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Abstract

In this paper, we prove some value distribution results which lead to normality criteria for a family of
meromorphic functions involving the sharing of a holomorphic function by more general differential
polynomials generated by members of the family, and improve some recent results. In particular, the
main result of this paper leads to a counterexample to the converse of Bloch’s principle.
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1. Introduction and main results

A family 7 of meromorphic functions in a complex domain D is said to be normal in D
if every sequence in ¥ has a subsequence that converges uniformly on compact subsets
of D with respect to the spherical metric. The concept of normality was introduced
in 1907 by Montel [13]. Normal families play a central role in complex dynamics,
and are of great interest in their own right. For normal families of meromorphic
functions, we refer to Schiff’s book [15], Zalcman’s survey article [19] and Drasin’s
paper [7], out of a huge literature on the subject. Drasin [7] brought Nevanlinna value
distribution theory [9] into the study of normal families of meromorphic functions
and Schwick [16] introduced the concept of sharing of values. In this paper, which
continues our earlier work [4], we prove a value distribution result leading to some
interesting normality criteria, one of which leads to a counterexample to the converse
of Bloch’s principle. These normality criteria involve the sharing of holomorphic
functions by a more general class of differential polynomials and generalise and
improve recent results.
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Let f € ¥ and let h(z) be a holomorphic function on D. Let k > 1,1y, 1, b, ..., I,
my,my, ..., my be nonnegative integers with I’ = Zf.‘:, land m’ = Zf;l m; and let

P[f] — flo (fll )(ml)(flz)(mz) . (flk)(mk)

be a differential polynomial of f with degree yp = Iy + I'. We assume that /o > 0 and
l; >m;for 1 <i<kwith! >m’ > 0. Further, we can see that

™ =3 Cognom PSS  (F

is such that 37" n; =l and 37" jn; = m;. Thus, the weight

w((F)") = max { i G+ Dngh =t m,
=0

and so
k
WP =lo+ ) Ui+ m) =l +1 +m =yp+m'.
i=1
It is assumed that the reader is familiar with the standard notions of Nevanlinna value
distribution theory such as m(r, f), N(r, ), T(r, f), S (r, ) and so on (see [9]).

Dermvrion 1.1. Two meromorphic functions f and g in a domain D share the function
hIM in D if E(h, f) = E(h, g), where E(h, ¢) = {ZED t(2) - h(z) = 0} is the set of
zeros of ¢ — h in D ignoring multiplicities (IM). If E(h, f) C E(h, g), then we say that
f shares h partially with g on D.

Dethloff et al. proved the following Picard-type theorem.

Tueorem 1.2 [6, Corollary 2, page 676]. Let a be a nonzero complex value, ly a
nonnegative integer and 1,1, ..., Iy, my,my, ..., my; positive integers. Let F be a
Sfamily of meromorphic functions in a complex domain D such that, for any f € F,
P[f] — a is nowhere vanishing on D. Assume that:

@ lj>mj for1<j<k;
b) L+!'=23+m.

Then F is normal in D.
Dutt and Kumar extended Theorem 1.2 as follows.

TueoreEm 1.3 [8, Theorem 1.4, page 2|. Let a be a nonzero complex value, ly a
nonnegative integer and Iy, b, . . ., Iy, my,my, . .., my positive integers such that:

(@ [j=>mjforl1<j<k
(b) lh+!'=3+m.

Let F be a family of meromorphic functions in a domain D such that for every pair
f,g €7, Plf] and P|g] share a IM on D. Then ¥ is normal in D.
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It is natural to consider the following more general question.

QuEsTION 1.4. Is the family F normal in D if for each pair of functions f and g in F
the differential polynomials P|f] and P[g] share a holomorphic function h IM?

We answer Question 1.4 as follows.

THEOREM 1.5. Let F be a family of nonconstant meromorphic functions on a domain
D such that each f € F has poles, if any, of multiplicity at least ly. Let h # 0 be a
holomorphic function on D having only zeros of multiplicity at most Iy — 1. If P[ f] and
Plg] share h IM on D for each pair f,g € F, then F is normal in D.

ExampLE 1.6. We show that the condition 4 # 0 in Theorem 1.5 is essential. Let D = D,
the open unit disc. Consider the family of meromorphic functions on D:

F={fy: fu) = &,z €D},

Let P[f] = f(f2) = 2f2f". Then P[f,1(z) = 2f%(2)f.(z) = 4nze*™. Therefore, for
distinct m, n, we see that P[f,,] and P[f,] share 4 = 0 IM. But the family ¥ fails to
be normal at z = 0 in D, since f,,(0) = 1 for all n and f,,(z) — oo for all z # 0 in D.

