non-zero element u E L is uniform if every non-zero element x ^ u is 
essential in [0, u\. 

The following characterization of the Goldie dimension was given in |4). 

THEOREM 2. dL = n < °° if and only if L contains a join-independent subset 
{ « ] , . . . , a,,} of uniform elements such that the element ax V . . . V an is essential in L. 

LEMMA 6. For each a E L, dL ^ d[0, a\ + d\a, 1 ]. 

PROOF. First, we claim that if {a, x , , . . . ,xr} is a join-independent set in L, then {a 
V JC,, . . . ,a V xr} is a join-independent set in [a, 1]. Indeed, using modularity we see 
that for every 1 ^ i ^ r, 

(a V x,) A (a V JC, V . . . a V *,-_ , V a V x, t , V . . . V a V jcr) 
= A V ((A Vx,) A (JC, V . . . V JC,-_ , V jcf- », V . . . V x,) 
= a. 
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Now the inequality in the statement of the lemma is trivial if either term on the right 
hand side of that inequality is infinite, so assume both are finite. Then the preceding 
observation gives a finite bound on the cardinalities r of families x{,. . . ,xr such that 
{a, X],. . . ,xr} is join-independent. Let us choose x, , . . . ,xr with this property so as 
to maximize r. Then clearly the JC, are uniform, r ^ d[a, 1] and a V JC, V . . . V xr is 
essential in [a, 1]. Since d = d[0, a] is finite, there exists a join-independent family 
{y i, • • • » yd} of uniform elements of [0, a]. Clearly y, V . . . V yd is essential in [0, a]. 
Now by Lemmas 2 and 3 of [4], y\ V . . . Vy d \ / X\ V . . . Vjcr is essential inL. Hence 
Theorem 2 gives dL = d + r ^ d[0, a] + d[a, 1], as required. 

COROLLARY 1. Ifau . . . ,a„ E L awd a, A . . . A a/f = 0 r/ẑ w dL ^ 2"=1 d[a,, 1]. 

PROOF. We proceed by induction on n. For « = 1 the result is clear. Thus let n ^ 
2 andâ, = a2 A . . . A A,,. By the induction assumption d[a]9 1] ̂  2-?

=2t/[fl/, 1]. Since 
a\ /\â\ = 0, [0, ai] = [û] Aâ\, a\] ~ [â{, ax\/ â\] Ç [â,, 1]. Hence d[0, aA] ^ 2f=2 

d[a,, 1]. Now by Lemma 6, dL ^ S"=, d[<Z/, 1]. 

LEMMA 7. dL = d/(L). 

PROOF. Obviously, dL ̂  d/(L). Conversely, let / , , . . . ,/„ be a join-independent 
subset of I(L) and let 0 + x, E ll for 1 ^ / ̂  n. For every 1 ̂  j ^ n, x, A (JC, V . . . V 
xj- , V xj+ , V . . . V x„) E /,• A (/, V .. . V /,•_, V Ij+, V . . . V /„) = 0. Hence 
{JC,,. . . ,x„} is a join-independent subset of L. Thus <i/(L) ^ dL. 

Now we can prove the main result of the paper. 

THEOREM 3. dLG ^ dL ^ |G|dLG. 

PROOF. By Lemmas 3 and 7 we can assume that L is upper continuous. Thus using 
Lemma 2 we can find a maximal element / in the set {x E L\/\gGGxg = 0}. Now by 
Corollary 1 it is enough to show that d[l, 1] ̂  dLG, which will clearly follow if we 
show that for every family of join-independent elements JC,,. . . ,xm E [/, 1], the 
elements JC, = / \Gc-*? are join-independent in LG. By the choice of /, Jc,- =£ 0 for 1 ^ 
/ ^ m. Thus we have to show that for \ ^ i ̂  m, y( = î / - A ( X | V . . . V ï / _ , V î / + i 
V . . . V xm) = 0. Since for every 1 ^ ^ m , / < / V i , ^ i ( and the set {JC,,. . . , xm} 
is join-independent in [/, 1], the set {/ V Jc,,. . . , / V JC„,} is join-independent in [/, 1]. 
In consequence for all /, / = (/ V JC,) A (V | ;£/^/s£/„/ V JC,) ^ yh This, the choice of 
/ and the fact that yf E LG imply, 0 = A ^ e c / S ^ A ^ G j f = yh 

Applying Theorem 3 to the lattice L° dual to L we obtain 

COROLLARY 2. hLG ^ hL ^ \G\hLG. 

