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Abstract

Let G denote any locally compact abelian group with the dual group T. We construct a new kind of
subalgebra L\G) ®rS of L\G) from given Banach ideals S in L\G). We show that L\G) ®rS is
the largest among all strongly character invariant homogeneous Banach algebras in 5. When S
contains a strongly character invariant Segal algebra on G, it is shown that Ll(G) ®rS is also the
largest among all strongly character invariant Segal algebras in S. We give applications to characteri-
zations of two kinds of subalgebras of /.'(G)-strongly character invariant Segal algebras on G and
Banach ideals in L\G) which contain a strongly character invariant Segal algebra on G.

1980 Mathematics subject classification (Amer. Math. Soc): primary 22 B 10, 43 A 20; secondary 43 A
15, 46 J 15.
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1. Notations and definitions

Throughout this article, T denotes the circle group. R denotes the additive group
of real numbers. G denotes any locally compact abelian group with the dual
group F. P(Ll(G)) denotes the space of all/in L\G) whose Fourier transforms/
have compact support.

For the convenience of the readers, we recall some definitions: An ideal 5 in
L\G) is called a normed ideal in Ll(G) if S is also a normed linear space under
some norm II II5 such that || / * g || s < || / 1 | , || g || 5 for all / G L\G) and g £ S.
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This definition is weaker than that of J. Cigler [2]. In addition, if (5, II II s) is also
a Banach space, then S is called a Banach ideal in L\G). A subalgebra 5 of L\G)
is called a semi-homogeneous Banach algebra on G if S is a Banach algebra under
some norm 11 || s s* 11 11, and satisfies the property:

(H-\) If/ G 5 a n d x £ 6 , then LJ G S and || LJ \\s = || / \\s (where Lx/(>>)

= /(>>-*))•
If S satisfies the additional property:
(H-2) For every / G 5, the map x -* Lxf is continuous from G into (S,\\ \\s),

then S is called a homogeneous Banach algebra on G. The definition is equivalent
to that of a homogeneous Banach space in Katznelson [6]. The proof can be
found in [13, Theorem 3.2]. A semi-homogeneous Banach algebra 5 on G is called
(strongly) character invariant if y G T, f G S i m p l y y / 6 S ( a n d | |y f \ \ s — I I / I I 5 ) ,

where yf(x) = (x, y)f(x). In [13], H. C. Wang uses the word "character" instead
of "strongly character invariant". A dense homogeneous Banach algebra in L'(G)
is called a Segal algebra on G. For fundamental results on Segal algebras, see
Reiter ([8,9]) and Wang [13].

2. Construction of the maximal strongly character invariant
homogeneous Banach algebras

Suppose that (A, II II^) and (B, || | |B) are two normed linear spaces in L\G)
with || IIA > II ||, and Ml B > II II \- We introduce a new kind of linear subspaces of
L}(G) as follows: The set A ®vB consists of all those elements/G D{G) such
that

(0 f=2sn*K
n

subject to the conditions:

(ii) ygn£A nP(Ll(G)), yhnSBnP(Ll{G)), V^l .yGf ;

and

0") sup 2\\ygJJyhJB<oo.

Clearly, (iii) implies that the series (i) converges in L'(G) and

II / 1 | , < the infimum of all possible values in (iii).

Denote the infimum by || / 1 | r . The above inequality means that

I, < l l / l l r -
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We remark here that A ®vB may be zero. For example, take A — L\T) and
B = C\T) = the space of all continuously differentiable functions on T. It
follows from the above definitions that A ® r B = B ®rA and (A ® r B , \\ | | r ) is a
normed linear space in L\G). Moreover,

PROPOSITION 1. Let A be a normed ideal in L\G). If A or B satisfies the (H-X)
property, then A ®T B is not only a strongly character invariant semi-homogeneous
Banach algebra on G but also a normed ideal in Ll(G).

PROOF. Let (/m) be a sequence in A ® r B with 2 m l l / m l l r < oo. For each m
there exists two sequences (gn

m) C A n P{L\G)) and (h%) C B n P(L\G)) such
that

f = y gm * hm

and

This implies that

sup

Let / = 1m2n gn
m * h™ in (L'(G), II II,). From the above inequalities we find that

fEA ®rB,

f~ I / * = 2 2g"*hk
n in ( L ' ( G ) , II II,)

and

(sup 2llYg*HJlY**l

(H/Jlr + 2-*)

0 as w -» oo,
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which shows that the series 1mfm converges to / in (A ®rB, 11 | | r ) , and so
(A ®TB, || || r ) is complete. The remainder of the proof is based on the identities:
y(f*g) = ( Y / ) * (yg) a n d y(Lxf) = (x, y)Lx(yf). It is so straightforward as to
be omitted.