A direct consequence of Theorem 1.5 is the following important result, which, as
we will see, leads to a counterexample to the converse of Bloch’s principle.

CoroLLARY 1.7. Let F be a family of nonconstant meromorphic functions on a domain
D. Let h £ 0 be a holomorphic function such that h(z) # 0 in D. If P[f] — h has no
zero in D for any f € ¥, then F is normal in D.

Bloch’s principle (see [1]) states that a family of holomorphic (meromorphic)
functions satisfying a property P in a domain D is likely to be normal if the property
P reduces every holomorphic (meromorphic) function on C to a constant. Bloch’s
principle is not universally true (see, for example, [14]).

The converse of Bloch’s principle states that if a family of meromorphic functions
satisfying a property P on an arbitrary domain D is normal, then every meromorphic
function on C with property P reduces to a constant. Like Bloch’s principle, the
converse is not true. For counterexamples, see [2, 5, 11, 12, 15, 18] and [10].

CounTerexaMPLE 1.8. Suppose P[f] = f(f3)" = fGRL2f) =3£3f" + 6f2f% and let
f(z) = 7% be defined on C. Then

P[f1(z) = 3¢ %€ + 6e e % = 9e™*,

Take h(z) = e, so that h % 0 and / is holomorphic in C and hence in every domain
D C C, and also A(z) # 0 for z € D. Then (P[f] — h)(z) = 8¢* has no zeros in C. Note
that f is nonconstant, which violates the statement of the converse of Bloch’s principle
in view of Corollary 1.7.

Next we discuss normality of & when P[f] — & has zeros under different scenarios.
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TueOREM 1.9. Let F be a family of nonconstant meromorphic functions on a domain
D. Let h be a holomorphic function on D such that h(z) # 0 in D. If, for each f € T,
any one of the following three conditions holds:

(1)  (PLf]1 - h)(2) has at most one zero;
(1) (PLf] - h)(2) = 0 implies that | f(z)| = M for some M > 0;
(i) (PLf]-h)(z) = 0 implies that |(f")")(z)| < M for some positive M, 1; and m;,

then F is normal in D.

Further, under the weaker hypothesis of partial sharing (see [3, 4]) of holomorphic
functions, we can prove the following result.

TueoreM 1.10. Let F be a family of nonconstant meromorphic functions on a domain
D. Let h be a holomorphic function on D such that h(z) # 0 in D. If, for every f € ¥,
there exists f € F such that P[f] shares h partially with P[f], then F is normal in D,
provided h # P[f] in D.

RemMark 1.11. Theorem 1.5 improves and generalises Theorems 1.2 and 1.3. Theorem
1.10 is a direct generalisation of [4, Theorem 1.3].

2. Some value distribution results

To facilitate the proofs of our theorems, we prove some value distribution results.

TueorREM 2.1. Let f be a transcendental meromorphic function. Then P[f1(z) — w(z)
has infinitely many zeros for any small function w(# 0, ) of f.

Proor. Suppose on the contrary that P[f](z) — w(z) has only finitely many zeros.
Then, by the second fundamental theorem of Nevanlinna for three small functions
[9, Theorem 2.5, page 47],

[1 +o(DIT(r, P) < N(r, P)+N(r,%)+ﬁ(r, )+S(r, P)

P-w
=N(r,P) + N(r, 113) +5(r, P). 2.1)

Since the homogeneous differential polynomial

PLf] = fo(fM) ) (9™ (k> 1)
is a product of monomials f%, (f1)), (f2)m) . (f%)) where the exponents
lo,11,.... Iy of f are positive integers (since [y > 0,/; >m; > 0, for 1 <i < k), by
[17, Theorem 1, page 792], f and P[f] have the same order of growth and hence
T(r,w)=S(r,P)asr — oo. That is, w is a small function of f if and only if w is a
small function of P[f]. Next,

N(r, %) - N(r, flo(fh )<m1)1. co (fli)omo )

k

k
) S50 )< S k)

i=1 i=1
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where Ny(r, 1/(f"))) represents the count of those zeros of (%)™ which are not the
zeros of f% and hence not of f. Denote by N,,)(r, 1/f) and N(p+ 1(r, 1/f) the counting
functions ignoring multiplicities of those zeros of f whose multiplicity is at most p
and at least p + 1, respectively. Therefore,

