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Abstract

In this paper, we prove some value distribution results which lead to normality criteria for a family of
meromorphic functions involving the sharing of a holomorphic function by more general differential
polynomials generated by members of the family, and improve some recent results. In particular, the
main result of this paper leads to a counterexample to the converse of Bloch’s principle.
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1. Introduction and main results

A familyF of meromorphic functions in a complex domain D is said to be normal in D
if every sequence in F has a subsequence that converges uniformly on compact subsets
of D with respect to the spherical metric. The concept of normality was introduced
in 1907 by Montel [13]. Normal families play a central role in complex dynamics,
and are of great interest in their own right. For normal families of meromorphic
functions, we refer to Schiff’s book [15], Zalcman’s survey article [19] and Drasin’s
paper [7], out of a huge literature on the subject. Drasin [7] brought Nevanlinna value
distribution theory [9] into the study of normal families of meromorphic functions
and Schwick [16] introduced the concept of sharing of values. In this paper, which
continues our earlier work [4], we prove a value distribution result leading to some
interesting normality criteria, one of which leads to a counterexample to the converse
of Bloch’s principle. These normality criteria involve the sharing of holomorphic
functions by a more general class of differential polynomials and generalise and
improve recent results.
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Let f ∈ F and let h(z) be a holomorphic function on D. Let k ≥ 1, l0, l1, l2, . . . , lk,
m1,m2, . . . ,mk be nonnegative integers with l′ =

∑k
i=1 li and m′ =

∑k
i=1 mi and let

P[ f ] = f l0 ( f l1 )(m1)( f l2 )(m2) · · · ( f lk )(mk)

be a differential polynomial of f with degree γP = l0 + l′. We assume that l0 > 0 and
li ≥ mi for 1 ≤ i ≤ k with l′ > m′ > 0. Further, we can see that

( f li )(mi) =
∑

Cn0n1n2...nmi
f n0 ( f ′)n1 ( f ′′)n2 · · · ( f (mi))nmi

is such that
∑mi

j=0 n j = li and
∑mi

j=1 jn j = mi. Thus, the weight

w(( f li )(mi)) = max
{ mi∑

j=0

( j + 1)n j

}
= li + mi

and so

w(P[ f ]) = l0 +

k∑
i=1

(li + mi) = l0 + l′ + m′ = γP + m′.

It is assumed that the reader is familiar with the standard notions of Nevanlinna value
distribution theory such as m(r, f ),N(r, f ),T (r, f ), S (r, f ) and so on (see [9]).

Definition 1.1. Two meromorphic functions f and g in a domain D share the function
h IM in D if E(h, f ) = E(h, g), where E(h, φ) = {z ∈ D : φ(z) − h(z) = 0} is the set of
zeros of φ − h in D ignoring multiplicities (IM). If E(h, f ) ⊆ E(h, g), then we say that
f shares h partially with g on D.

Dethloff et al. proved the following Picard-type theorem.

Theorem 1.2 [6, Corollary 2, page 676]. Let a be a nonzero complex value, l0 a
nonnegative integer and l1, l2, . . . , lk, m1,m2, . . . ,mk positive integers. Let F be a
family of meromorphic functions in a complex domain D such that, for any f ∈ F ,
P[ f ] − a is nowhere vanishing on D. Assume that:

(a) l j ≥ m j for 1 ≤ j ≤ k;
(b) l0 + l′ ≥ 3 + m′.

Then F is normal in D.

Dutt and Kumar extended Theorem 1.2 as follows.

Theorem 1.3 [8, Theorem 1.4, page 2]. Let a be a nonzero complex value, l0 a
nonnegative integer and l1, l2, . . . , lk, m1,m2, . . . ,mk positive integers such that:

(a) l j ≥ m j for 1 ≤ j ≤ k;
(b) l0 + l′ ≥ 3 + m′.

Let F be a family of meromorphic functions in a domain D such that for every pair
f , g ∈ F , P[ f ] and P[g] share a IM on D. Then F is normal in D.
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It is natural to consider the following more general question.