REMARK. In [5] the notion of Goldie dimension was extended to the infinite case. By 
similar arguments to those used in the proof of Theorem 3 one can obtain that for an 
infinite cardinal a, dL = a if and only if dLG = a. 
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4. Applications. Let G be a finite group and S a Clifford system for G i.e. ([9]) S 
is a ring such that 

S = 1 SH 

for additive subgroups Sg, g E G, satisfying SgSh = Sgh for all g, h E G. Obviously Se 

is a subring of S. 
Let M, be a right S-module and L(MSc) the lattice of 5,,-submodules of M. Define for 

g E G,fg:L(MSe) -> L(Af5,) by/ , tf = Att,. Since/, o fg_ , = /„_ , o/„ - W and for 
all W, A' E L(MSc) if N Ç K the fg(N) Cfg(K), al l / , are automorphisms of L(MSe). 
Thus G acts on L{MS) by automorphisms and L(MS() = {N E L(M5 ) | ^ = TV for all 
g E G} = L(MS) is the lattice of S-submodules of M. 

For every right ^-module M, dL(MR) is equal to the Goldie rank, rank M^, of M^ and 
hL{MR) is equal to corank M^, defined in [10]. Hence Theorem 3 yields 

COROLLARY 3. rank Ms ^ rank MS(, ^ \G\ rank Ms 

corank Ms ^ corank MSe ^ |G| corank Ms. 

If G is a finite group of /?-automorphisms of an /^-module M then M is a module over 
the group ring R] [G], where R] denotes the natural extension of R to a ring with unity. 
Moreover G-invariant submodules of M are exactly those submodules which are 
/?'[G]-submodules of M. Obviously S = R][G] is a Clifford system for G with Se = 
Rl. Thus if irank M (icorank M) denotes rank (corank) of M taken with respect to 
G-invariant submodules of M, we have the following 

COROLLARY 4. irank M ^ rank M ^ \G\ irank M 
icorank M ^ corank M ^ |G| icorank M. 

Let G be a finite group of automorphisms of a ring R and let /? ' * G be the skew group 
ring. The ring R has a natural structure of a right /?' * G-module (cf. [7]). Right R] * 
G-submodules of R are precisely G-invariant right ideals of R. This observation and 
Corollary 3 give a relation between the Goldie rank (corank) and the G-invariant rank 
(corank) of R. Symmetric arguments give the same relations for left ranks (coranks). 

COROLLARY 5. irank R ^ rank R ^ \G\ irank R 
icorank R ^ corank R =̂  | G | icorank R. 

In particular Corollary 5 gives a quite different proof of Kharchenko's theorem 
presented in [6, 7] which says that R contains no infinite direct sum of non-zero right 
ideals if and only if R contains no infinite direct sum of non-zero right G-invariant 
ideals. 

It is known (cf. [7]) that if R is a semiprime ring and multiplication by \G\ is a 
bijection on R then the right G-invariant Goldie rank of R is equal to the right Goldie 
rank of the fixed ring RG. Thus (cf. [7]) 

rank RG ^ rank R ^ \G\ rank RG. 
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LEMMA 8. If G is a finite group of automorphisms of a ring R with unity and \G\ ] 

E R then icorank R — corank RG. 

PROOF. Let t:R -» RG be the trace map i.e. t(x) = \G\~l I,geGxg. Obviously t(R) 
— RG and if / is a proper G-invariant right ideal of R then t(I) = I D RG is a proper 
right ideal of RG. For every right ideal 7 of RG, JR is a G-invariant right ideal of R. If 
a E JR fl RG then for somey'i,. . . JnE. 7 and ru . . . ,rn E. R, a = jxr\ + . . . + jnrn. 
Now a = t(a) = yV(r,) + . . . + j„t(r„) E 7. Hence JR H RG = 7. In particular if 7 
is a proper right ideal of RG then 77? is a G-invariant proper right ideal of R. 

Now if 7 i , . . . , 7„ are proper right ideals of RG such that for every 1 ^ j ^ n, J} + 
0 / ^ 7 / = 7?G then 7? = RGR = (7, + fl,-*,-/,-)/? C 7,7? + 0,^,7,/?. Thus for every 1 
^j^n,R = JjR + Oi^jJiR and JkR, 1 ^ k ^ «, are proper G-invariant right ideals 
of R. This proves that corank RG ^ icorank 7?. Conversely, let Ix,... ,/„ be proper 
G-invariant right ideals of 7? such that for every 1 ^j^n,Ij+ H 7-̂  ,-/,• = /?. Then 7?G 

= *(/?) = t(Ij) + rCfU,-/,-) C *(/,-) + H,-*,-*(/,-). Thus7?G = *(/,-) + H,-*,-*(/,-) and 
f(7*), 1 ̂  k ^ ft, are proper right ideals of 7?G. In consequence icorank R ^ corank 7?G. 