N(r, %) < N(r, %) + Zk:[miﬁ(r, )+ Nm[)(r, %) + miﬁ(m[H (r, %)] +Sf)

i=1

r’

r, l)] +S(r, f)

m,[N(r f)+Nm)( ;)+N(m,.+1( ;

i=1

).
)+ Zk: m N 1)+ N, ]1[)] £S5 f)
)

1
ol [N )+ N(r 7|+ S0,
That is,
1 _ — 1
N(r. ) < m N, £ + (1 + )N ?) + S0, f). 2.2)
Next, if 7o is a zero of f of order p with 2 < p <k, then z is a zero of P[f] of order
plo+pl' —m’' 22l +2I' —m’ > 2lp +m’ >2 +m’. Similarly, for p>k+1,zpisa

zero P[f] of order > (k+ D(lp + ') —m’ = (k+ 1) + km’ = k(1 + m’) + 1. Thus, we
see that

N(r, %) - N(r, 119) > (' + 1)Nk)(r, %) k(' + 1)N(k+1(r, %)

R N T

Since (1 — k)(1 + m’) <0 for k > 1, (2.2) with the help of the last inequality gives

That is,

N %) < NG f) + (1 + )N %) + (14N (1 %) +S(nf)
<m'N(r, f) + N(r, ;—J) - N(r, 113) + (1= k)1 +m) N (r, %) + S0 f)
<m'N(r, f) + N(r, %) - N(r, %) + S0 1),
which implies that

—/ 1 m’ — 1 1
N(r, 1—3) < NG )+ zN(r, ;) LS f). 2.3)
Putting (2.3) into (2.1) and noting that N(r, )= N(r, P) and S (r, ) =S(r, P) gives

[1 +o(D]IT(r, P) < [ + —]N(r H+ N( 1)+ S(r, P). (2.4)
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Also, a pole of f of order p > 1 is a pole of P[f] of order
plo+pl +m 2+l +m' 21+m' +1+m =2+2m'.

Therefore, N(r, P) > (2 + 2m’)N(r, f), which implies that

N(r, P).

_ 1
N f) <
Ry

Hence, (2.4) yields

’

1
[+ o()]T(r. P) < [5 - ﬁ]

11
N P) + 5N(r, ;) +S(rP),

which implies that
m/
_ DT (r,P) < P).
s e[ p <56

But this gives T'(r, P) < S (r, P), which is a contradiction. O

THEOREM 2.2. Let w(z) # 0 be a polynomial of degree m < ly. Let f be a nonconstant
rational function having poles, if any, of multiplicity at least ly. Then P[f] — w has at
least two distinct zeros.

Remark 2.3. For m = 0, Theorem 2.2 holds without any restriction on the multiplicity
of poles of f.

Proor. The proof of Theorem 2.2 is based on ideas from [4] but with a number of
modifications. Since the computations are a little involved, we give the proof in full.

Suppose on the contrary that P[f] — w has at most one zero. We consider the
following cases.

Case 1. 1If fis a nonconstant polynomial, then P[f] is also a polynomial of degree at
least [y + " —m’ > [y + 1. Since w(z) is a polynomial of degree m < Iy, P[f](z) — w(z)
is a polynomial of degree > 1. By the fundamental theorem of algebra, P[f] — w has
exactly one zero. We can set

P[f1(2) - w(z) = Az - 20)", (2.5)
where A is a nonzero constant and n > m + 1. Then
m+1
i&ﬁ%ﬂ@>:ﬂm“uy@:AMn—Dm—2»~0wﬂm@—mV%*,

which implies that z is the only zero of P"*V[f](z). Since each zero of f is a zero of
P[f] of order at least [y + I" — m’ > m + 1, it follows that 7 is a zero of P[f] also. Thus,
P[f1(z0) = 0. But (2.5) gives P™[f1(z9) = w"™(z0) # 0, which is a contradiction.