Question 1.4. Is the family F normal in D if for each pair of functions f and g in F
the differential polynomials P[ f ] and P[g] share a holomorphic function h IM?

We answer Question 1.4 as follows.

Theorem 1.5. Let F be a family of nonconstant meromorphic functions on a domain
D such that each f ∈ F has poles, if any, of multiplicity at least l0. Let h . 0 be a
holomorphic function on D having only zeros of multiplicity at most l0 − 1. If P[ f ] and
P[g] share h IM on D for each pair f , g ∈ F , then F is normal in D.

Example 1.6. We show that the condition h . 0 in Theorem 1.5 is essential. Let D = D,
the open unit disc. Consider the family of meromorphic functions on D:

F = { fn : fn(z) = enz2
, z ∈ D}.

Let P[ f ] = f ( f 2)′ = 2 f 2 f ′. Then P[ fn](z) = 2 f 2
n (z) f ′n(z) = 4nze3nz2

. Therefore, for
distinct m, n, we see that P[ fm] and P[ fn] share h ≡ 0 IM. But the family F fails to
be normal at z = 0 in D, since fn(0) = 1 for all n and fn(z)→∞ for all z , 0 in D.

A direct consequence of Theorem 1.5 is the following important result, which, as
we will see, leads to a counterexample to the converse of Bloch’s principle.

Corollary 1.7. Let F be a family of nonconstant meromorphic functions on a domain
D. Let h . 0 be a holomorphic function such that h(z) , 0 in D. If P[ f ] − h has no
zero in D for any f ∈ F , then F is normal in D.

Bloch’s principle (see [1]) states that a family of holomorphic (meromorphic)
functions satisfying a property P in a domain D is likely to be normal if the property
P reduces every holomorphic (meromorphic) function on C to a constant. Bloch’s
principle is not universally true (see, for example, [14]).

The converse of Bloch’s principle states that if a family of meromorphic functions
satisfying a property P on an arbitrary domain D is normal, then every meromorphic
function on C with property P reduces to a constant. Like Bloch’s principle, the
converse is not true. For counterexamples, see [2, 5, 11, 12, 15, 18] and [10].

Counterexample 1.8. Suppose P[ f ] = f ( f 3)′′ = f (3 f 2 f ′)′ = 3 f 3 f ′′ + 6 f 2 f ′2 and let
f (z) = e−z be defined on C. Then

P[ f ](z) = 3e−3ze−z + 6e−2ze−2z = 9e−4z.

Take h(z) = e−4z, so that h . 0 and h is holomorphic in C and hence in every domain
D ⊆ C, and also h(z) , 0 for z ∈ D. Then (P[ f ] − h)(z) = 8e−4z has no zeros in C. Note
that f is nonconstant, which violates the statement of the converse of Bloch’s principle
in view of Corollary 1.7.

Next we discuss normality of F when P[ f ] − h has zeros under different scenarios.
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Theorem 1.9. Let F be a family of nonconstant meromorphic functions on a domain
D. Let h be a holomorphic function on D such that h(z) , 0 in D. If, for each f ∈ F ,
any one of the following three conditions holds:

(i) (P[ f ] − h)(z) has at most one zero;
(ii) (P[ f ] − h)(z) = 0 implies that | f (z)| ≥ M for some M > 0;
(iii) (P[ f ] − h)(z) = 0 implies that |( f li )(mi)(z)| ≤ M for some positive M, li and mi,

then F is normal in D.

Further, under the weaker hypothesis of partial sharing (see [3, 4]) of holomorphic
functions, we can prove the following result.

Theorem 1.10. Let F be a family of nonconstant meromorphic functions on a domain
D. Let h be a holomorphic function on D such that h(z) , 0 in D. If, for every f ∈ F ,
there exists f̃ ∈ F such that P[ f ] shares h partially with P[ f̃ ], then F is normal in D,
provided h . P[ f̃ ] in D.