PROPOSITION 2. Suppose that A and B satisfy the hypotheses of Proposition 1. Let
A ®rB denote the space ofall fG A ®T B such that x -> Lxf is continuous from G
into {A ®T B, || II r ) ; then (A ®rB, II II r ) 's a strongly character invariant homoge-
neous Banach algebra on G.

PROOF. In view of [13, Theorem 2.6], it suffices to show that y GT,fGA®TB
imply yf G A ®TB. We have

\\Lx(yf) - Ly(yf)\\T= \\(-x,y)yLJ- (-y,y)yLyf\\T

<\(-x,y)-(-y,y)\\\yLJ\\r

+ \(-y,y)\\\y(Lxf-Lyf)\\T

= \(-x,y) -(-y,y)\\\f\\r+ \\LJ- Lyf\\r.

Since y is continuous on G and /G/4 <8r5, it follows that x -» Lx(yf) is
continuous from G into (A <8>rB, \\ | | r) and so yf G A <8>rfi. This completes the
proof.

PROPOSITION 3. If A and B are two Banach ideals in L\G), then A ®TB C
A®rBCA HBandW | | r > m a x ( | | 11̂ ,11 | |B) .

REMARK. This proposition does not hold in case of normed ideals, that is, it is
necessary that (A, \\ \\A) and (B, II ll s) be complete. For example, consider (A,
|| \\A) = (L1(G),\\ II,) and (B, || | | s ) = (P(L'(G)),I| II,). Here (B, II IIB) is not
complete. It follows easily that / G A ® r B and II / II r = 11/11, for all / G
P{L\G)), which implies A ®TB - A ®TB = L\G) £ A fl B.

PROOF OF PROPOSITION 3. For the sake of symmetry, it suffices to show that
A®rBCA and || II,, < II II r . Let f G A ®rB. For any e > 0, there exist
(gn) CA n P(L\G)) and (hn) C B n /'(L'CG)) such that

and

sup
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We have

^WygJA\\yhn\\B

> | | / l l r + e < oo.

This implies that there exists <J> £ A such that <t> = %„ gn* hn in (^4, || H^) and

consequently <j> = 2ngn*hn in (£'(<?), II II,). Since / = lngn *hn in (L ' (G) ,

II | | , ) , it follows that <f> = / . Therefore ,4 ® r B c .4. On the other hand,

It follows that || / IIA < l l / l l r . This completes the proof.

THEOREM 4. Let S be a Banach ideal in L\G), then L\G) ® r S is the largest
among all strongly character invariant homogeneous Banach algebras in S.

REMARK. In general, L\G) ®rS is smaller than the maximal homogeneous
Banach space Sc in S. (See [6] and [13] for the definition of Bc.)

PROOF. It suffices to show that if B is a strongly character invariant homoge-
neous Banach algebra in S, then B C Ll(G) <8>rS. We divide the proof into two
steps. First, claim that BcL\G)®rS. For any / S B , there exist ( g j C
P(L\G)) and (hn) Cfifl P{L\G)) such that

hn in(B,\\\\B)
n

and

which follows immediately from [13, Theorem 3.7(i)] and [11, Theorem 2.6.8].
Since B C S, there exists a constant p such that || II s < p II IIB, which implies

(•) sup

and so / e L ' ( G ) ® r S . Therefore B CL\G)®TS. Next, claim that 5 C
L\G) <8>r5. Since 5 C L\G) ®TS, it follows that there exists a constant p' such
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that || || r < p'|| || B. For any / E B, we have

HLxf-Lyf\\r<p'\\Lxf-Lyf\\B

-> 0 as y ->• x

which implies / £ L\G) ®rS. Therefore B C L\G) ®TS. This completes the
proof.

3. A characterization of strongly character invariant Segal algebras

THEOREM 5. Let S be a Segal algebra on G, then the following three properties are
equivalent:

(a) There exists a norm under which S becomes a strongly character invariant
Segal algebra on G.

(b)Ll(G)®rS = S.
(c)sup{|lY/||s: yET,f(EP(L\G))and\\f\\s= 1} < oo.

PROOF. Applying Theorem 4 we see that (a) and (b) are equivalent. Now, claim
that (b) implies (c). If L\G) <2>rS — S, then there exists a constant p such that
l l / l l s < H/llr < p l l / l l s f o r a l l / e S. This implies that for any/G P(L](G)) we
have

sup | lY/ | | s <sup | lY/ l l r = l l / l l r ^P l l /Hs -

It follows that

s u p { H Y / | | s : Y G r , / E i ' ( L 1 ( G ) ) a n d | | / | | s . = l} < p < oo,

which shows that (b) implies (c). Next, claim that (c) implies (b). Assume that

p = s u p { | l Y / l | s : Y E r , / e / > ( / , ' ( £ ) ) and | | / | | s = l } < oo.