Case 2. Suppose that f is a rational function but not a polynomial, say
T - a))

= A—,
f@ TG B

(2.6)
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where A is a nonzero constant, n; > 1(j = 1,2,...,s)and p; > lo(j=1,2,...,1). Put

N

an:S and Zt:pj:T. 2.7

J=1 J=1
Thus, S > sand T > [yt > t. We see from (2.6) that
HS':I (Z —a ,)n,-(l(,+l’)—m' (Z)
P=Plfl(2) = —2 : 8@ =22 sy, 2.8)

[T} (z = gjypstlortoem q@)’

where gp(z) is a polynomial of degree at most m’(s + ¢ — 1). On differentiating (2.8),

[T, (2 — ayosD=trm
Jj= J _
P(m) = 7 (o+1)+(m' + )g(Z), (29)
Hj:](z—ﬁj)lh o m'+m
where g is a polynomial of degree at most (m’ + m)(s + ¢ — 1), and
[T (2 — o=t emeD
j:

[T, (z — Bp o ymsms) 8@, (2.10)

P(m+ 1) —

where g is a polynomial of degree at most (m’ +m + 1)(s + ¢ — 1).

Case 2.1. First assume that P[ f] — w has exactly one zero, say zy. In view of (2.8),
B(z - zo)!

[Tj-) (= Byyptlortrem”

where [ is a positive integer and B is a nonzero constant. On differentiating (2.11),

(z—20)™8(2)

Pf1(2) = w(2) +

@2.11)

(m) _
rreer H;ZI (z = Bj)pillotly+(m+m) ’ (2.12)
where 2 is a polynomial with degree at most mt and C # 0 is a constant, and
— I-(m+1) A
P(m+l) — (z—2z0) g(z) o)

Htjzl (Z _Bj)pj(lo+l’)+(m'+m+1)

where g is a polynomial of degree at most (m + 1)t < [pt. On comparing (2.9) and
(2.12), we see that zo # a; (j=1,2,...,s) (otherwise, for some j, z9 is a zero of
P™][f] from (2.9) and then from (2.12), P™[f](z0) = 0, which implies that C = 0,
which is a contradiction).

Case 2.1.1. Suppose that [ # T'(ly + I') + tm’ + m. Then from (2.11) and using (2.8),
we see that deg(p) > deg(q) and T(lo+ ') +tm’ < Sy + ') — m's + deg(gp). This
implies that

Ty +1)<SUy+1)—m <SUy+ 1),

whence T < S. Also, from (2.10) and (2.13),
SUo+1)—(m +m+ 1)s <deg(d) <lpt < T,
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which gives
SUp+ 1)< +m+Ds+T < +1p)S +T <m +1+1)S <" +1)S,
that is, S < S, which is absurd.

Case 2.1.2. Suppose that [ = T(ly + ") + tm’ + m. Then we have two possibilities:
either S > T or § < T. For the case S > T, we can proceed exactly as in Case 2.1.1.
Therefore, we need only consider the case S < 7. From (2.10) and (2.13), (z — z9)"™"!
divides g(z) and so [ —m — 1 < deg(8) < (m’ + m + 1)(s + t — 1). This implies that
Thy+I)+m +m-m—-1<(m +m+1D(s+1-1)
=m'(s—D+m+D(s+1—-1)+m’

and so
To+)sm'(s—D+@m+D(s+1)—m
<m'(s—D+m+D(s+D)<m'(s=1) +1lo(s+1)
<m +1)S+T<m +1p+ DT <"+ )T,
which is again absurd.
Case 2.2. Finally, we suppose that P[f] — w has no zeros. Then/=01in (2.11), giving
B

G py

Pf1(2) = w(2) +

where B # 0 is a constant, and so

h(z)

(m+1) _
P =B tj—l (z _ﬁj)pj(lo+l’)+m’+m+1 ’

where deg(h) < (m+ 1)t — 1 < (m + 1)t < [yt. Proceeding as in Case 2.1 leads to a
contradiction. O

3. Proofs of the main results

Since normality is a local property, we can assume that D is the open unit disc D.

Proor oF THEOREM 1.5. Suppose on the contrary that ¥ is not normal at z = 0. We
consider the following cases.