Remark 1.11. Theorem 1.5 improves and generalises Theorems 1.2 and 1.3. Theorem
1.10 is a direct generalisation of [4, Theorem 1.3].

2. Some value distribution results
To facilitate the proofs of our theorems, we prove some value distribution results.

Theorem 2.1. Let f be a transcendental meromorphic function. Then P[ f ](z) − ω(z)
has infinitely many zeros for any small function ω(. 0,∞) of f .

Proof. Suppose on the contrary that P[ f ](z) − ω(z) has only finitely many zeros.
Then, by the second fundamental theorem of Nevanlinna for three small functions
[9, Theorem 2.5, page 47],

[1 + o(1)]T (r, P)≤ N(r, P) + N
(
r,

1
P

)
+ N

(
r,

1
P − ω

)
+ S (r, P)

= N(r, P) + N
(
r,

1
P

)
+ S (r, P). (2.1)

Since the homogeneous differential polynomial

P[ f ] = f l0 ( f l1 )(m1)( f l2 )(m2) · · · ( f lk )(mk) (k ≥ 1)

is a product of monomials f l0 , ( f l1 )(m1), ( f l2 )(m2), . . . , ( f lk )(mk), where the exponents
l0, l1, . . . , lk of f are positive integers (since l0 > 0, li ≥ mi > 0, for 1 ≤ i ≤ k), by
[17, Theorem 1, page 792], f and P[ f ] have the same order of growth and hence
T (r, ω) = S (r, P) as r→∞. That is, ω is a small function of f if and only if ω is a
small function of P[ f ]. Next,

N
(
r,

1
P

)
= N

(
r,

1
f l0 ( f l1 )(m1) · · · ( f lk )(mk)

)
≤ N

(
r,

1
f

)
+

k∑
i=1

N0

(
r,

1
( f li )(mi)

)
≤ N

(
r,

1
f

)
+

k∑
i=1

N0

(
r,

1
( f li )(mi)

)
,
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where N0(r, 1/( f li )(mi)) represents the count of those zeros of ( f li )(mi) which are not the
zeros of f li and hence not of f . Denote by N p)(r, 1/ f ) and N(p+1(r, 1/ f ) the counting
functions ignoring multiplicities of those zeros of f whose multiplicity is at most p
and at least p + 1, respectively. Therefore,

N
(
r,

1
P

)
≤ N

(
r,

1
f

)
+

k∑
i=1

[
miN(r, f ) + Nmi)

(
r,

1
f

)
+ miN(mi+1

(
r,

1
f

)]
+ S (r, f )

≤ N
(
r,

1
f

)
+

k∑
i=1

mi

[
N(r, f ) + Nmi)

(
r,

1
f

)
+ N(mi+1

(
r,

1
f

)]
+ S (r, f )

= N
(
r,

1
f

)
+

k∑
i=1

mi

[
N(r, f ) + N

(
r,

1
f

)]
+ S (r, f )

= N
(
r,

1
f

)
+ m′

[
N(r, f ) + N

(
r,

1
f

)]
+ S (r, f ).

That is,

N
(
r,

1
P

)
≤ m′N(r, f ) + (1 + m′)N

(
r,

1
f

)
+ S (r, f ). (2.2)

Next, if z0 is a zero of f of order p with 2 ≤ p ≤ k, then z0 is a zero of P[ f ] of order
pl0 + pl′ − m′ ≥ 2l0 + 2l′ − m′ ≥ 2l0 + m′ ≥ 2 + m′. Similarly, for p ≥ k + 1, z0 is a
zero P[ f ] of order ≥ (k + 1)(l0 + l′) − m′ ≥ (k + 1) + km′ = k(1 + m′) + 1. Thus, we
see that

N
(
r,

1
P

)
− N

(
r,

1
P

)
≥ (m′ + 1)Nk)

(
r,

1
f

)
+ k(m′ + 1)N(k+1

(
r,

1
f

)
.