In view of Proposition 3, it suffices to show that S C L\G) ®TS. The proof of
Theorem 4 can be applied to this case if we use this p to play its role in Theorem
4 and replace (*) in Theorem 4 by

(*)' sup 2llYgBll,HYMs=sup SH&J

It is so easy as to be omitted.

EXAMPLE. Consider the following Segal algebras:
(a) Ck(T) consists of all /c-times continuously differentiable functions on T,

with the norm II / II = sup0<ySA: II f
U) II x.
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(b) L(k\T) consists of all / in L\T) such that f o r ; = 0 , 1 , . . . ,k - 1, fU) are
absolutely continuous on T and / o + 1 ) G L\T), with the norm 11/11 =

(c) LW{R) consists of all / in L\R) such that f o r ; = 0 , 1 , . . . ,k - 1, f(j) are
absolutely continuous on R and / 0 + 1 ) G L'(/?), with the norm It/11 =
s u p o ^ ^ l l / ^ l l , (see [1], [6], [8], [12], [13]). Let 5 denote any one of Ck(T),
L(k)(T) and L(k\R). It is well-known that S is character invariant. From
Theorem 5 it is easy to show that there exists no norm under which S becomes a
strongly character invariant Segal algebra.

4. A characterization of ideals in V(G) which contain
a strongly character invariant Segal algebra

THEOREM 6. Let S be a Banach ideal in LX{G); then the following three properties
are equivalent:

(a) There is the largest among all strongly character invariant Segal algebras in S.
(b) S contains a strongly character invariant Segal algebra on G.
(c) P(L\G)) C S and supyer | |y/1|s < oo for all f G P(L\G)).

PROOF. Applying Theorem 4 we see that (a) and (b) are equivalent. Now, claim
that (b) implies (c). Let B be a strongly character invariant Segal algebra in S.
Then P(L\G)) C S and there exists a constant p such that || | | s < pll IIB. This
implies that for any / E P(L\G)) we have

s u p | | y / | | s « p sup I IY/H B = P l l / I I B < oo.

This shows that (b) implies (c). Next, claim that (c) implies (a). In view of
Theorem 4, it suffices to show that P(L\G)) C L\G) ®rS. For any / G P(L](G))
there exists g G P(L\G)) such that g — 1 on supp/. This implies that

s = llgll, sup IIy/1|s < oo

and

\\LJ-Lyf\\r = \\{Lxg - Lyg) . / | | r < sup \\y(Lxg - Lyg)\\]\\yf\

= WLxg- L g ||, sup
yer

-•0 as j -+ x.
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It follows that/ G L\G) ®rS and so P(L\G)) C L\G) ®TS. This completes the
proof.

EXAMPLE. Let a be a locally bounded function on F with a> \. Define S(a) as
the space of all / in L\G) such that lim /(y)a(y) = 0. Under the norm II / II a =
11/11, + supy6r |/(Y)a(7)| , S(a) forms a Segal algebra on G. (See [10].) We
claim that S(a) contains no strongly character invariant Segal algebras on G if
and only if a is unbounded on T. In this case, it follows that L\G) ®TS(a) is not
a Segal algebra on G. Now we give a detailed proof as follows: Take/ G P(L\G))
with/(0)= 1. We have

sup |o(x) |= sup /

S U P | / ( Y - X ) « ( Y ) |

= sup sup I ( X / ) " ( Y ) « ( Y ) | ^ sup Ilx/IL

If a is unbounded on T, then supx e r | |x / l l a — oo. From Theorem 6 we find that
S(a) contains no strongly character invariant Segal algebras on G. If a is
bounded on T, [10, Proposition 2] states that S(a) — L\G), which is a strongly
character invariant Segal algebra on G. This completes the proof.

EXAMPLE. Define F(R) as the space of all/in Ll(R) such that lim /(/?) log n — 0.
Under the norm || / 1 | = II / II, + sup,, |/(n) | log n, F(R) forms a Segal algebra on
R (see [4]). In this case, G — R, T = R and so the largest strongly character
invariant homogeneous Banach algebra in F(R) is Ll(R) <S>R F(R). By a similar
argument as above we can show that F(R) contains no strongly character
invariant Segal algebras on R and L\R) <S>R F(R) is not a Segal algebra on R.
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