Case 1. Let h(0) #0. Then, by Zalcman’s lemma [19, page 216], there are a
sequence {f;} in ¥, a sequence {z;} of complex numbers in D with z; — 0 as j — oo
and a sequence {p;} of positive real numbers with p; — 0 as j — oo such that the
sequence g;(z) := p;" fi(zj + pjz) converges locally uniformly with respect to the
spherical metric to a nonconstant meromorphic function g(z) having bounded spherical
derivative on C. Clearly, (gljf' )m)—(gh)) and so P[g;]—P[g] locally uniformly on C.
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Since g is nonconstant and /; > m; foralli = 1,2,...,k, it follows that P[g] # 0. We
claim that P[g] is nonconstant. For, suppose that

Plgl=a, acC\{0}. (3.1)

Then, by definition of P[g] with [y > 0 and [; > m; for all i, we see that g is entire and
nonvanishing. So, for some ¢ # 0, g(z) = e whence

k

Plgl(z) = H(zic)mf Qo ezd),

i=1

which is nonconstant, in contradiction to (3.1). Hence, the claim follows.
Taking @ = m’/(lp + '), we find that P[g;](z) = P[f;l(zj + p;jz). Thus, on every
compact subset of C not containing poles of g,

Plfil(zj + pjz) — h(z; + pjz) = P[g;1(z) — h(z; + pjz) — P[gl(z) — h(0) = P[g](2) — ho,

spherically uniformly, where Ay = h(0) # 0. In view of Theorems 2.1 and 2.2, let uy and
vo be two distinct zeros of P[g] — &y in C. Since zeros are isolated, we consider two
nonintersecting neighbourhoods, N(ug) and N(vg), such that N(up) U N(vy) does not
contain any other zero of P[g] — hy. By Hurwitz’s theorem, we find that for sufficiently
large values of j, there exist points u; € N(ug) and v; € N(vo) such that

P[fj](zj +pjuj) - h(Zj +,0j1/tj) =0 and P[f]](Z] +ijj) - h(Zj +ijj) =0.

Since P[f] and P[g] share h IM in D, for each pair f, g of members of ¥, for a fixed n
and for all j,

Plful(zj+pjuj) = h(zj+pjuj) =0 and P[f,](z; +pv;)) — hz;j+p;v;) =0.

Taking j — oo and noting that z; + p;u; — 0 and z; + p;v; — 0 as j — oo, we find that
P[£,1(0) — h(0) = 0, that is, P[f,](0) = A(0) = hy # 0. Since the zeros of P[f,] — h have
no accumulation point, for sufficiently large j, z; + pju; = 0 = z; + p,;v;. But this means
that u; = —z;/p; = v; is a point in both of the neighbourhoods N(up) and N(vy), which
is a contradiction.

Case 2. Suppose that #(0) = 0. Then we can write A(z) = 7"h;(z), where m € N and
h1(z) is a holomorphic function in D such that 4,(0) # 0. We may take 4;(0) = 1. Since
0<(@m+m)/(y+1")<1,asinCase 1, by Zalcman’s lemma [ 19, page 216], we obtain
a sequence of rescaled functions g;(z) = pj_-("ﬁm’) [o+l') fi(zj + pjz) which converges
locally uniformly with respect to the spherical metric to a nonconstant meromorphic
function g(z) on C having bounded spherical derivatives.

We now consider the following two subcases of Case 2.

Case 2.1. Suppose that there exists a subsequence of z;/p;, which for convenience
we take to be z;/p; itself, such that z;/p; — oo as j — co. Consider the family

G :=1{G(2) =" D fiz; + 2i2) : fj € F)
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defined on D, for which
P[G;](z) = G?(G;‘)(’"l) .. (G‘l;c)(mk)(z)

_ LTI 7 N A B
— Zj(m+m/0+ Yo+l )+m P[,fj](zj + ij) — ijP[fj](Zj + ij),

that is, P[f;1(z; + z;2) = 2} P[G j1(z). Now, by hypothesis, for fo, f, € 7,

(PLfal = W)z + 2j2) = 0 & (P[] = h)(zj + 22) = 0
= 77 PIG1(2) = 2} (1 + 2)"hi(z; + 2;2) © Z}PIGyl(2) = 2} (1 + 2)" i (2 + 2j2)
= P[G,)(2) = (1 + 2)"hi(zj + 2j2) © PlGpl(z) = (1 + 2)"hi(z; + z;2).