That is,

Nk)

(
r,

1
f

)
≤

1
m′ + 1

[
N
(
r,

1
P

)
− N

(
r,

1
P

)]
− kN(k+1

(
r,

1
f

)
.

Since (1 − k)(1 + m′) ≤ 0 for k ≥ 1, (2.2) with the help of the last inequality gives

N
(
r,

1
P

)
≤m′N(r, f ) + (1 + m′)Nk)

(
r,

1
f

)
+ (1 + m′)N(k+1

(
r,

1
f

)
+ S (r, f )

≤m′N(r, f ) + N
(
r,

1
P

)
− N

(
r,

1
P

)
+ (1 − k)(1 + m′)N(k+1

(
r,

1
f

)
+ S (r, f )

≤m′N(r, f ) + N
(
r,

1
P

)
− N

(
r,

1
P

)
+ S (r, f ),

which implies that

N
(
r,

1
P

)
≤

m′

2
N(r, f ) +

1
2

N
(
r,

1
P

)
+ S (r, f ). (2.3)

Putting (2.3) into (2.1) and noting that N(r, f ) = N(r, P) and S (r, f ) = S (r, P) gives

[1 + o(1)]T (r, P) ≤
[
1 +

m′

2

]
N(r, f ) +

1
2

N
(
r,

1
P

)
+ S (r, P). (2.4)
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Also, a pole of f of order p ≥ 1 is a pole of P[ f ] of order

pl0 + pl′ + m′ ≥ l0 + l′ + m′ ≥ 1 + m′ + 1 + m′ = 2 + 2m′.

Therefore, N(r, P) ≥ (2 + 2m′)N(r, f ), which implies that

N(r, f ) ≤
1

2 + 2m′
N(r, P).

Hence, (2.4) yields

[1 + o(1)]T (r, P) ≤
[1
2
−

m′

4(1 + m′)

]
N(r, P) +

1
2

N
(
r,

1
P

)
+ S (r, P),

which implies that [ m′

4(1 + m′)
+ o(1)

]
T (r, P) ≤ S (r, P).

But this gives T (r, P) ≤ S (r, P), which is a contradiction. �

Theorem 2.2. Let ω(z) . 0 be a polynomial of degree m < l0. Let f be a nonconstant
rational function having poles, if any, of multiplicity at least l0. Then P[ f ] − ω has at
least two distinct zeros.

Remark 2.3. For m = 0, Theorem 2.2 holds without any restriction on the multiplicity
of poles of f .

Proof. The proof of Theorem 2.2 is based on ideas from [4] but with a number of
modifications. Since the computations are a little involved, we give the proof in full.

Suppose on the contrary that P[ f ] − ω has at most one zero. We consider the
following cases.

Case 1. If f is a nonconstant polynomial, then P[ f ] is also a polynomial of degree at
least l0 + l′ − m′ ≥ l0 + 1. Since ω(z) is a polynomial of degree m < l0, P[ f ](z) − ω(z)
is a polynomial of degree ≥ 1. By the fundamental theorem of algebra, P[ f ] − ω has
exactly one zero. We can set

P[ f ](z) − ω(z) = A(z − z0)n, (2.5)

where A is a nonzero constant and n > m + 1. Then

dm+1P[ f ]
dzm+1 (z) = P(m+1)[ f ](z) = An(n − 1)(n − 2) · · · (n − m)(z − z0)n−m−1,

which implies that z0 is the only zero of P(m+1)[ f ](z). Since each zero of f is a zero of
P[ f ] of order at least l0 + l′ −m′ > m + 1, it follows that z0 is a zero of P[ f ] also. Thus,
P(m)[ f ](z0) = 0. But (2.5) gives P(m)[ f ](z0) = ω(m)(z0) , 0, which is a contradiction.