Since the corank of a ring with unity is finite if and only if the ring is semilocal (cf. 
[8]), Lemma 8 and Corollary 5 imply 

COROLLARY 6 (cf. [7]). If G is a finite group of automorphisms of a ring R and 
multiplication by \G\ is a bijection on R then R is semilocal if and only if the fixed ring 
RG is semilocal. 

We close the paper with some remarks concerning radicals. Let the lattice L be 
complete. We define the radical r(L) of L as the intersection of all maximal elements 
of L (if L contains no maximal element then r(L) = 1). Obviously for a module M, 
r(L(M)) is equal to the Jacobson radical J(M) of M. 

PROPOSITION 1. r(L) ^ r(LG). 

PROOF. Let a be a maximal element of LG. By Theorem 1 the lattice [a, 1] contains 
a maximal element b. It is clear that the element b is maximal in L and /\geGbg = a. 
In consequence r(L) ^ r(LG). 

The following example shows that r(L) is not always equal to r(LG). 

EXAMPLE. Let K be afield of characteristic p > 0 and G a finite group with p\\G\. 
IfL is the lattice of all K-subspaces of the group algebra K[G] then r(L) = 0. Defining 
for g E G,fg:L^>L by f8(N) = gN we obtain an action of G on L. Obviously r(LG) 
= J(K[G]) ± 0. 

Proposition 1, the foregoing remarks on modules over Clifford systems and 
Maschke's theorem for Clifford systems ([9]) imply 

COROLLARY 1. If S is a Clifford system for a finite group G andMs is a right module 
over S then 
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a) J(MSe) C J{MS)\ 
b) if multiplication by \G\ is a bijection on S then J(MS) = J(MS). 

As a special case of Corollary 7 we obtain 

COROLLARY 8. If G is a finite group of automorphisms of a ring R then J(R) is 
contained in the intersection JG(R) of all maximal G-invariant right ideals of R. If in 
addition multiplication by \G\ is a bijection on R then J(R) — JG(R). 

Using the trace map one can easily check that ifR has unity and |G|_1 E R then J(RG) 
= JG(R) H RG. As an effect of this and Corollary 8 we obtain 

COROLLARY 9 (cf. [7]). If G is a finite group of automorphisms of a ring with unity 
and \G\'] E R then J(R) H RG = J(RG). 

REFERENCES 

1. P. Grawley and R. P. Dilworth, Algebraic Theorey of Lattices, Prentice-Hall, Englewood Cliffs, N.J . , 

1973. 

2. J. Fisher, Chain conditions for modular lattices with finite group actions, Canad. J. of Math., 31 

(1979), pp. 5 5 8 - 5 6 4 . 

3. G. Gràtzer, General Lattice Theorey, Birkhauser-Verlag, Basel, 1978. 

4. P. Grzeszczuk and E. R. Puczy/owski, On Goldie and dual Goldie dimensions, J. Pure Appl. Algebra, 

31 (1984), pp. 4 7 - 5 4 . 

5. P. Grzeszczuk and E. R. Puczy/owski, On infinite Goldie dimension of modular lattices and modules, 

J. Pure Appl. Algebra, 35 (1985), pp. 151 -155 . 

6. V. K. Kharchenko, Galois extensions and quotient rings, Algebra i Logika, 13 (1974), pp. 460—484 

(Russian). 

7. S. Montgomery, Fixed rings of finite automorphism groups of associative rings, LNM 818, Springer 

Verlag, 1980. 

8. B. Sarath and K. Varadarajan, Dual Goldie dimension — / / , Comm. in Algebra, 17 (1979), pp. 

1885-1899 . 

9. F. Van Oystaeyen, On Clifford systems and generalized crossed products, J. Algebra, 87 (1984), pp. 

3 9 6 - 4 1 5 . 

10. K. Varadarajan, Dual Goldie dimension, Comm. in Algebra, 7 (1979), pp. 565 — 610. 

INSTITUTE OF MATHEMATICS 

UNIVERSITY OF WARSAW 

BIA^YSTOK DIVISION 

AKADEMICKA 2 

15-267 BIA^YSTOK, POLAND 

INSTITUTE OF MATHEMATICS 

UNIVERSITY OF WARSAW 

P K I N 

00-901 WARSAW, POLAND 

https://doi.org/10.4153/CMB-1986-042-9 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1986-042-9