Since (1 +2)"hi(z; + z;z) # 0 at the origin, it follows from Case 1 that G is normal in

D and hence there exists a subsequence of {G,} in G, which we may take to be {G;}

itself, such that G; — G, locally uniformly on ID with respect to the spherical metric.
If G(0) # 0, then we see that

—(m+m")[(lg+1")

Zj (m+m’)/(lo+1")
) 7 fizi+pi2)

s
8@ =" 00 =

J
2 \(mm) o+ .
(ol
Pj 3

which converges locally uniformly with respect to the spherical metric to co on C. This
implies that g(z) = oo, which is a contradiction. Thus, we must have G(0) = 0, which
implies that G’(0) # oo. Next, for each z € C,

pj )—(m+m’)/(lo+l')+lG,(pj )
j —Z
J

— ) (lo+1)+1
gi(z) = p; IO (2 4 i) = (Z— ~
J

and (m +m’)/(ly + ") < 1. Therefore, g}(z) — 0 spherically uniformly as j — oco. But
this implies that g is constant, which is a contradiction.

Case 2.2. Suppose that there exists a subsequence of z;/p;, which, for simplicity, we
take to be z;/p; itself, such that z;/p; — c as j — oo, where c is a finite number. Then

Hy(@) = ;" o 12) = gz = ) 5 gz - 0) = HE2)
Pj
on C. Note that P[H|](z) = pj‘.”’P[fj](pjz). For each f, and f;, in F, P[f,] and P[f,]
share 4 IM, so
Plfu)(p;z) = h(p;z) © Plfpl(p;2) = h(p;2). (3.2
That is,
P[H.](z) = "h(pjz) © P[Hp(z) = Z"hi(p;2). (3.3)

We claim that P[H](z) # 7". If, on the contrary, P[H] = 7", then z = 0 is the only
possible zero of H. If H is transcendental, then H(z) = z7¢?® for some nonnegative
integer  and a polynomial Q. Thus, (H")™)(z) = p(z)e"?®, where p(z) (£ 0) is a
rational function. It follows that P[H] is also transcendental, which is not the case.
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On the other hand, if H is rational and z = 0 is a zero of H, then H is a polynomial.
Clearly, deg(P[H]) > Iy + 1 > m, which is again a contradiction.
On compact subsets of C, not containing poles of H, we see that

P[H;l(z) — 2" (pjz) — P[H](z) - 2",

spherically uniformly. Since P[H](z) # 2", by Theorems 2.1 and 2.2, P[H](z) — 7" has
at least two distinct zeros in C. By proceeding in the same way as in Case 1, we arrive
at a contradiction.

Putting all the cases together, it follows that ¥ must be normal in D. O

Proor or THEOREM 1.9. Trrespective of any of the conditions (i), (ii) and (iii), the
ideas used in Case 1 of the proof of Theorem 1.5 lead us to the conclusion that
Plg](z) & h(0) = hgy in C.

If condition (i) holds, then we claim that P[g](z) — hy has at most one zero in C, in
violation of the conclusions of Theorems 2.1 and 2.2, thereby proving the normality
of F. Suppose, on the contrary, that P[g](z) — & has at least two distinct zeros, say {j
and £. By Hurwitz’s theorem, there exist points {; — {p and {7 — £ such that

PLfil(zj + pi¢j) = h(zj + pi{) =0 and  Plfil(z; +p;{;) —h(zj+p;d;) =0
for sufficiently large j. Since P[f;1(z; + pjz) — h(z; + p;z) has at most one zero, this
contradicts the fact that y and ¢ are distinct. Hence, the claim follows.

Next we prove the normality of ¥ when condition (ii) holds. By Theorems 2.1
and 2.2, P[g](z) — hp must have a zero, say {y, and hence g({y) # oo. Further, by
Hurwitz’s theorem, for sufficiently large j, there exists a sequence {{;} converging to
{o such that

Plfil(z; +pj¢j) — Mz + p;g) = 0.

By hypothesis,

18,1 = 07" " NSt + p il 2 o) M.
Since g({y) # oo in some neighbourhood N of ¢y, it follows that for sufficiently large
J» 8(z) converges uniformly to g(z) in N. Thus, for given € > 0 and for every z € N,

lgj(2) — g(2) < €
for sufficiently large j. Therefore, for sufficiently large values of j,
121 = 18,1 = 18 = g, > 7™ M — e,

which implies that g has a pole at ¢y, which is not the case.

Finally, we prove the normality of ¥ when condition (iii) holds. As in the preceding
discussion,

Plfilz; + pij) — h(z; + p;g;) = 0.
Since @ = m’/(ly + [") for some positive /; and m;,

D@D = PN ey + ol < Mp T 50 as j o e,

Thus, (g)"™)(¢) = liqum(gﬂf)‘”’”(gj) = 0, which implies that P[g](Zy) = 0 # ho. This
is a contradiction. m]
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