Case 2. Suppose that f is a rational function but not a polynomial, say

f (z) = A

∏s
j=1(z − α j)n j∏t
j=1(z − β j)p j

, (2.6)
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where A is a nonzero constant, n j ≥ 1( j = 1, 2, . . . , s) and p j ≥ l0( j = 1, 2, . . . , t). Put
s∑

j=1

n j = S and
t∑

j=1

p j = T. (2.7)

Thus, S ≥ s and T ≥ l0t ≥ t. We see from (2.6) that

P = P[ f ](z) =

∏s
j=1 (z − α j)n j(l0+l′)−m′∏t
j=1 (z − β j)p j(l0+l′)+m′

gP(z) =
p(z)
q(z)

, say, (2.8)

where gP(z) is a polynomial of degree at most m′(s + t − 1). On differentiating (2.8),

P(m) =

∏s
j=1 (z − α j)n j(l0+l′)−(m′+m)∏t
j=1 (z − β j)p j(l0+l′)+(m′+m)

g̃(z), (2.9)

where g̃ is a polynomial of degree at most (m′ + m)(s + t − 1), and

P(m+1) =

∏s
j=1 (z − α j)n j(l0+l′)−(m′+m+1)∏t
j=1 (z − β j)p j(l0+l′)+(m′+m+1)

˜̃g(z), (2.10)

where ˜̃g is a polynomial of degree at most (m′ + m + 1)(s + t − 1).

Case 2.1. First assume that P[ f ] − ω has exactly one zero, say z0. In view of (2.8),

P[ f ](z) = ω(z) +
B(z − z0)l∏t

j=1 (z − β j)p j(l0+l′)+m′
, (2.11)

where l is a positive integer and B is a nonzero constant. On differentiating (2.11),

P(m) = C +
(z − z0)l−mĝ(z)∏t

j=1 (z − β j)p j(l0+l′)+(m′+m)
, (2.12)

where ĝ is a polynomial with degree at most mt and C , 0 is a constant, and

P(m+1) =
(z − z0)l−(m+1) ˆ̂g(z)∏t

j=1 (z − β j)p j(l0+l′)+(m′+m+1)
, (2.13)

where ˆ̂g is a polynomial of degree at most (m + 1)t ≤ l0t. On comparing (2.9) and
(2.12), we see that z0 , α j ( j = 1, 2, . . . , s) (otherwise, for some j, z0 is a zero of
P(m)[ f ] from (2.9) and then from (2.12), P(m)[ f ](z0) = 0, which implies that C = 0,
which is a contradiction).

Case 2.1.1. Suppose that l , T (l0 + l′) + tm′ + m. Then from (2.11) and using (2.8),
we see that deg(p) ≥ deg(q) and T (l0 + l′) + tm′ ≤ S (l0 + l′) − m′s + deg(gP). This
implies that

T (l0 + l′) ≤ S (l0 + l′) − m′ < S (l0 + l′),

whence T < S . Also, from (2.10) and (2.13),

S (l0 + l′) − (m′ + m + 1)s ≤ deg( ˆ̂g) ≤ l0t ≤ T,
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which gives

S (l0 + l′) ≤ (m′ + m + 1)s + T ≤ (m′ + l0)S + T < (m′ + 1 + l0)S ≤ (l′ + l0)S ,

that is, S < S , which is absurd.

Case 2.1.2. Suppose that l = T (l0 + l′) + tm′ + m. Then we have two possibilities:
either S > T or S ≤ T . For the case S > T , we can proceed exactly as in Case 2.1.1.
Therefore, we need only consider the case S ≤ T . From (2.10) and (2.13), (z − z0)l−m−1

divides ˜̃g(z) and so l − m − 1 ≤ deg( ˜̃g) ≤ (m′ + m + 1)(s + t − 1). This implies that

T (l0 + l′) + tm′ + m − m − 1≤ (m′ + m + 1)(s + t − 1)
= m′(s − 1) + (m + 1)(s + t − 1) + tm′

and so

T (l0 + l′)≤m′(s − 1) + (m + 1)(s + t) − m
≤m′(s − 1) + (m + 1)(s + t) ≤ m′(s − 1) + l0(s + t)
< (m′ + l0)S + T ≤ (m′ + l0 + 1)T ≤ (l′ + l0)T,

which is again absurd.

Case 2.2. Finally, we suppose that P[ f ] −ω has no zeros. Then l = 0 in (2.11), giving

P[ f ](z) = ω(z) +
B∏t

j=1 (z − β j)p j(l0+l′)+m′
,

where B , 0 is a constant, and so

P(m+1) = B
h(z)∏t

j=1 (z − β j)p j(l0+l′)+m′+m+1
,

where deg(h) ≤ (m + 1)t − 1 < (m + 1)t ≤ l0t. Proceeding as in Case 2.1 leads to a
contradiction. �

3. Proofs of the main results

Since normality is a local property, we can assume that D is the open unit disc D.

Proof of Theorem 1.5. Suppose on the contrary that F is not normal at z = 0. We
consider the following cases.

Case 1. Let h(0) , 0. Then, by Zalcman’s lemma [19, page 216], there are a
sequence { f j} in F , a sequence {z j} of complex numbers in D with z j → 0 as j→∞
and a sequence {ρ j} of positive real numbers with ρ j → 0 as j→ ∞ such that the
sequence g j(z) := ρ−αj f j(z j + ρ jz) converges locally uniformly with respect to the
spherical metric to a nonconstant meromorphic function g(z) having bounded spherical
derivative on C. Clearly, (gli

j )
(mi)→(gli )(mi) and so P[g j]→P[g] locally uniformly on C.

https://doi.org/10.1017/S0004972716001015 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972716001015


246 K. S. Charak and S. Sharma [9]

Since g is nonconstant and li ≥ mi for all i = 1, 2, . . . , k, it follows that P[g] . 0. We
claim that P[g] is nonconstant. For, suppose that

P[g] ≡ a, a ∈ C \ {0}. (3.1)

Then, by definition of P[g] with l0 > 0 and li ≥ mi for all i, we see that g is entire and
nonvanishing. So, for some c , 0, g(z) = ecz+d, whence

P[g](z) =

k∏
i=1

(lic)mi e(l0+l′)(cz+d),

which is nonconstant, in contradiction to (3.1). Hence, the claim follows.
Taking α = m′/(l0 + l′), we find that P[g j](z) = P[ f j](z j + ρ jz). Thus, on every

compact subset of C not containing poles of g,

P[ f j](z j + ρ jz) − h(z j + ρ jz) = P[g j](z) − h(z j + ρ jz) −→ P[g](z) − h(0) = P[g](z) − h0,

spherically uniformly, where h0 = h(0) , 0. In view of Theorems 2.1 and 2.2, let u0 and
v0 be two distinct zeros of P[g] − h0 in C. Since zeros are isolated, we consider two
nonintersecting neighbourhoods, N(u0) and N(v0), such that N(u0) ∪ N(v0) does not
contain any other zero of P[g] − h0. By Hurwitz’s theorem, we find that for sufficiently
large values of j, there exist points u j ∈ N(u0) and v j ∈ N(v0) such that

P[ f j](z j + ρ ju j) − h(z j + ρ ju j) = 0 and P[ f j](z j + ρ jv j) − h(z j + ρ jv j) = 0.

Since P[ f ] and P[g] share h IM in D, for each pair f , g of members of F , for a fixed n
and for all j,

P[ fn](z j + ρ ju j) − h(z j + ρ ju j) = 0 and P[ fn](z j + ρ jv j) − h(z j + ρ jv j) = 0.

Taking j→∞ and noting that z j + ρ ju j → 0 and z j + ρ jv j → 0 as j→∞, we find that
P[ fn](0) − h(0) = 0, that is, P[ fn](0) = h(0) = h0 , 0. Since the zeros of P[ fn] − h have
no accumulation point, for sufficiently large j, z j + ρ ju j = 0 = z j + ρ jv j. But this means
that u j = −z j/ρ j = v j is a point in both of the neighbourhoods N(u0) and N(v0), which
is a contradiction.

Case 2. Suppose that h(0) = 0. Then we can write h(z) = zmh1(z), where m ∈ N and
h1(z) is a holomorphic function in D such that h1(0) , 0. We may take h1(0) = 1. Since
0 < (m + m′)/(l0 + l′) < 1, as in Case 1, by Zalcman’s lemma [19, page 216], we obtain
a sequence of rescaled functions g j(z) = ρ−(m+m′)/(l0+l′)

j f j(z j + ρ jz) which converges
locally uniformly with respect to the spherical metric to a nonconstant meromorphic
function g(z) on C having bounded spherical derivatives.

We now consider the following two subcases of Case 2.

Case 2.1. Suppose that there exists a subsequence of z j/ρ j, which for convenience
we take to be z j/ρ j itself, such that z j/ρ j →∞ as j→∞. Consider the family

G := {G j(z) = z−(m+m′)/(l0+l′)
j f j(z j + z jz) : f j ∈ F }
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defined on D, for which

P[G j](z) = Gl0
j (Gl1

j )(m1) · · · (Glk
j )(mk)(z)

= z−(m+m′/l0+l′)(l0+l′)+m′

j P[ f j](z j + z jz) = z−m
j P[ f j](z j + z jz),

that is, P[ f j](z j + z jz) = zm
j P[G j](z). Now, by hypothesis, for fa, fb ∈ F ,

(P[ fa] − h)(z j + z jz) = 0⇔ (P[ fb] − h)(z j + z jz) = 0
⇒ zm

j P[Ga](z) = zm
j (1 + z)mh1(z j + z jz)⇔ zm

j P[Gb](z) = zm
j (1 + z)mh1(z j + z jz)

⇒ P[Ga](z) = (1 + z)mh1(z j + z jz)⇔ P[Gb](z) = (1 + z)mh1(z j + z jz).

Since (1 + z)mh1(z j + z jz) , 0 at the origin, it follows from Case 1 that G is normal in
D and hence there exists a subsequence of {G j} in G, which we may take to be {G j}

itself, such that G j → G, locally uniformly on D with respect to the spherical metric.
If G(0) , 0, then we see that

g j(z) = ρ−(m+m′)/(l0+l′)
j f j(z j + ρ jz) =

( z j

ρ j

)(m+m′)/(l0+l′)
z−(m+m′)/(l0+l′)

j f j(z j + ρ jz)

=

( z j

ρ j

)(m+m′)/(l0+l′)
G j

(ρ j

z j
z
)
,

which converges locally uniformly with respect to the spherical metric to∞ on C. This
implies that g(z) ≡ ∞, which is a contradiction. Thus, we must have G(0) = 0, which
implies that G′(0) ,∞. Next, for each z ∈ C,

g′j(z) = ρ−(m+m′)/(l0+l′)+1
j f ′j (z j + ρ jz) =

(ρ j

z j

)−(m+m′)/(l0+l′)+1
G′j

(ρ j

z j
z
)

and (m + m′)/(l0 + l′) < 1. Therefore, g′j(z)→ 0 spherically uniformly as j→∞. But
this implies that g is constant, which is a contradiction.

Case 2.2. Suppose that there exists a subsequence of z j/ρ j, which, for simplicity, we
take to be z j/ρ j itself, such that z j/ρ j → c as j→∞, where c is a finite number. Then

H j(z) = ρ−(m+m′)/(l0+l′)
j f j(ρ jz) = g j

(
z −

z j

ρ j

)
χ
→ g(z − c) := H(z)

on C. Note that P[H j](z) = ρ−m
j P[ f j](ρ jz). For each fa and fb in F , P[ fa] and P[ fb]

share h IM, so
P[ fa](ρ jz) = h(ρ jz)⇔ P[ fb](ρ jz) = h(ρ jz). (3.2)

That is,
P[Ha](z) = zmh1(ρ jz)⇔ P[Hb](z) = zmh1(ρ jz). (3.3)

We claim that P[H](z) . zm. If, on the contrary, P[H] ≡ zm, then z = 0 is the only
possible zero of H. If H is transcendental, then H(z) = zαeQ(z) for some nonnegative
integer α and a polynomial Q. Thus, (Hli )(mi)(z) = p(z)eliQ(z), where p(z) (. 0) is a
rational function. It follows that P[H] is also transcendental, which is not the case.
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On the other hand, if H is rational and z = 0 is a zero of H, then H is a polynomial.
Clearly, deg(P[H]) ≥ l0 + 1 > m, which is again a contradiction.

On compact subsets of C, not containing poles of H, we see that

P[H j](z) − zmh1(ρ jz) −→ P[H](z) − zm,

spherically uniformly. Since P[H](z) . zm, by Theorems 2.1 and 2.2, P[H](z) − zm has
at least two distinct zeros in C. By proceeding in the same way as in Case 1, we arrive
at a contradiction.

Putting all the cases together, it follows that F must be normal in D. �

Proof of Theorem 1.9. Irrespective of any of the conditions (i), (ii) and (iii), the
ideas used in Case 1 of the proof of Theorem 1.5 lead us to the conclusion that
P[g](z) . h(0) = h0 in C.

If condition (i) holds, then we claim that P[g](z) − h0 has at most one zero in C, in
violation of the conclusions of Theorems 2.1 and 2.2, thereby proving the normality
of F . Suppose, on the contrary, that P[g](z) − h0 has at least two distinct zeros, say ζ0
and ζ∗0 . By Hurwitz’s theorem, there exist points ζ j → ζ0 and ζ∗j → ζ∗0 such that

P[ f j](z j + ρ jζ j) − h(z j + ρ jζ j) = 0 and P[ f j](z j + ρ jζ
∗
j ) − h(z j + ρ jζ

∗
j ) = 0

for sufficiently large j. Since P[ f j](z j + ρ jz) − h(z j + ρ jz) has at most one zero, this
contradicts the fact that ζ0 and ζ∗0 are distinct. Hence, the claim follows.

Next we prove the normality of F when condition (ii) holds. By Theorems 2.1
and 2.2, P[g](z) − h0 must have a zero, say ζ0, and hence g(ζ0) , ∞. Further, by
Hurwitz’s theorem, for sufficiently large j, there exists a sequence {ζ j} converging to
ζ0 such that

P[ f j](z j + ρ jζ j) − h(z j + ρ jζ j) = 0.

By hypothesis,

|g j(ζ j)| = ρ−m′/(l0+l′)
j | f j(z j + ρ jζ j)| ≥ ρ

−m′/(l0+l′)
j M.

Since g(ζ0) , ∞ in some neighbourhood N of ζ0, it follows that for sufficiently large
j, g j(z) converges uniformly to g(z) in N. Thus, for given ε > 0 and for every z ∈ N,

|g j(z) − g(z)| < ε

for sufficiently large j. Therefore, for sufficiently large values of j,

|g(ζ j)| ≥ |g j(ζ j)| − |g(ζ j) − g j(ζ j)| > ρ
−m′/(l0+l′)
j M − ε,

which implies that g has a pole at ζ0, which is not the case.
Finally, we prove the normality of F when condition (iii) holds. As in the preceding

discussion,
P[ f j](z j + ρ jζ j) − h(z j + ρ jζ j) = 0.

Since α = m′/(l0 + l′) for some positive li and mi,

|(gli
j )

(mi)(ζ j)| = ρmi−αli
j |( f li

j )(mi)(z j + ρ jζ j)| ≤ Mρmi−(m′li/l0+l′)
j → 0 as j→∞.

Thus, (gli )(mi)(ζ0) = lim j→∞(gli
j )

(mi)(ζ j) = 0, which implies that P[g](ζ0) = 0 , h0. This
is a contradiction. �
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